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Abstract—A technique for block-loss restoration in block-based
image and video coding, dubbed recovery of image blocks using
the method of alternating projections (RIBMAP), is developed. The
algorithm is based on orthogonal projections onto constraint sets
in a Hilbert space. For the recovery of a linear dimension N size
block, a total of 8 N vectors are extracted from the surrounding
area of an N X N missing block. These vectors form a library
from which the best matching spatial information for the missing
block is extracted. Recovery vectors, including both undamaged
and restored damaged pixels, are introduced. The vectors are used
to find highly correlated information relating to the lost pixels. To
assure continuity with the surrounding undamaged area, three
additional convex constraints are formulated. Adherance to these
sets is imposed using alternating projections. Simulation results
using orthogonal projections demonstrate that RIBMAP recovers
spatial structure faithfully. Simulation comparisons with other
procedures are presented: Ancis and Giusto’s hybrid edge-based
average-median interpolation technique, Sun and Kwok’s pro-
jections onto convex sets-based method, Hemami and Meng’s
interblock correlation interpolation approach, Shirani et al.’s
modified interblock correlation interpolation scheme, and Alka-
chouh and Bellanger’s fast discrete cosine transformation-based
spatial domain interpolation algorithm. Characteristic of the
results are those of the “Lena” JPEG image when one fourth of
periodically spaced blocks in the image have errors. The peak
signal-to-noise ratio of the restored image is 28.68, 29.99, 31.86,
31.69, 31.57, and 34.65 dB using that of Ancis and Giusto, Sun
and Kwok, Hemami and Meng, Shirani et al.,, Alkachouh and
Bellanger, and RIPMAP, respectively.

Index Terms—Alternating projections, block-loss recovery,
error concealment, image and video transmission, JPEG, MPEG,
projections onto convex sets (POCS), projections.

1. INTRODUCTION

ANY compression transform codings, such as JPEG and
MPEG standards, are based on block coding techniques
using pixel block segmentation, motion estimation, discrete
cosine transformation (DCT), and vector quantization [1]-[3].
When a block is lost, it can be estimated using adjacent pixels
in post processing. Recovery of image blocks using the method
of alternating projections (RIBMAP) is an effective way to do
sO.
Many spatial interpolation techniques for restoring missing
blocks of received images have been proposed [4]. Wang et al.
[5] present an optimization technique that recovers damaged

Manuscript received March 14, 2003; revised December 1, 2003. This work
was supported in part by the National Science Foundation. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Yucel Altunbasak.

The authors are with Baylor University, Waco, TX 76798-7356 USA.

Digital Object Identifier 10.1109/TIP.2004.842354

blocks by minimizing the differences between the blocks and
boundaries. Smooth images result. Park et al. [6] suggest a
special case of [5] requiring a lower computational load while
providing similar performance by imposing a smoothness con-
straint on the boundary and surrounding pixels of the missing
blocks. Lee et al. [7] introduce a block-recovery technique
based on fuzzy-logic reasoning. Hemami and Meng [8] pro-
pose an image-reconstruction algorithm exploiting interblock
correlation. Shirani et al. [9] modify Hemami and Meng’s
algorithm, using more weights in the interpolation equation
and, thereby, obtain more reliable diagonal-edge restoration.
A fast DCT-based spatial domain interpolation technique is
reported by Alkachouh and Bellanger [10]. These algorithms
are effective for restoration of smooth images void of high
spatial frequencies. Sun and Kwok [11] suggest the use of a
spatial interpolation algorithm using projections onto convex
sets (POCS) [12]-[17]. The adopted smoothness assumption
imposed by these otherwise innovative algorithms limits reli-
able restoration detail of images, such as edges and complex
textures.

We present a spectrally robust interpolative image-restoration
method based on projections onto convex sets and onto a line
in Hilbert space defined by the best-matched adjacent N x NV
pixels. Convex sets are defined for the constraints of dynamic
range and gradient and the structure of the surrounding area
of the corrupted blocks. Vectors containing both known and
missing pixels are projected onto the lines in Hilbert space and,
then, alternatingly among the convex constraint sets. The algo-
rithm enables restored blocks to sustain the spectral and edge
structure of the surrounding blocks and, consequently, to have
striking continuity with neighboring pixels.

II. LINE DETECTION AND VECTOR FORMING

Image condition for missing-pixel interpolation is illustrated
in Fig. 1. In Fig. 1(a), a missing block, M, with its surrounding
neighborhood, A, is shown. The orientation of edges in the ad-
jacent surrounding neighborhood, A, is assumed to expand its
structure to the missing block, M. The structure in the missing
block is dictated by the orientation of lines and edges in the sur-
rounding pixels. Vectors formed from surrounding pixels with
their own spatial information are extracted from adjacent sur-
rounding blocks A. To restore the missing block M, two re-
covery vectors—including correctly received pixels and esti-
mated missing pixels—are formulated. The recovery direction
is chosen in accordance to the orientation of adjacent lines and
edges.

1057-7149/$20.00 © 2005 IEEE
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Fig. 1. Missing block (M) with surrounding neighborhood blocks of
correctly received data. (a) Missing block M (in grey) and adjacent surrounding
neighborhood A (in white). (b) Missing block M and four connected blocks
Ap, Aw, Ay, and Ag.

A. Line Orientation Detection

A line detector in the spatial domain is applied to surrounding
blocks to determine the line orientation of the area. The line
masks L, and Ly, [see (1)] are applied to the surrounding blocks,
AE, Aw, AN, and AS in Fig. l(b)

-1 -1 -1 -1 2 -1
In=12 2 2 Ly=|-1 2 -1 |.Q
-1 -1 -1 -1 2 -1

Corresponding responses R, and R, at coordinates m, n are
Rh =2 (xm,nfl +xm,n +xm,n+1) - (-Tmfl,nfl‘}'a:mfl,n +
xm—l,n+1 + wm+l,n—l + $m+1,n + $m+1,n+l) and
R, = 2- ($m—l,n + Tm,n + wm+l,n) - (wm—l,n—l +
xm,n—l"'xm—l—l,n—l + xm—l,n—l—l + xm,n—l—l + m’m—l—l,n-‘,—l)~ The
magnitude of responses R; and R, at all m, n coordinates
in the four surrounding blocks (Ag, Aw, An, and Ag) are

computed as
2. 2.

Eh = Ev =
Ag,Aw,AN,As Ag,Aw,AN,As

|Rh|> |R'n|- (2)

Edge orientation is determined by E} and E,. If Ej, is larger
than F,, the missing block is considered a horizontal line-dom-
inating block. Otherwise, it is considered a vertical line-dom-
inating block. Lee et al. [7] and Sun and Kwok [11] adopt a
similar edge-orientation detection using Sobel masks.

B. Surrounding Vectors

Since the surrounding neighborhood of a missing block is as-
sumed to have spatial and spectral similarity with the missing
pixels, the neighborhood area can be segmented into several
pixel blocks, each of which has its own spatial and spectral char-
acteristics. The segmentation of the neighborhood area and cor-
responding vectors are formed by shifting an N X N window
on every grid of pixels in the surrounding neighborhood A in
Fig. 1(a). This is illustrated in Fig. 2. The process yields an
N x N vector s; on that position. We, thereby, generate

s = {z : x(m,n), (m,n) € B} 3)

where B is an N x N window in A, m and n are pixel in-
dices, and k is an vector index. The number of the surrounding
vectors sy is 8V, and k& can be enumerated from 1 to 8 NV clock-
wise starting at the top-left corner, as shown in Fig. 2. Note that
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Fig. 2. Missing block with surrounding neighborhood and N x N window B
to make the surrounding vector s, .

the window B cannot position outside the surrounding neigh-
borhood area A. The number of surrounding vectors in a JPEG
coding scheme is 64, and, in the case of MPEG, is it 128. If we
define an N x N vector, Sy, for 1 < k£ < 8N, which is the
two-dimensional (2-D) DCT pair of the surrounding vector s,
then

Sk:T-skfor1§k§8N (4)
where T is 2-D DCT kernel.

C. Recovery Vectors

To restore a missing block, recovery vectors {ri|k = 1,2}
are introduced. As shown in Fig. 3, according to the dominating
line orientations in the surrounding blocks, two positions of the
recovery vectors are employed. The position of recovery win-
dows in Fig. 3(a) are for the vertical line-dominating area, while
those in Fig. 3(b) are for the horizontal line-dominating area. In
each case, two IV x N recovery pixel vectors are formed from
the windows, and each vector includes (N — 1) x N known and
1 x N unknown or N X (N — 1) known and N x 1 unknown
pixels. This is shown in Fig. 3. The gray in the windows indi-
cates missing pixels, while the white-colored portion indicates
correctly received pixels. We, thereby, generate

ry = {z : x(m,n),(m,n) € C} 3)

where C' is an N x N window in A (for surrounding blocks)
and M (for the missing block), m and n are pixel indices, and
k is a vector index. Let the N x N vector, Ry for1 < k < 2,
be the 2-D DCT pair of the surrounding vector, ry,

Rk:T~I‘kaI‘1SI{;S2. (6)

After missing pixels in a recovery vector are restored, re-
covery windows slide in opposite directions to each other to
extract a new recovery vector to restore the next N missing
pixels. This is shown by the arrows in Fig. 3. The methods of
Lee et al. [7] and Tselkeridon and Pitas [19] also use a sliding
recovery window for lost pixel restoration. RIBMAP is dif-
ferent from these in that windows in [7] move diagonally using
different sizes at different times. Windows in RIBMAP move
vertically or horizontally according to line orientation in the
surrounding area and include 1 X N missing pixels at any time.
Furthermore, missing pixels in [7] are restored by cubic spline
interpolation/extrapolation and fuzzy reasoning, while missing
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Fig. 3.
(b) Recovery vectors r; for the horizontal line-dominating area.

(b)

Missing block with surrounding neighborhood and two N X N recovery vectors r;. (a) Recovery vectors r; for the vertical line-dominating area.
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Fig.4. Areas for computing parameters v; and «o. Upper and lower blocks in (a) are areas to compute vy and «vo, respectively. The left and right blocks in (b) are
areas for o7 and «va, respectively. Pictured here are (a) the area for computing parameter «; in the vertical line-dominating area and (b) the area for computing

parameter «; in the horizontal line-dominating area.

pixels in RIBMAP are restored by projections. In the algorithm
[19], 4 x 4 windows slide on a missing block between the 4 x 4
blocks of the “best match” in upper and lower surrounding
neighborhoods of a missing block for macroblock recovery on
MPEG-2.

III. RESTORATION ALGORITHM USING THE
METHOD OF PROJECTIONS

In this section, a projection-based signal-restoration tech-
nique is developed. Projection operators and convex constraint
sets are formulated to facilitate recovery of missing pixels using
recovery vectors {r;|¢ = 1,2}. To assure continuity, convex
sets in the algorithm are specified by the area surrounding the
missing block. Recovery vectors are alternately projected onto
a line in a Hilbert space defined by the best matched adjacent
N x N pixels and onto the convex sets. The missing pixels are,
thereby, restored iteratively.

A. Projection Operators

1) Projection Operator Py : The vectors {s;|1 < j < 8N},
extracted from the surrounding blocks, A, are used to form a
convex hull in an N x N-dimensional space. Recovery vectors,
{r;|? = 1,2}, are then projected in the DCT domain onto the
line between closest! vertex of the convex hull and the origin of
the space.

!In the mean-square sense.

Let {r;[i = 1,2} and {s;|1 < j < 8N} be recovery and
surrounding vectors, respectively. The surrounding vectors are
used to form a convex hull. Each vector s; becomes a vertex of
the convex hull. The closest vertices {§; = s4,|i = 1,2} of the
convex hull to the recovery vectors {r;|i = 1,2} are found in
the mean-square sense

d; = argmin||r; —s;j||for1 <i<2, 1<j<8N (7)
J
or, equivalently?
d; =argmin||R; — Sj|[for1<i<2, 1<j<8N (8)
J

where R; = T -r;,S; = T -s;,and T is a 2-D DCT kernel.
The recovery vectors in the DCT domain, {R;[i = 1,2} are
then orthogonally projected onto the selected vertex S;, as

(Ria Sz> &
Py (R;) =228 =12 ©)
1 1512
where (-, -) is the inner product of two vectors and || - || is the

£ vector norm. Consequently, the projection operator P; trans-
lated to the DCT domain is
_ { Ps,(Ri(u,v)),
P -R;(u,v) = {Rs,;l(u,v),
To preserve the dc level, the dc value in the recovery vectors,
{r;|i = 1,2}, is not changed.
2) Projection Operator P,: Projection operator P, imposes
constraints on the range on the restored pixel values. It operates

foru,v # 0

otherwise. (10)

2The 2-D DCT is an orthonormal transform and, hence, norm preserving.
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Fig. 5. Experiment on a lost block size of 8 x 8 pixels of the “Lena” image. (a) original, 512 X 512. (b) Damaged image of one missing block out of every
four. Image restored using the methods of (c) Ancis and Giusto (PSNR = 28.68 dB). (d) Sun and Kwok (PSNR = 29.99 dB). (¢) Hemami and Meng (PSNR
= 31.86 dB). (f) Shirani et al. (PSNR = 31.69 dB). (g) Alkachouh and Bellanger (PSNR = 31.57 dB). (h) RIBMAP (PSNR = 34.65 dB).

in the spatial domain. The convex set C5 for the projection op-
erator P is

CZZ{f:FminanSFmaxforneL} (11)

where L is the set of missing pixels and Fyi, and F,x are
chosen minimum and maximum intensities of an image, respec-

tively. The corresponding projection operator Ps is a thresh-

olding

P2'fn:

Fmiru
Fmaxa
fn,

Cn,

for f,, < Fiujn,n € L

for f,, > Frax,n € L
forlrmin < fn < Fmax,n €L
otherwise

(12)
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Fig. 6. Experiment on a lost block size of 8 X 8 pixels of the “Masquerade” image. (a) Original 512 x 512. (b) Damaged image of one missing block out of
every four. Restoration using the methods of (c) Ancis and Giusto (PSNR = 25.47 dB). (d) Sun and Kwok (PSNR = 27.25 dB). (e) Hemami and Meng (PSNR
= 27.65 dB). (f) Shirani er al. (PSNR = 27.44 dB). (g) Alkachouh and Bellanger (PSNR = 27.94 dB). (h) RIBMAP (PSNR = 29.87 dB).

where n is the pixel index c,, is the known pixel value and L is
the missing pixels of the recovery vectors.

3) Projection Operators Ps: A range constraint for conti-
nuity within the surroundings neighborhood of a restored block
is imposed for smooth reconstruction of a damaged image. Yang

et al. propose a projection-based spatially adaptive reconstruc-
tion of images [20], [21]. In Yang et al.’s algorithm, convex sets
are developed for deblocking or capturing the smoothness prop-
erties of the desired image [20], [21]. The projection operator P;
is similarly motivated.
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TABLE 1
PSNRS FOR “LENA,” “MASQUERADE,” “PEPPERS,” “BOAT,” “ELAINE,” AND “COUPLE” FOR 8 X 8 PIXEL BLOCKS

Lena | Masquerade | Peppers | Boat | Elaine | Couple | Average
Ancis and Giusto 28.68 25.47 27.92 26.33 | 29.84 28.24 27.75
Sun and Kwok 29.99 27.25 29.97 27.36 30.95 28.45 29.00
Hemami and Meng 31.86 27.65 31.83 29.36 | 32.07 30.31 30.51
Shirani et al. 31.69 27.44 31.72 29.22 32.10 30.34 30.42
Alkachouh and Bellanger | 31.57 27.94 32.76 30.11 31.92 30.99 30.88
RIBMAP 34.65 29.87 34.20 30.78 | 34.63 31.49 32.60

(8 ®

Fig. 7. Potion of the magnified restored “Lena.” (a) Ancis and Giusto. (b) Sun and Kwok. (c) Hemami and Meng. (d) Shirani et al. (¢) Alkachouh and Bellanger.
(f) RIBMAP.
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Restoration process for moving recovery vectors in RIBMAP. Steps are shown sequentially from the left image to the right. In each step, spatial structure

Fig. 8.
in surrounding areas is used to estimate the structure of a missing block.

Let f be the vector of missing pixels in a recovery vector, g
be the vector of adjacent pixels to the missing line in the same
vector, and h be N x 1 vector of f — g. Define h = [(fo —
90),---,(fn — gn)] = £ — g. By setting the vector h as a
bounded signal with a constant, «, the convex set for the third
projection operator P; can be obtained as

Cs={h:|h,| < a} (13)
where n is the pixel index and « is a predetermined constant.
The value of « can be set to the maximum value of differences

467

(b)

between pixels which are adjacent to the missing block in the
surrounding neighborhood. Consequently, the projection oper-
ator Pj3 is

gn —a, forh, < —«a
Py fo={ gnt+a, forh,>a (14)
Jns otherwise

where 1 < n < N. The projection operator P limits the differ-
ence of adjacent known and missing-pixel values. The limita-
tion allows the proposed algorithm to restore a damaged block
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Fig. 9. Experiment on a row of missing 8 X 8 blocks on the “Lena” image. (a) original 512 X 512. (b) Damaged image. (c) Image recovered by Hemami and
Meng’s method (PSNR = 26.86 dB). (d) Image recovered using RIBMAP (PSNR = 30.18 dB).

without reconstruction artifacts. It also makes the proposed al-
gorithm applicable to a damaged block of diagonal edges even
though the algorithm adopts only vertical or horizontal recovery
directions.

4) Projection Operator P,: After all pixels in a missing
block are restored, a final convex constraint is applied to two
center lines of the restored block to reduce variations due to
use of different restoration directions. Assume etobea 1l x IV
vector of the differences between two center lines in a restored
block such as e = [(fe1.0 — fe2.0),-- - (fer.n — fe2. )] where
f.; and f.o are the final restored pixels of each center line in
a restored block. By setting the vector e as a bounded signal
with a predetermined constant /3, the convex constraint C,; and
corresponding operator P, are obtained by

Cy={e:|e,| <G}
(fer,ntFe2,n)

15)

iy, forh, < —p
Py frn = 7”‘1‘;;?2‘"), for hy, > f3 (16)
m,n; otherwise

where m and n are the pixel indices and f.; and f.o are the
vectors of missing pixels in two center lines of the recovery
vectors. The projection Py is applied only in the final step and
thus does not affect the convergence of alternating projections.

B. Iterative Algorithm for Pixel Interpolations

Missing pixels are restored iteratively by alternatingly pro-
jecting onto the specified constraint sets [12]. Specifically

fixi=P1-P-P3-f; (17)

where i is the iteration index, f; is restored signal at iteration
1, and P; is the jth projection operator onto a line in Hilbert
space (j = 1) or onto convex sets C; (2 < j < 3). After all
pixels in a missing block are restored, the projection operator
P, is applied to the center lines of the block as described in
the previous section. The computations required in the proposed
algorithm are mainly a DCT, an inverse DCT, and projection
operations in alternating projections. Here is the pseudocode.
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(d)

Fig. 10. Experiment on a lost block size of 16 X 16 pixels in the “Lena” image. (a) Original 512 X 512. (b) Damaged image with one missing block out of every
four. (c) Image recovered by Alkachouh and Bellanger’s method (PSNR = 28.75 dB). (d) Image recovered by RIBMAP (PSNR = 32.708 dB).

Algorithm
compute gradients, 1, and T,
make surrounding vector library, s
loop
make recovery vectors,
loop
projection operator P;
projection operator Ps
projection operator Pjs
endloop (iteratation == I)
endloop (entire block restored
projection operator P,
End

ry and 7o

YES)

IV. EXPERIMENTAL RESULTS

RIBMAP is tested on several 256 gray-level images. Results
are compared with those of other block-recovery algorithms,
such as the following: the hybrid edge-based average-median
interpolation technique of Ancis and Giusto [22]; the POCS-

based recovery technique by Sun and Kwok? [11]; the interblock
correlation interpolation scheme of Hemami and Meng [8]; the
modified interblock correlation interpolation scheme by Shirani
et al. [9]; and the fast DCT-based spatial domain interpolation
technique by Alkachouh and Bellanger [10].

Ancis and Giusto’s algorithm involves average and av-
erage-median operations to interpolate each missing coefficient
according to surrounding blocks edge presentation criteria.
Hemami and Meng’s algorithm finds four optimal weights
using linear least squares. Spatial differences of four adjacent
blocks are minimized to generate missing pixels using linear
interpolation with the generated weights and the pixels in the
same position in adjacent blocks. Shirani ef al.’s algorithm uses
eight weights, rather than four, to obtain better performance
on diagonal-edge restoration. In Alkachouh and Bellanger’s
algorithm, missing block and border pixels are transformed
using the DCT. High-frequency coefficients are set to zero. An
inverse DCT yields the restoration.

3In Sun and Kwok’s algorithm, smooth POCS restoration is tested and a low-
pass filter radius Ry, = 3 is applied as described in [11].
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Experiment on a lost block size of 16 X 16 pixels in the “Lena” image (enlarged). (a) Original 512 X 512. (b) Damaged image of one missing block out

of every four. (c) Image recovered by Alkachouh and Bellanger’s method. (d) Image recovered by RIBMAP.

Missing block sizes of 8 x 8 pixels are used for JPEG images
and block sizes of 16 x 16 pixels are tested for intracoding of
MPEGs. The size of the test images is 512 x 512 for “Lena,”
“Peppers,” “Masquerade,” “Boat,” “Elaine,” and “Couple.” The
size of “Foreman” is 176 x 144. An error is imposed on one
fourth of the blocks with the assumption that macroblocks are
interleaved on packing [23]. The number of iterations tested for
the recovery of the missing row/column in each recovery vector
of RIBMAP is set to 10.

Projections in RIBMAP do not always converge to one
point, but the difference in solutions is typically negligible.
Throughout the experiments, the initial point fy of the missing
pixels of the recovery vectors r is set to the adjacent value of
the known pixels in the same vector.

To determine the proper line orientation and recovery direc-
tion, line masks are applied on the neighborhood blocks Ag,
Aw, Ag, and Ay as shown in Fig. 1(a) for the 8 x 8 pixel

block size and (b) on half the blocks for the 16 x 16 pixel block
size. For the vertical line-dominating area, the parameter « for
the projection operator Ps is set to the maximum value of the
difference between two adjacent pixels in the same column in
the gray-colored blocks shown in Fig. 4(a). For the horizontal
line-dominating area, a, is set to the maximum value of the dif-
ferences between two adjacent pixels in the same row shown as
the gray-colored blocks in Fig. 4(b). In the case of Fig. 4(b), «
is defined as

a=max|f(z,y) — f(z,y — 1)|
zo—2<z<z0+N+1,

y=yo—loryo+N+1 (18)

where (g, yo) is the top-left pixel of a missing block M.
Simulation results on a missing block size of 8 x 8 pixels in
the “Lena” and “Masquerade” images are shown in Figs. 5 and



PARK et al.: RECOVERY OF IMAGE BLOCKS

471

Fig. 12.  Experiment on a lost block size of 16 X 16 pixels in the first frame of the “Foreman” sequential images. (a) Original 144 X 176. (b) Damaged image
of one missing block out of every four. (c) Image recovered by the method of Alkachouh and Bellanger (PSNR = 25.65 dB). (d) Image recovered by RIBMAP

(PSNR = 30.34 dB).

6, respectively. The peak signal-to-noise ratio (PSNR) [24], used
as a measure of the restored image quality, is given by

Ny - Ny - 2552
Ny N>

> X 1 (m,n) = f(m,n)?

m=1n=1

PSNR = 10 - log

19)

where f and f are the value of original and restored image of
N; x N, pixels, respectively.

Image (a) in Figs. 5 and 6 are originals, while image (b) in
Figs. 5 and 6 are damaged. Image (c) in Figs. 5 and 6 show re-
stored images by Ancis and Giusto’s algorithm. The PSNR of
(c) in Figs. 5 and 6 is 28.68 and 25.47 dB, respectively. Re-
stored images by Sun and Kwok’s algorithm are shown in (d)
of Figs. 5 and 6, with PSNRs of 29.99 and 27.25 dB, respec-
tively. Recovered images by Hememi and Meng’s linear inter-
polation scheme and Shirani et al.’s algorithm are shown in (e)
and (f) of Figs. 5 and 6, respectively. The PSNR of each image
in (e) is 31.86 and 27.65 dB, and the PSNR in (f) is 31.69 and
27.44 dB, respectively. Restored images by Alkachouh and Bel-
langer’s fast DCT-based spatial domain interpolation scheme
are shown in (g) of Figs. 5 and 6, and its PSNR is 31.57 and
27.94 dB, respectively. In (f) of Figs. 5 and 6, images recovered
by RIBMAP are shown. The PSNR of each image is 34.65 and
29.87 dB, respectively. In both objective and subjective com-
parisons, the qualities of recovered images by RIBMAP are the
most favorable in all cases. Table I summarizes the PSNRs of
the restored images in the case of 8 x 8 pixel block.

In Fig. 7, magnified portions of the restored “Lena” images
are shown. Fig. 7(a)—(f) is restored using the methods of Ancis
and Giusto, Sun and Kwok, Hemami and Meng, Shirani et al.,

Alkachouh and Bellanger, and RIBMAP, respectively. Images
in Fig. 7 show that RIBMAP gives acceptable performances at
edges such as the rim of the hat and the chin of the face, as well
as in monotone areas such as face and shoulder. Fig. 8 shows
restoration result for each sequential step. The spatial structure
of surrounding area can be seen expanding into the missing
block.

Simulation results on rows of missing blocks in “Lena” is
shown in Fig. 9. Image (a) in Fig. 9 is the original while image
(b) is damaged. Image (c) in Fig. 9 shows the damaged image
restored using Hememi and Meng’s linear interpolation scheme.
The restoration PSNR is 26.86 dB. In this case, the first block
of a missing row is first restored. Adjacent blocks are then re-
stored sequentially as described in [8]. In (d) of Fig. 9, the image
recovered using RIBMAP is shown. Only the vertical restora-
tion direction and the available surrounding area are used for the
restoration when RIBMAP is applied. The PSNR of the image
is 30.18 dB.

For MPEG intracoding, a 16 X 16 macroblock missing case
in used for “Lena.” The first frame of “Foreman” is also used. In
Figs. 10 and 12, test results on a block size of 16 x 16 pixels are
shown. Image (a) in Figs. 10-12 are the original, and image (b)
in Figs. 10-12 are the images with the missing pixels. Recovered
images by Alkachouh and Bellanger’s fast DCT-based spatial
domain interpolation scheme are shown in (c) of Figs. 10-12,
respectively. The PSNRs in (c) of Figs. 10 and 12 are 28.75 and
25.65 dB, respectively. In (d) of Figs. 10-12, images recovered
by RIBMAP are shown. The PSNRs of each image in (d) of
Figs. 10 and 12 are 32.70 and 30.34 dB, respectively. The im-
ages in Fig. 11 are enlarged versions of the top right of Fig. 10.
Figs. 11(d) and 12 (d) show that RIBMAP restored edges, such
as lines, in the background faithfully. Monotone regions are also
restored faithfully.
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Fig. 13. Numbering of the surrounding vectors s and selection percentages for each surrounding vector {s;|1 < i < 8N}. (a) The surrounding vector s; is
numbered clockwise starting from top left. (b) The percentages of the selected times versus the number of surrounding vectors s; in Lena. When the line orientation
in the block is vertical, so and s4; [the same blocks as sy and ss in Fig. 1(b)] are selected most frequently. Meanwhile, so5 and s57, which are the same blocks as
sg and sy in Fig. 1(b), are mostly selected when the line orientation in the block is horizontal. Blocks s10, S25, S41, and s57 are selected more frequently when
the line orientation is about 4-45° (from top right to bottom left), and so, s26, S39, and s57 are more frequently selected when the line orientation is about —45°
(from top left to bottom right).

TABLE 1I
MEAN AND VARIANCE OF ERROR FOR “LENA,” “MASQUERADE,” “PEPPERS,” “BOAT,” “ELAINE,” AND “COUPLE” IN THE CASE OF 8 X 8 PIXEL BLOCK

Ancis Sun Hemami | Shirani | Alkachouh | RIBMAP

Lena mean 11.5 12.6 7.2 7.2 7.3 5.4
variance | 242.2 117.2 127.4 134.4 137.8 64.8

Masquerade mean 18.6 15.6 12.7 12.8 12.3 10.0
variance | 437.9 | 276.2 313.3 336.4 290.7 184.3

Peppers mean 12.4 12.3 7.7 7.7 7.4 5.9
variance | 290.9 | 126.6 121.2 126.9 91.3 69.3

Boat mean 15.9 16.3 10.6 10.7 10.0 9.1
variance | 392.2 | 241.1 208.9 217.6 170.4 147.4

Elaine mean 11.5 11.8 8.7 8.7 9.4 6.8
variance | 154.2 81.6 94.8 94.2 88.5 47.1

Couple mean 12.2 14.4 8.4 8.4 7.3 7.2
variance 264.2 186.7 185.7 184.6 165.1 143.6

To measure the usefulness of surrounding pixels, the selection  selections for each surrounding vector in the projection operator
percentage for each surrounding vector during the restoration P is counted. Fig. 13(b) shows the percentages of the number
process using the projection operator P; is used. As is shownin of selections of each surrounding vector, {S;|1 < k£ < 8N}.
Fig. 13(a), each surrounding vector s; is assigned indices from 1 ~ The result here shows that all surrounding vectors {S;|1 < k <
to 64 clockwise starting at the top-left corner. The number of the 8N} are used during the restoration process.
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To examine the reliability of the algorithms, the mean and
variance of the error of the restored blocks in each image are
calculated as mean = (1/1)Y,,, .cp |f(m.n) = f(m,n)]
(/1) 32 nep, A(f(m,n)—f(m,n)*} —
mean? [25], where f is the original image, f is the restored
image, B, is the restored blocks in each image, and 7' is the total
number of pixels in the restored blocks B,.. As shown in Table II,
RIBMAP gives better results than the compared algorithms in
both of mean and variance categories.

and variance =

V. CONCLUSION

RIBMAP is a block-loss recovery algorithm based on projec-
tions for block-based image and video coding. Before applying
the projection algorithm, proper recovery directions for missing
blocks are first ascertained. From the initial set point, the spatial
structure of neighborhood areas are expanded into the missing
block. Two line masks are applied to determine the line orienta-
tion. With a block size of N, 8V pixel vectors are formed from
the area surrounding the missing block. Two recovery vectors,
consisting of both known and missing pixels, are introduced.
Three convex sets are formulated to handle spatial information
from the surrounding area of a lost block. Each recovery vector
is alternately projected onto the lines and the convex sets. After
missing pixels in each recovery vector are restored by these pro-
jections, new recovery vectors, including next missing pixels,
are formulated. All missing pixels are, thereby, restored itera-
tively by alternating projections.

RIBMAP is tested on several standard images coded by
JPEG and intracoding MPEG. In all cases, the reconstruction
quality of RIBMAP is satisfactory and reliable and provides
better restoration than competing methods when measured by
the PSNR.
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