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Abstract— Genomic Systems Design (GSD) is an outgrowth of 
the Union Rule Configuration (URC), a propositional logic 
construct that eliminates the combinatorial problem for rule-
based systems.  Its architecture is scalable, adaptive and fault-
tolerant and is well-suited to multi-criteria decision systems and 
applications that must deal with sparse and missing data. 

This novel programming paradigm is similar in architecture 
to a biological process called symbiogenesis.  This biological 
process is said to facilitate the evolution of new species through 
the inheritance of genomes from organisms that are 
participating in symbiotic relationships.  This similarity, 
together with the characteristics of the URC, enables Genomic 
Systems Design to offer a promising alternative methodology for 
the design of autonomous agents/robots, fault-tolerant and 
adaptive control systems, cellular automata and bioinformatics.  
 

I. INTRODUCTION:                                                   
THE EVOLUTION OF GENOMIC SYSTEMS DESIGN 

                            

The URC enables the development of highly adaptive, 
fault-tolerant computer systems through the additive and 
emergent characteristics of the union operations that knit the 
various functioning implications into a synergistic whole.  
However, the original IRC/URC designations tended to limit 
the perceived scope of these propositional logic structures to 
rule-based systems even though the IRC mindset also 
dominates such areas as expert systems, decision trees, belief 
networks, Bayesian inference, neural networks and control 
systems.   

Rule-based systems often form the computational structure 
for artificial intelligence, fuzzy logic, security access systems 
and an ever-growing number of business systems which use 
rules to avoid hard coding business logic.  However, rules in 
the form [(P intersection Q) implies R] suffer from a 
combinatorial problem in that the rules increase exponentially 
as antecedents are added, severely impacting performance 
and robustness. 

Combs [2, 3] designates this type of rule construct as the 
Intersection Rule Configuration (IRC) to emphasize that its 
rules are generated by intersecting propositions.  Combs 
developed an equivalent scalable logic structure [(P implies 
R) union (Q implies R)] in which rules increase linearly as 
antecedents are added, and calls this alternative structure the 
Union Rule Configuration (URC) to emphasize that rules are 
created through the union of functioning implications.  
Weinschenk et al. [15, 16, 17] formalized URC design by 
showing its association with neural networks and proving 

that a layered URC network is a universal approximator. 
The URC can also model biological genomes: [(Gene-1 

implies R) union (Gene-2 implies R) union . . .].  In a recent 
book Acquiring Genomes: A Theory of the Origins of 
Species, Lynn Margulis and Dorion Sagan refer to a process 
called symbiogenesis [12] that they maintain is the principal 
evolutionary mechanism for the multiplication of species.  
According to their theory, new species are the result of the 
inheritance of genomes from different organisms that are 
participating in symbiotic relationships – a process that 
closely parallels the additive characteristics of the URC.  This 
process is recursive and also provides a robust framework for 
adaptive learning. 

In an effort to overcome this perceived limitation, we have 
designated the URC’s capabilities that address a more generic 
systems design methodology as Genomic Systems Design 
(GSD), a moniker that also emphasizes the similarity the 
URC structure has with the biological counterpart mentioned 
above. 

In this paper, we briefly address the characteristics of 
GSD.  In Section II, we define symbiogenesis and show how 
GSD can model its behavior in a high-level manner.  In 
Section III, we share several important characteristics of the 
URC that make possible the robust nature of GSD.  And in 
Section IV, we conclude by outlining several beneficial areas 

mailto:William.e.combs@boeing.com
mailto:jjw77@ee.washington.edu
mailto:r.marks@ieee.org
mailto:Robert_Marks@Baylor.edu


 

for GSD.   
It should be understood at the outset that GSD is not a new 

methodology but rather a more generic designation for the 
URC.  The characteristics listed in Section III, together with 
many of the areas of benefit listed in Section IV have been 
demonstrated previously both through IEEE publications and 
conference presentations and through presentations within 
Boeing.  Its association with symbiogenesis is also meant to 
show how the latter’s behavior can be modeled through the 
programming characteristics of the URC. 

II. A BRIEF OVERVIEW OF SYMBIOGENESIS 
The next five paragraphs outline a recursive biological 

pattern that facilitates symbiogenesis: 
The cells of an individual in a given species will specialize 

from stem cells to various cell types during the course of 
maturation from conception to adulthood [5, 6, 7].  This 
process is governed by the genome residing in every cell as 
the cell relates functionally to its environment. 

Each specialized cell type functions in a certain manner 
and the cells comprising each type strive to fulfill the goal of 
their functional role in balance with the goals of the cells of 
the other cell types. 

Extended stress on this individual indicates that even with 
the most delicately balanced relationships among its 
specialized cell types, the cells still cannot achieve their 
functional goals satisfactorily, jeopardizing the survivability 
of the individual. 

In such a stressful situation, the individual will more likely 
enter into a symbiotic relationship with an organism of 
another species in order to reduce its stress and improve its 
ability to survive. 

Under certain circumstances, this symbiotic relationship 
can result in the creation of a new species through the 
merging of the genomes of the two organisms, a process 
called symbiogenesis [12]. 

 
GSD will model this recursive pattern by incorporating 

several important elements outlined in the next four 
paragraphs: 

In a traditional programming paradigm, the methods of 
lower-level objects are called by the methods of higher-level 
objects within the context of code that explicitly governs 
their behavior.  In order to change behavior, it is often 
necessary to modify this code.  As an alternative, a higher-
level GSD method will invoke lower-level methods as 
though they were running on separate threads to 
simultaneously and collaboratively achieve the goal(s) of the 
higher-level method.  To illustrate, in the classic Artificial 
Life BOIDS example [14], the various components of 
flocking behavior, represented by the following criteria, can 
be invoked to function simultaneously and collaboratively so 

that the flocking behavior emerges from their interaction: (1) 
Collision Avoidance: avoid collisions with nearby flock-
mates; (2) Velocity Matching: attempt to match velocity with 
nearby flock-mates; and, (3) Flock Centering: attempt to stay 
close to nearby flock-mates. 

The goal of each higher-level object will also act as a type 
of training algorithmic objective function, enabling the 
lower-level objects to learn from and adapt to their 
environment as they align with the higher-level objective 
function.  For example, as indicated above for flocking, there 
would be no higher-level code that specifically programmed 
a bipedal robot to walk since walking is an emergent, macro-
behavior.  Instead, multiple lower-level implication relations 
with objectives like balancing, mirrored symmetry and 
response to threshold stimulus, would give the bipedal robot 
the initial “genetic” ability to walk.  A training algorithm 
functioning through the objective functions of higher-level 
objects would further train and adapt the robot as it takes its 
first steps so that it learns to walk more efficiently and 
effectively. 

Depending on the environment, each implication relation 
will be able to perform its task with relative, measurable 
success.  The union operations will enable these relations to 
share their relative success with each other so that a 
synergistic balance can be manifested in the higher-level 
objects. 

Degrees of stress on the system will be measured as the 
cumulative degree to which the implication relations can 
achieve their objectives.  Training and adaptation will be 
used initially to respond to increasing degrees of 
environmental stress in an effort to achieve more desired 
objectives within the bounds of the system’s domain space as 
defined by its “genome”.  However, the cumulative, 
diminishing success will reach a threshold that alerts the 
system architect to develop an appropriate implication 
relation(s) – a symbiotic partner(s) – to help overcome the 
effects of the stress.  Later work will focus on additional 
methods to achieve this “evolutionary” acquisition. 

 
Symbiogenesis also provides a robust environment for 

adaptive learning.   That is, an agent in a situation that 
inhibits its ability to achieve its goals can use a threshold 
signal to acquire, develop or adapt logical rules, algorithms 
or relations that will improve its ability to achieve its goals. 

 

III. CHARACTERISTICS OF GENOMIC SYSTEMS DESIGN 
Here we share several of the most important characteristics 

of the URC that enable the robust nature of GSD. 
 
A. Coupling and Cohesion 

Coupling is the strength of the relationships between 



 

modules.  Cohesion is the strength of the relationships among 
the components of one module.  System robustness is 
improved whenever coupling can be reduced and cohesion 
increased [1].   For the IRC, P and Q do not have an 
independent relation with R, so cohesion is low.  And since P 
must intersect with Q in order to produce a relation with R, 
coupling is high.  For the URC, P and Q each have their own 
relation with R, so cohesion is high.  And, since changes in P 
do not affect Q, coupling is low.  

Loosely coupled, highly cohesive systems are also easily 
modified.  Conversely, it is often so expensive to update a 
large, tightly coupled system that short-cut solutions and 
“temporary” patches are employed, leading to brittle and 
error-prone applications that must eventually be replaced. 

 
B.  Scalability: The Combinatorial Problem 

As stated above, most traditional rules are in the IRC 
format [(P intersection Q) implies R].  Although IRC rules 
are the more familiar rule construct, they create a difficult 
combinatorial problem.  Since P and Q are coupled to each 
other through intersection, the number of values in P must be 
multiplied by the number of values in Q in order to obtain all 
possible solution options.  (Obviously, all possible solution 
options are not always necessary.)  So, if there are five values 
for each input variable, then the maximum number of rules 
for a single input, single output system would be 5.  For a 
two input, single output system, the maximum number of 
rules would be 25 and a three input, single output system 
would yield a maximum of 125 rules – an exponential 
increase. 

The equivalent URC rule architecture [(P implies R) union 
(Q implies R)] eliminates this combinatorial problem.  Since 
P and Q each have their own independent relation with R, 
changes in the value of P do not affect Q’s relation with R.  
As a result, instead of multiplying the number of variable 
values with each other to obtain the maximum potential 
solution options, URC rules only require that the number of 
values be added.  So, instead of the exponential increase 
shown above, a single input, single output system would have 
a maximum of 5 rules.  For a two input, single output system, 
the maximum number of rules would be 10 and a three input, 
single output system would yield a maximum of 15 rules – an 
additive increase.   We have shown that the URC radically 
reduces the computational time for complex data sets and 
also virtually eliminates the need for pruning strategies to 
improve the computational efficiency of rule-based 
applications [3, 4]. 
 
C.  Fault Tolerance 

Fault tolerance is a vital dimension in any mission critical 
system because it diminishes the adverse affects of defects 
that might otherwise impair the system’s functionality.  It is 

especially helpful in those situations where an unexpected 
fault could jeopardize or severely impair the success of the 
mission.  

While defect reduction through such processes as Six 
Sigma [18] is a necessary component of software reliability, 
it may do little to guard against in-service malfunctions and 
accidents.  In some instances, component redundancy is 
employed to provide a kind of back-up fault tolerance.  But 
this option usually adds weight and complexity to the 
mission. 

The overlapping region in Figure 1 indicates that these 
implication relations are both capable of performing certain 
functions – from different perspectives.  On the one hand, if 
both      relations  
perform these 
overlapping 
functions, the 
union operator 
will generate the 
functionality for 
the application.  
On the other 
hand, if one 
relation fails to 
perform one of  

(P implies R) union (Q implies R)

(P  >  R)  (Q  > R) 

Fig. 1.   Venn diagram of  
          overlapping UNION     
          implication relations 

these functions, the other one will still feed the union 
operator so that the functionality will continue to be 
generated for the application.  So, the two implication 
relations (agents) can provide fault tolerance for each other.  

Stated another way, the circle encompassing (P > R) 
represents its primary objective.  The portion of that circle 
intersected by the circle surrounding (Q > R) represents the 
latter’s ability to perform that task as well.  The URC’s 
higher-level functionality represented by the union operator 
will give both implication relations the task to perform.  (Q > 
R) will monitor (P > R)’s ability to perform its primary task 
to see if its performance falls below a certain goal threshold.  
(Q > R) will act as a symbiotic partner, performing this task 
to the extent that it perceives (P > R) is failing and to the 
extent that it has sufficient capacity. 

For example, consider a four-wheeled robot in which each 
wheel can act independently.  Further assume that the 
primary objective for the front pair of wheels is navigation 
while the primary task of each wheel is propulsion.  Based on 
its configuration, we can say there are actually three ways to 
turn the rover either right or left.  First, the implication 
relation controlling the front pair of wheels can perform the 
task.  But the implication relation controlling the rear wheels 
operating in tandem can also turn the rover.  And, if the rover 
needs to turn to the right, the implication relation controlling 
the left wheels can rotate them faster than the right wheels.   

Assume that a higher-level implication relation needs to 



 

turn the rover to the right and gives all three of these lower-
level relations the task to perform.  Since the task is the 
primary objective of the relation for the front pair of wheels, 
the other two relations can act as symbiotic partners 
monitoring the former to see if its performance falls below a 
certain goal threshold.  If it does, then these two partners can 
assist in executing the task to the extent that the primary 
relation is failing and to the extent that they have sufficient 
capacity. 

 
D.  Adaptability 

The enclosure around the implication relations (agents) in 
Figure 2 represents the environment in which they function.   
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the environment changes (Figure 3), the relationship 

each agent has with the environment changes as well.  That 
is, one type of environment will favor the functionality of 
certain agents more than others based on each agent’s 
perspective. 

These changes in the functionality of the individual agents 
modify the ultimate output of the system resulting from the 
union of their functionalities.  This modification allows the 
application to dynamically adapt to the changes in its 
environment without altering its code or employing 
parameters. 
 
E.  Specialization 

In Section II, we referred to the specialization of cells for 
an individual in a given species.  In an ant colony, each ant 

possesses the colony’s genome enabling its behavior to be 
specialized to a number of genetically-defined roles (nest 
maintenance, foraging, midden work, etc.) as it responds 
proximally to various environmental stresses in collaboration 
with its other nest-mates [8].  Through its implication 
relations, the URC can model specialization whether it is 
manifested in a single agent or in a team of agents working 
together to perform some mission. 

 
F.  Emergence 

“In these systems, agents residing on one scale start 
producing behavior that lies one scale above them:  ants 
create colonies, . . .  The movement from low-level rules to 
higher-level sophistication is what we call emergence” [10].  
The important aspect of this process is that, on the one hand, 
the lower-level relations contribute to the higher-level 
emergent functionality.  But on the other hand, the lower-
level relations can neither fully determine not predict the 
higher-level behavior.  The URC is an emergent architecture 
in that the union of its lower-level relations [(P implies R), 
(Q implies R)] enables emergent functionality/behavior that 
lies one scale above them.  

(P implies R) union (Q implies R) . . . 

Environment 
(S > R) (X > R) 

(T > R) 

(Q > R) 
(P > R) 

(U > R) 

 
G.  Sparse and Missing Data Resolution 

In many applications, missing data is interpolated in some 
manner – a process that can bias the outcome.  Estimating a 
missing data point is more easily accomplished when only a 
few values are absent.  However, interpolation becomes far 
more complicated when the majority of values are missing. 

Fig. 2.   Venn diagram of the URC in a given environment 

(P implies R) union (Q implies R) . . . 

Environment
(S > R) (X > R) 

We have shown that since the URC relations are connected 
by logical unions, a system can ignore any relation where the 
attribute value is null, zero or missing.  So, sparsely 
populated records do not have to be doctored or deleted in 
order for an application to process them reliably [4]. 

(T > R) 

(P > R) 
(Q > R) 

(U > R) 

 
H.  Functionality-As-A-Premise Fig. 3.   Venn diagram of the URC in a different 

environment As shared earlier, the URC structure emphasizes that rules 
are created/extended through the union of functioning 
implications.  Thus, functioning implications must exist 
before the union can take place.  Symbiogenesis underscores 
that genomes likely evolved using a similar strategy.  
According to this theory, genes were added to the genome of 
an individual under stress based on the fact that the genes of 
its symbiotic partner were functioning before the merger in a 
manner that could relieve the stress.   

On the other hand, the IRC structure generates a 
functionality-as-a-goal process.  Its low cohesiveness results 
from the fact that its antecedent propositions (P intersection 
Q) do not enjoy independent, functional relations with their 
consequent proposition (R).  Instead, the intersection 
operator yields another proposition (I) that does have a 
functioning relation with the consequent proposition (I 



 

implies R).  So, functionality is a goal of the IRC process. 
 

I.  Multi-Criteria Decision Making 
We are most accustomed to UNION Venn diagrams as 

shown in Figure 1.  However, Figure 4 is just as valid a 
representation of UNION.  Moreover, it illustrates that the 
two elements do not have to overlap as they do for 
INTERSECTION in order to produce a valid result.  This 
capability enables the URC to process multi-criteria decisions 
even when the perspectives are mutually exclusive. 

 
 
 
 
 
 
 

  

 

 

IV. AREAS OF BENEFIT 
A.  Parallel and Distributed Processing 

In addition to reducing computation time, the URC also 
provides a GSD framework with much more extensive 
parallel and distributed processing capabilities than might 
otherwise be possible since the relations are coupled by 
union.  This means the relations [(P implies R), (Q implies 
R)] can be executed by separate processors either on the same 
computer or on different computers across a network. 
 
B.  Fault-Tolerant Control Systems 

A fault-tolerant control system should be able to survive 
the malfunction of any one controller, should allow the 
application to degrade its performance gracefully and should 
maintain the degradation of the program’s functionality 
within the scope of the controller’s design envelope. 

For any system that might experience the gain or loss of a 
number of inputs, agents, sensors or components during 
operation, the URC architecture facilitates the fault-tolerant 
characteristics of GSD because this variability is so easily 
managed. 
 
C.  Disparate Database Utilization 

It is not uncommon for the databases of collaborating 
institutions to contain dissimilar attributes since each 
institution is likely to focus on a different aspect of the 
project.  Unfortunately, the structure of these disparate 
databases can hamper utilization by the various participating 
researchers.  One solution is to limit shared information to 
the attributes common to all institutions.  However, this 

approach can restrict the overall potential use of the data.  
The same principle that allows the URC to work with sparse 
and missing data also allows a GSD project to combine 
dissimilar attribute data from disparate databases for use by 
the various participants. 
 
D.  Autonomous Agents/Robots 

As shared earlier, we are most accustomed to UNION 
Venn diagrams as illustrated by Figure 1 even though the 
configuration in Figure 4 is just as valid.  Through addition, 
the URC enables us to extend Figure 4 to Figures 2 and 3. By 
expanding those configurations, Figures 5 through 7 show 
the URC Venn diagrams morphing into the quintessential 
example of an autonomous, agent-based system. 

(P implies R) union (Q implies R) 

 
 
 
 
 
 
 
 
 
 
 
             

 
 

 
 
                

 
 

                
             
 

Figure 4 Venn diagram of non-overlapping UNION 
               implication relations 

  (P > R)            (Q > R) 

(P implies R) union (Q implies R) . . .

(S > R) 

(U > R) 

(P > R) 

(T > R) 
(X > R) 

(Q > R) 

Figure 6 . . . into the quintessential example . . .  

(P implies R) union (Q implies R) . . .

(S > R) 

(U > R) 

(P > R) 

(T > R) 

(X > R) 
(Q > R) 

Figure 7 . . . of an autonomous, agent-based system 

(P implies R) union (Q implies R) . . .

(S > R) (T > R) (X > R) 

(Q > R) 
(P > R) (U > R) 

Figure 5 Venn diagram of the URC morphing . . . 



 

A current preferred method for managing the activities of 
teams of millibots is a hierarchical structure in which ever-
larger robots oversee the activities of smaller robots [9].   As 
an alternative, these smaller robots could all possess the same 
“genome”, specializing according to the needs of the mission 
and collaborating through their shared union operators.  By 
functioning in this manner, similar to the members of an ant 
colony, agent-based millibots in a GSD configuration could 
eliminate the need for a hierarchy of larger robots to 
coordinate their activities. 

 
E.  GSD and Cellular Automata 

Scientists have known for many years that populating 
cellular automata with rules can generate emergent behavior 
– a process also known as distributed emergent computation 
[11].  This effect was popularized by the Game of Life, 
invented in 1970 by British mathematician John Conway, 
now at Princeton University.  

While cellular automata have long been used to provide 
the structure for proximal cellular relationships, they do not 
specify any configuration architecture for the rules governing 
cellular behavior.  Since GSD can model genomes – the 
architecture for the genetic code within biological cells – 
GSD can also provide the configuration architecture for the 
rule sets within each cell of cellular automata. 

 
F.  The Genome Project (Next Steps) 

Bioinformatics is a relatively new field that brings together 
biology, genetics and computer science to address the 
overwhelming challenges initiated by the Genome Project 
[13].  While the initial efforts of bioinformatics concentrated 
largely on the demands of the Genome Project, there is an 
even greater need now that the preliminary project goals have 
been achieved – gaining benefit from all this newly acquired 
knowledge.   

The genomic structures that have been compiled do not 
explain how this genetic code manifests itself functionally in 
a particular species member.  To this end, we need to model 
genomic functionality in order to better understand how a 
given genotype configuration influences the functionality of a 
particular phenotype of a species. 

GSD can model the processes surrounding symbiogenesis.  
Given its ability to demonstrate how a genome could be 
developed, GSD might also offer a promising architecture for 
aiding in the understanding of how the various genes interact 
functionally with each other. 

V. CONCLUSION 
We have highlighted a novel programming paradigm that 

is similar in architecture to a biological process called 
symbiogenesis.  This similarity, together with the strengths 
inherited from the URC, enables Genomic Systems Design to 

offer a promising alternative methodology for the design of 
autonomous agents/robots, fault-tolerant and adaptive control 
systems, cellular automata, and the next steps for 
bioinformatics. 
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