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System theory for holographic representation of linear space-variant systems is derived. The utility of the
resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant
system, ideal magnifier, and Fourier transformer. A method previously employed to holographically rep-
resent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.

I. Introduction

By holographically recording an arbitrarily com-
plex linear space-invariant system’s transfer func-
tion, one may duplicate input-output relationships of
the system with access solely to the hologram. An
arbitrary input is Fourier transformed by a thin lens,
multiplied by the holographically recorded transfer
function placed in the lens’s back focal plane, and
reimaged. The output is equivalent to that of the re-
corded system with the same input. This type of
system representation may be used to condense a
multielement space-invariant linear system into a
single hologram.

Unfortunately, there are many common optical
systems of interest that are space variant to which
this scheme cannot be directly applied. Recent ef-
forts to holographically record space-variant systems
employing a variation of the transfer function meth-
od, however, have proven successful. Either by
input isoplanatic patch division or sampling, success-
ful volume hologram’ representations of the space-
variant nonunity magnification imaging system have
been obtained.1-5

It is thus of practical importance to investigate
that system theory necessary for holographically rep-
resenting space-variant systems. The approach em-
ployed herein divides the space-variant system input
plane into isoplanatic patches to which correspond-
ing transfer functions are assigned. The resulting
piecewise isoplanatic approximation (PIA) output is
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representative of the true system output. Although
the isoplanatic patch concept is not new,6 its use has
been primarily confined to system analysis within a
single patch.

The PIA is herein derived, and examples of its ap-
plication to various systems are offered. Equiva-
lence of true and PIA outputs of space-invariant sys-
tems is established. The discrete approximation
(DA) previously employed for space-variant system
representation4 is shown to be a special case of the
PIA.

II. Foundations

For notational and continuity purposes, a brief re-
view of classical linear system theory is now offered
after Goodman.7 Analysis is restricted to one di-
mension with no loss of generality.

A general system consisting of an input, a black
box, and an output may be modeled by the mathe-
matical operator S [ ] such that

go(x) = s~i(x,l, (1)

where go(x)  is an output corresponding to an input
gi(x). A system is said to be linear if and only if

S[Cz&(X)  + nf,(x)l  = as[e-,&)I  + bSlfiMl, (2)

where a and b are constant. Such systems may be
described by the superposition integral

RUG”)  = _lgi(E)‘(x - 5; 5)d5,J‘ (3)

where, after the notation of Lohmann and Paris,8

J& - 5; t;) = s[HX - 01 (4)

is the system’s line spread function, and 6(z) is the
Dirac delta.
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A linear system is said to be space invariant, or iso-
planatic, if

h& - 5; 5) = J& - 0, (5)

that is, the line spread function is a function only of
the difference (x - 6). For such systems, Eq. (3) be-
comes the convolution integral

g,(x) = JI‘gi(<)k(X - <)u’(, (6)__

which is expressed in shorthand notation as

g,(x) = &) * k(x). (7)

For the space-variant linear system, one needs to
know the line spread function from every point on
the input plane to define completely the system,
while the invariant case demands only one defining
relationship.

The input-output expression of Eq. (7) may also
be expressed in the frequency domain as

Go = H(f,)Gi(fz), (8)

where Go(f,), H(f,),  and Gi(f,) are the respective
Fourier transforms of go(x),  h(x), and gi(x). For ex-
ample,

Hlf,) = s k(x) exp(-jW&x-m (9)

is termed the system transfer function.
The straightforward relationships in Eqs. (7) and

(8) give rise to the feasibility of holographic recording
of space-invariant systems described in Sec. I. A
further generalization is needed for recording tech-
niques for the space-variant case.

III. Piecewise lsoplanatic Approximation

In the above analysis, a system was given a specific
classification of variant or invariant by the criterion
of Eq. (5). Lohmann and Paris8 have proposed that
variant systems might be assigned degrees of invar-
iance. It follows that a space-variant linear system
having a high degree of invariance might successfully
be analyzed in a manner similar to that used for in-
variant systems. To do this, the input plane is divid-
ed into a number of regions, or isoplanatic patches, in
which the line spread function essentially meets the
invariance criterion. Each input function is divided
into similar regions that are convolved with corre-
sponding line spread functions and superimposed to
yield an approximated output.

A. Derivation

A linear system composed of invariant input re-
gions is termed piecewise isoplanatic.8 The distribu-
tion of these regions on the input plane may be ex-
pressed as

c!JL(x - Z,)p(-X  +  ‘I(“), (10)
”

where 1, and u, are, respectively, the lower and
upper endpoints of the nth patch, and w(x)  is the
unit step function defined as

P(X) 1 1;x 2 0,=
0;x < 0.

(11)

The summation is assumed to cover the region of in-
terest on the input plane. We also assume adjacent
patches are joined so that

(12)

The nth isoplanatic patch thus has a width of u,, - I,
and is centered at I = (ln+ u,)/2.

In order to define completely the piecewise isopla-
natic system, knowledge of the system’s line-spread
function  for each patch is needed. We thus assume
line sources are conveniently placed at some input
plane point x, where

1” 5 x, 5 U”,

and that we have knowledge of

k,(x - x,) =  k(x - 3c,; x,)

=  S[6(x  - x,,]

for all n.

(13)

(14)

Consider now the input-output relationship of the
piecewise isoplanatic system. An input, gi(x), must
first be divided into isoplanatic regions. Specifically,

giGc)  = -yg,(x - d, (15)”

where

g,(x - x,) = g,cr)P(x  - Z,)P(-x  + 24,). (16)

An illustration of extraction of g,(r) from g;(x)  is of-
fered in Fig. 1.

The output of the piecewise invariant system is
found through substitution of Eq. (15) into Eq. (1);

g,(x)  = plY&cx - x,)1. (17)

The summation sign is extracted from the system op-
erator due to superposition [(Eq. (2)]. Each argu-
ment of the system operator is invariant and can be
expressed via the convolution integral [Eq. (6)]:

S[g,G - x,)1  = J- g,(5 - X,)h”(X  - Od5. (18)
-cc

I gi(X)

!b=-x
ln Xn Un

lnlx)’ _wvn_,,  x

n n

Fig. 1. Extraction of the nth isoplanatic region g,,(x) from an
input&(x).
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Substituting into Eq. (17) and employing the short-
hand notation of Eq. (7) give

g&x) = xg,,b  - x,) * k,(x)
n

(19a)

or equivalently

g,(x)  = cg,(x)  * h,(x - x,).
R (19h)

The input-output relationship of a piecewise isopla-
natic system can thus be expressed as a superposition
of convolutions.

Equations (19a)  and (19b) may also be expressed
in the frequency domain as

(20)

where G, (fX) and H, (fX) are the respective Fourier
transforms of g, (x) and h, (cc ).

The power of the input-output relationship of a
piecewise isoplanatic system lies in its use for synthe-
sizing outputs of variant systems modeled as piece-
wise isoplanatic. Such a system model output will be
called the Piecewise Isoplanatic Approximation
(PIA). Note that the superposition integral [Eq. (3)]
can be written

The PIA of the same system, go(x), can be written

One sees that as each isoplanatic patch width nar-
rows around x, (matched by an increase in the num-
ber of patches), the PIA [Eq. (22)]  approaches the
true output go(x ).

B. Examples

1. Invariant Systems
Application of the PIA to invariant systems gives

the true output since invariant systems are indeed
piecewise isoplanatic. For such systems, the invar-
iance criterion of Eq. (5) is true. Substituting into
the PIA [Eq. (19a)] and recognizing the distributive
property of the convolution operator give

go = h(x) *
[
C&,(X - x,)

= hbd*gih 1
= g,(x). (23)

The true and approximated outputs are thus equiva-
lent.

Consider as a specific example the differentiator
with an input-output relationship of

g,(x)  = (d/dX)&?iGc). (24)

The corresponding line-spread function is

k(x - 5) = 6’(X - 51, (25)

where S’(X)  is the unit doublet, the first derivative of
the Dirac delta. By the criterion of Eq. (5), the dif-
ferentiator is invariant.

Substitution of Eq. (25) into the PIA [Eq. (19b)]
yields

k0 = CgicX)cL(x  - Z,)p(U,  - X) *a’Gc)n

= Cdgi(X)[PC: - I,) - P(X - IL,)]
n dx (26)

In the above summation, the unwanted delta terms
are canceled by corresponding delta terms in adja-
cent patches as specified in Eq. (12). This reduces
Eq. (26) to

= $giG),

which is the desired result.

2. Ideal Magnifier
The ideal magnifier (imaging system) has an input-

output relationship of

g,(X)  = (l/M)gi(X/M)  * (28)

The corresponding line-spread function is then

k(x - <;5) =  6(x - Mt). (29)

Note that no mathematical manipulation may be
performed on Eq. (29) to meet the invariance criteri-
on of Eq. (5) except for the trivial case of unity mag-
nification. Thus, in the classical sense, the magnifier
is space variant.9

The PIA,  go(~),  of the magnifier may be found by
substituting the appropriate form of Eq. (29) into Eq.
(19b):

2,(X)  = C&(X) * 6(x - Mx,). (30)
n

Substituting Eq. (16) and evaluating the resulting
convolution integral [Eq. (6)] give

- (n/l - &l&X +  u, + 04 - 1)x,1. (31)

An illustration of the true and PIA outputs of the
magnifier for a typical input is offered in Fig. 2 for M
> 1. Each isoplanatically modeled region is “magni-
fied” by being shifted a factor of M.

3. Fourier Transformer
The thin Fourier transforming lens may be viewed

not only as a tool for optical information processing,
but also as a space-variant linear system to which the
PIA might be applied. The input-output relation-
ship of a thin lens Fourier transformer may be ex-
pressed as
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gitx)

I I I I I

Ml0 Mxo Mx, Mx2  Mx,X

Fig. 2. Illustration of the PIA  and DA outputs of the ideal magni-
fier [respectively, Be(x)  and g,(z)]  in contrast to the true output

go(n) and the input gi(X).

where f is the lens’s focal length and X the wave-
length of the spatially coherent illumination. It fol-
lows that

k(x - 5; 5) = exp(-j$ x t).
As with the magnifier, the Fourier transformer is
seen to be space variant.

The line-spread function originating from the nth
isoplanatically modeled Fourier transformer input
patch is

k,(x) = exp -js h + X,)X,
1

. (34)

Thus

Substituting into Eq. (20) and simplifying give the
Fourier domain expression of the approximated out-
put, G(f,),  as
G,@x) = C5[giG  + X,)PcY  + X, - Z,)/JL(--X  - X,

”

+ u,)ll,=:;n  x +x + :). (36)

Inverse transforming yields

do&) = CskiGc + X,)IL(X + X, - ~?,)/A(-_31  - X,
n

This is the general statement of the PIA for a Fourier
transformer.

Equation (36) bears a remarkable computational
resemblance to a Fourier series spectrum. The Fou-
rier series spectrum G(f,) for a periodic function g(x)
with period (u - 1) may be written

G(f,) = CslP_icX)Y(x  - x0 - Zjv(-x + x0 + u)llfxrnfn
X S(f;  - w?, (38)

where 1co  is any point on the x axis, and f = l/(u - I).
Both the Fourier transform PIA and the Fourier se-
ries spectrum are expressed in the frequency domain
as impulse trains weighted by a Fourier transform ex-
pression of the function to be synthesized.

For a specific example of application of the Fourier
transformer PIA, consider the transformer input of a
spatial pulse:

&?icC)  = lLcY +  a)V(a - X)9 (39)

where 2a is the pulse width. The true output would
be

where

g,cU)  = 2a sinc(2ax/)lfl, (40)

Fig. 3. The PIA’s  of the Fourier transformer output to a rectan-
gular pulse input divided into 2k + 1 isoplanatic patches compared

to the true output go(x).
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sincb) = [sin(m)]/(m). (41)

To apply the PIA,  we arbitrarily divide the input
pulse into 2k + 1 isoplanatic patches all of width w
such that

w=u,- I, = 2n/(212 + 1). (42)

Let CC,, be the midpoint of the nth patch so that

X, = (u, + 2”)/2. (43)

The nth isoplanatic region of the input pulse is then

g,Gc)  = P(X + f)P(f  -x). (44)

Substitution into Eq. (37) followed by simplification
gives

2,Gc) = w [l +  2~&.,,($ c.,(+]  (45)

An illustration of the convergence of this approxi-
mate output to the true output [Eq. (40)]  is offered if
Fig. 3 with Af = a = 1 fork = 1, 2,3,4, and 5.

IV. Discrete Approximation

Deen, et al 4 have employed an input plane sam-
pling technique to approximate space-variant system
outputs. The input is sampled according to

&Gc) = &(x,k%  - X,), (46)”
where g,(x) denotes the sampled input. The corre-
sponding output, from Eqs. (3) and (14), is the dis-
crete form of the superposition integral [Eq. (3)]:

g,cr)  = c gi(x,)h,(x - X”). (47)

Here, go(x) denotes the discrete approximation (DA)
of the variant system output.

For purposes of comparing to the true and PIA
outputs, the DA output for an ideal imaging system
with magnification M [from Eqs. (14), (29), and (47)J
is

&Gc) = ~&YiGc,)NX - MX,). (48)n
An example for a typical input is offered in Fig. 2.

The DA is recognized as a special case of the PIA
when inputs (1) are restricted to weighted impulse
trains [Eq. (46)],  (2) consist of a single impulse per

isoplanatic patch, and (3) have line-spread functions
determined from each input impulse location.

V. Conclusions
The superposition integral approximations pre-

sented herein may be used to approximate the out-
puts of linear space-variant systems. Employment
of the discrete approximation (DA) for representing
the space-variant nonunity  magnification imaging
system has been reported in the literature.

The piecewise isoplanatic approximation (PIA), of
which the DA is a special case, arises from division of
the space-variant system input plane into a number
of isoplanatic patches. Each input patch is treated
as an individual space-invariant linear system. The
outputs resulting from each patch are summed to
give the PIA output of the simulated system.

The effectiveness of the PIA is illustrated by its
application to the ideal magnifier and Fourier trans-
former. The invariant system modeled as piecewise
isoplanatic is shown to produce equivalent true and
PIA outputs as exemplified by the differentiator.

Space-variant system output approximations lay
the system theory foundation for holographic repre-
sentation (and thus real space condensation) of mul-
tielement linear space-variant systems.
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