

Genomic Systems Design: A Novel, Biologically-
Based Framework for Enhancing the Adaptive,
Autonomous Capabilities of Computer Systems

William E. Combs
The Boeing Company

P.O Box 3707
M.S 7P-13

Seattle, WA 98124
william.e.combs@boeing.com

Jeffrey J. Weinschenk
University of Washington

Dept. of Electrical Engineering
253 EE/CSE Building
Campus Box 352500

Seattle, WA 98195-2500
jjw77@ee.washington.edu

Robert J. Marks II
Baylor University

Dept. of Engineering
Waco, Texas 76798
r.marks@ieee.org

Robert_Marks@Baylor.edu

Abstract— Genomic Systems Design (GSD) is an outgrowth of
the Union Rule Configuration (URC), a propositional logic
construct that eliminates the combinatorial problem for rule-
based systems. Its architecture is scalable, adaptive and fault-
tolerant and is well-suited to multi-criteria decision systems and
applications that must deal with sparse and missing data.

This novel programming paradigm is similar in architecture
to a biological process called symbiogenesis. This biological
process is said to facilitate the evolution of new species through
the inheritance of genomes from organisms that are
participating in symbiotic relationships. This similarity,
together with the characteristics of the URC, enables Genomic
Systems Design to offer a promising alternative methodology for
the design of autonomous agents/robots, fault-tolerant and
adaptive control systems, cellular automata and bioinformatics.

I. INTRODUCTION:
THE EVOLUTION OF GENOMIC SYSTEMS DESIGN

The URC enables the development of highly adaptive,
fault-tolerant computer systems through the additive and
emergent characteristics of the union operations that knit the
various functioning implications into a synergistic whole.
However, the original IRC/URC designations tended to limit
the perceived scope of these propositional logic structures to
rule-based systems even though the IRC mindset also
dominates such areas as expert systems, decision trees, belief
networks, Bayesian inference, neural networks and control
systems.

Rule-based systems often form the computational structure
for artificial intelligence, fuzzy logic, security access systems
and an ever-growing number of business systems which use
rules to avoid hard coding business logic. However, rules in
the form [(P intersection Q) implies R] suffer from a
combinatorial problem in that the rules increase exponentially
as antecedents are added, severely impacting performance
and robustness.

Combs [2, 3] designates this type of rule construct as the
Intersection Rule Configuration (IRC) to emphasize that its
rules are generated by intersecting propositions. Combs
developed an equivalent scalable logic structure [(P implies
R) union (Q implies R)] in which rules increase linearly as
antecedents are added, and calls this alternative structure the
Union Rule Configuration (URC) to emphasize that rules are
created through the union of functioning implications.
Weinschenk et al. [15, 16, 17] formalized URC design by
showing its association with neural networks and proving

that a layered URC network is a universal approximator.
The URC can also model biological genomes: [(Gene-1

implies R) union (Gene-2 implies R) union . . .]. In a recent
book Acquiring Genomes: A Theory of the Origins of
Species, Lynn Margulis and Dorion Sagan refer to a process
called symbiogenesis [12] that they maintain is the principal
evolutionary mechanism for the multiplication of species.
According to their theory, new species are the result of the
inheritance of genomes from different organisms that are
participating in symbiotic relationships – a process that
closely parallels the additive characteristics of the URC. This
process is recursive and also provides a robust framework for
adaptive learning.

In an effort to overcome this perceived limitation, we have
designated the URC’s capabilities that address a more generic
systems design methodology as Genomic Systems Design
(GSD), a moniker that also emphasizes the similarity the
URC structure has with the biological counterpart mentioned
above.

In this paper, we briefly address the characteristics of
GSD. In Section II, we define symbiogenesis and show how
GSD can model its behavior in a high-level manner. In
Section III, we share several important characteristics of the
URC that make possible the robust nature of GSD. And in
Section IV, we conclude by outlining several beneficial areas

mailto:William.e.combs@boeing.com
mailto:jjw77@ee.washington.edu
mailto:r.marks@ieee.org
mailto:Robert_Marks@Baylor.edu

for GSD.
It should be understood at the outset that GSD is not a new

methodology but rather a more generic designation for the
URC. The characteristics listed in Section III, together with
many of the areas of benefit listed in Section IV have been
demonstrated previously both through IEEE publications and
conference presentations and through presentations within
Boeing. Its association with symbiogenesis is also meant to
show how the latter’s behavior can be modeled through the
programming characteristics of the URC.

II. A BRIEF OVERVIEW OF SYMBIOGENESIS
The next five paragraphs outline a recursive biological

pattern that facilitates symbiogenesis:
The cells of an individual in a given species will specialize

from stem cells to various cell types during the course of
maturation from conception to adulthood [5, 6, 7]. This
process is governed by the genome residing in every cell as
the cell relates functionally to its environment.

Each specialized cell type functions in a certain manner
and the cells comprising each type strive to fulfill the goal of
their functional role in balance with the goals of the cells of
the other cell types.

Extended stress on this individual indicates that even with
the most delicately balanced relationships among its
specialized cell types, the cells still cannot achieve their
functional goals satisfactorily, jeopardizing the survivability
of the individual.

In such a stressful situation, the individual will more likely
enter into a symbiotic relationship with an organism of
another species in order to reduce its stress and improve its
ability to survive.

Under certain circumstances, this symbiotic relationship
can result in the creation of a new species through the
merging of the genomes of the two organisms, a process
called symbiogenesis [12].

GSD will model this recursive pattern by incorporating

several important elements outlined in the next four
paragraphs:

In a traditional programming paradigm, the methods of
lower-level objects are called by the methods of higher-level
objects within the context of code that explicitly governs
their behavior. In order to change behavior, it is often
necessary to modify this code. As an alternative, a higher-
level GSD method will invoke lower-level methods as
though they were running on separate threads to
simultaneously and collaboratively achieve the goal(s) of the
higher-level method. To illustrate, in the classic Artificial
Life BOIDS example [14], the various components of
flocking behavior, represented by the following criteria, can
be invoked to function simultaneously and collaboratively so

that the flocking behavior emerges from their interaction: (1)
Collision Avoidance: avoid collisions with nearby flock-
mates; (2) Velocity Matching: attempt to match velocity with
nearby flock-mates; and, (3) Flock Centering: attempt to stay
close to nearby flock-mates.

The goal of each higher-level object will also act as a type
of training algorithmic objective function, enabling the
lower-level objects to learn from and adapt to their
environment as they align with the higher-level objective
function. For example, as indicated above for flocking, there
would be no higher-level code that specifically programmed
a bipedal robot to walk since walking is an emergent, macro-
behavior. Instead, multiple lower-level implication relations
with objectives like balancing, mirrored symmetry and
response to threshold stimulus, would give the bipedal robot
the initial “genetic” ability to walk. A training algorithm
functioning through the objective functions of higher-level
objects would further train and adapt the robot as it takes its
first steps so that it learns to walk more efficiently and
effectively.

Depending on the environment, each implication relation
will be able to perform its task with relative, measurable
success. The union operations will enable these relations to
share their relative success with each other so that a
synergistic balance can be manifested in the higher-level
objects.

Degrees of stress on the system will be measured as the
cumulative degree to which the implication relations can
achieve their objectives. Training and adaptation will be
used initially to respond to increasing degrees of
environmental stress in an effort to achieve more desired
objectives within the bounds of the system’s domain space as
defined by its “genome”. However, the cumulative,
diminishing success will reach a threshold that alerts the
system architect to develop an appropriate implication
relation(s) – a symbiotic partner(s) – to help overcome the
effects of the stress. Later work will focus on additional
methods to achieve this “evolutionary” acquisition.

Symbiogenesis also provides a robust environment for

adaptive learning. That is, an agent in a situation that
inhibits its ability to achieve its goals can use a threshold
signal to acquire, develop or adapt logical rules, algorithms
or relations that will improve its ability to achieve its goals.

III. CHARACTERISTICS OF GENOMIC SYSTEMS DESIGN
Here we share several of the most important characteristics

of the URC that enable the robust nature of GSD.

A. Coupling and Cohesion

Coupling is the strength of the relationships between

modules. Cohesion is the strength of the relationships among
the components of one module. System robustness is
improved whenever coupling can be reduced and cohesion
increased [1]. For the IRC, P and Q do not have an
independent relation with R, so cohesion is low. And since P
must intersect with Q in order to produce a relation with R,
coupling is high. For the URC, P and Q each have their own
relation with R, so cohesion is high. And, since changes in P
do not affect Q, coupling is low.

Loosely coupled, highly cohesive systems are also easily
modified. Conversely, it is often so expensive to update a
large, tightly coupled system that short-cut solutions and
“temporary” patches are employed, leading to brittle and
error-prone applications that must eventually be replaced.

B. Scalability: The Combinatorial Problem

As stated above, most traditional rules are in the IRC
format [(P intersection Q) implies R]. Although IRC rules
are the more familiar rule construct, they create a difficult
combinatorial problem. Since P and Q are coupled to each
other through intersection, the number of values in P must be
multiplied by the number of values in Q in order to obtain all
possible solution options. (Obviously, all possible solution
options are not always necessary.) So, if there are five values
for each input variable, then the maximum number of rules
for a single input, single output system would be 5. For a
two input, single output system, the maximum number of
rules would be 25 and a three input, single output system
would yield a maximum of 125 rules – an exponential
increase.

The equivalent URC rule architecture [(P implies R) union
(Q implies R)] eliminates this combinatorial problem. Since
P and Q each have their own independent relation with R,
changes in the value of P do not affect Q’s relation with R.
As a result, instead of multiplying the number of variable
values with each other to obtain the maximum potential
solution options, URC rules only require that the number of
values be added. So, instead of the exponential increase
shown above, a single input, single output system would have
a maximum of 5 rules. For a two input, single output system,
the maximum number of rules would be 10 and a three input,
single output system would yield a maximum of 15 rules – an
additive increase. We have shown that the URC radically
reduces the computational time for complex data sets and
also virtually eliminates the need for pruning strategies to
improve the computational efficiency of rule-based
applications [3, 4].

C. Fault Tolerance

Fault tolerance is a vital dimension in any mission critical
system because it diminishes the adverse affects of defects
that might otherwise impair the system’s functionality. It is

especially helpful in those situations where an unexpected
fault could jeopardize or severely impair the success of the
mission.

While defect reduction through such processes as Six
Sigma [18] is a necessary component of software reliability,
it may do little to guard against in-service malfunctions and
accidents. In some instances, component redundancy is
employed to provide a kind of back-up fault tolerance. But
this option usually adds weight and complexity to the
mission.

The overlapping region in Figure 1 indicates that these
implication relations are both capable of performing certain
functions – from different perspectives. On the one hand, if
both relations
perform these
overlapping
functions, the
union operator
will generate the
functionality for
the application.
On the other
hand, if one
relation fails to
perform one of

(P implies R) union (Q implies R)

(P > R) (Q > R)

Fig. 1. Venn diagram of
 overlapping UNION
 implication relations

these functions, the other one will still feed the union
operator so that the functionality will continue to be
generated for the application. So, the two implication
relations (agents) can provide fault tolerance for each other.

Stated another way, the circle encompassing (P > R)
represents its primary objective. The portion of that circle
intersected by the circle surrounding (Q > R) represents the
latter’s ability to perform that task as well. The URC’s
higher-level functionality represented by the union operator
will give both implication relations the task to perform. (Q >
R) will monitor (P > R)’s ability to perform its primary task
to see if its performance falls below a certain goal threshold.
(Q > R) will act as a symbiotic partner, performing this task
to the extent that it perceives (P > R) is failing and to the
extent that it has sufficient capacity.

For example, consider a four-wheeled robot in which each
wheel can act independently. Further assume that the
primary objective for the front pair of wheels is navigation
while the primary task of each wheel is propulsion. Based on
its configuration, we can say there are actually three ways to
turn the rover either right or left. First, the implication
relation controlling the front pair of wheels can perform the
task. But the implication relation controlling the rear wheels
operating in tandem can also turn the rover. And, if the rover
needs to turn to the right, the implication relation controlling
the left wheels can rotate them faster than the right wheels.

Assume that a higher-level implication relation needs to

turn the rover to the right and gives all three of these lower-
level relations the task to perform. Since the task is the
primary objective of the relation for the front pair of wheels,
the other two relations can act as symbiotic partners
monitoring the former to see if its performance falls below a
certain goal threshold. If it does, then these two partners can
assist in executing the task to the extent that the primary
relation is failing and to the extent that they have sufficient
capacity.

D. Adaptability

The enclosure around the implication relations (agents) in
Figure 2 represents the environment in which they function.

As the environment changes (Figure 3), the relationship

each agent has with the environment changes as well. That
is, one type of environment will favor the functionality of
certain agents more than others based on each agent’s
perspective.

These changes in the functionality of the individual agents
modify the ultimate output of the system resulting from the
union of their functionalities. This modification allows the
application to dynamically adapt to the changes in its
environment without altering its code or employing
parameters.

E. Specialization

In Section II, we referred to the specialization of cells for
an individual in a given species. In an ant colony, each ant

possesses the colony’s genome enabling its behavior to be
specialized to a number of genetically-defined roles (nest
maintenance, foraging, midden work, etc.) as it responds
proximally to various environmental stresses in collaboration
with its other nest-mates [8]. Through its implication
relations, the URC can model specialization whether it is
manifested in a single agent or in a team of agents working
together to perform some mission.

F. Emergence

“In these systems, agents residing on one scale start
producing behavior that lies one scale above them: ants
create colonies, . . . The movement from low-level rules to
higher-level sophistication is what we call emergence” [10].
The important aspect of this process is that, on the one hand,
the lower-level relations contribute to the higher-level
emergent functionality. But on the other hand, the lower-
level relations can neither fully determine not predict the
higher-level behavior. The URC is an emergent architecture
in that the union of its lower-level relations [(P implies R),
(Q implies R)] enables emergent functionality/behavior that
lies one scale above them.

(P implies R) union (Q implies R) . . .

Environment
(S > R) (X > R)

(T > R)

(Q > R)
(P > R)

(U > R)

G. Sparse and Missing Data Resolution

In many applications, missing data is interpolated in some
manner – a process that can bias the outcome. Estimating a
missing data point is more easily accomplished when only a
few values are absent. However, interpolation becomes far
more complicated when the majority of values are missing.

Fig. 2. Venn diagram of the URC in a given environment

(P implies R) union (Q implies R) . . .

Environment
(S > R) (X > R)

We have shown that since the URC relations are connected
by logical unions, a system can ignore any relation where the
attribute value is null, zero or missing. So, sparsely
populated records do not have to be doctored or deleted in
order for an application to process them reliably [4].

(T > R)

(P > R)
(Q > R)

(U > R)

H. Functionality-As-A-Premise Fig. 3. Venn diagram of the URC in a different

environment As shared earlier, the URC structure emphasizes that rules
are created/extended through the union of functioning
implications. Thus, functioning implications must exist
before the union can take place. Symbiogenesis underscores
that genomes likely evolved using a similar strategy.
According to this theory, genes were added to the genome of
an individual under stress based on the fact that the genes of
its symbiotic partner were functioning before the merger in a
manner that could relieve the stress.

On the other hand, the IRC structure generates a
functionality-as-a-goal process. Its low cohesiveness results
from the fact that its antecedent propositions (P intersection
Q) do not enjoy independent, functional relations with their
consequent proposition (R). Instead, the intersection
operator yields another proposition (I) that does have a
functioning relation with the consequent proposition (I

implies R). So, functionality is a goal of the IRC process.

I. Multi-Criteria Decision Making
We are most accustomed to UNION Venn diagrams as

shown in Figure 1. However, Figure 4 is just as valid a
representation of UNION. Moreover, it illustrates that the
two elements do not have to overlap as they do for
INTERSECTION in order to produce a valid result. This
capability enables the URC to process multi-criteria decisions
even when the perspectives are mutually exclusive.

IV. AREAS OF BENEFIT
A. Parallel and Distributed Processing

In addition to reducing computation time, the URC also
provides a GSD framework with much more extensive
parallel and distributed processing capabilities than might
otherwise be possible since the relations are coupled by
union. This means the relations [(P implies R), (Q implies
R)] can be executed by separate processors either on the same
computer or on different computers across a network.

B. Fault-Tolerant Control Systems

A fault-tolerant control system should be able to survive
the malfunction of any one controller, should allow the
application to degrade its performance gracefully and should
maintain the degradation of the program’s functionality
within the scope of the controller’s design envelope.

For any system that might experience the gain or loss of a
number of inputs, agents, sensors or components during
operation, the URC architecture facilitates the fault-tolerant
characteristics of GSD because this variability is so easily
managed.

C. Disparate Database Utilization

It is not uncommon for the databases of collaborating
institutions to contain dissimilar attributes since each
institution is likely to focus on a different aspect of the
project. Unfortunately, the structure of these disparate
databases can hamper utilization by the various participating
researchers. One solution is to limit shared information to
the attributes common to all institutions. However, this

approach can restrict the overall potential use of the data.
The same principle that allows the URC to work with sparse
and missing data also allows a GSD project to combine
dissimilar attribute data from disparate databases for use by
the various participants.

D. Autonomous Agents/Robots

As shared earlier, we are most accustomed to UNION
Venn diagrams as illustrated by Figure 1 even though the
configuration in Figure 4 is just as valid. Through addition,
the URC enables us to extend Figure 4 to Figures 2 and 3. By
expanding those configurations, Figures 5 through 7 show
the URC Venn diagrams morphing into the quintessential
example of an autonomous, agent-based system.

(P implies R) union (Q implies R)

Figure 4 Venn diagram of non-overlapping UNION
 implication relations

 (P > R) (Q > R)

(P implies R) union (Q implies R) . . .

(S > R)

(U > R)

(P > R)

(T > R)
(X > R)

(Q > R)

Figure 6 . . . into the quintessential example . . .

(P implies R) union (Q implies R) . . .

(S > R)

(U > R)

(P > R)

(T > R)

(X > R)
(Q > R)

Figure 7 . . . of an autonomous, agent-based system

(P implies R) union (Q implies R) . . .

(S > R) (T > R) (X > R)

(Q > R)
(P > R) (U > R)

Figure 5 Venn diagram of the URC morphing . . .

A current preferred method for managing the activities of
teams of millibots is a hierarchical structure in which ever-
larger robots oversee the activities of smaller robots [9]. As
an alternative, these smaller robots could all possess the same
“genome”, specializing according to the needs of the mission
and collaborating through their shared union operators. By
functioning in this manner, similar to the members of an ant
colony, agent-based millibots in a GSD configuration could
eliminate the need for a hierarchy of larger robots to
coordinate their activities.

E. GSD and Cellular Automata

Scientists have known for many years that populating
cellular automata with rules can generate emergent behavior
– a process also known as distributed emergent computation
[11]. This effect was popularized by the Game of Life,
invented in 1970 by British mathematician John Conway,
now at Princeton University.

While cellular automata have long been used to provide
the structure for proximal cellular relationships, they do not
specify any configuration architecture for the rules governing
cellular behavior. Since GSD can model genomes – the
architecture for the genetic code within biological cells –
GSD can also provide the configuration architecture for the
rule sets within each cell of cellular automata.

F. The Genome Project (Next Steps)

Bioinformatics is a relatively new field that brings together
biology, genetics and computer science to address the
overwhelming challenges initiated by the Genome Project
[13]. While the initial efforts of bioinformatics concentrated
largely on the demands of the Genome Project, there is an
even greater need now that the preliminary project goals have
been achieved – gaining benefit from all this newly acquired
knowledge.

The genomic structures that have been compiled do not
explain how this genetic code manifests itself functionally in
a particular species member. To this end, we need to model
genomic functionality in order to better understand how a
given genotype configuration influences the functionality of a
particular phenotype of a species.

GSD can model the processes surrounding symbiogenesis.
Given its ability to demonstrate how a genome could be
developed, GSD might also offer a promising architecture for
aiding in the understanding of how the various genes interact
functionally with each other.

V. CONCLUSION
We have highlighted a novel programming paradigm that

is similar in architecture to a biological process called
symbiogenesis. This similarity, together with the strengths
inherited from the URC, enables Genomic Systems Design to

offer a promising alternative methodology for the design of
autonomous agents/robots, fault-tolerant and adaptive control
systems, cellular automata, and the next steps for
bioinformatics.

ACKNOWLEDGEMENTS
We wish to thank Larry Bugbee, a friend and fellow

Boeing employee of William E. Combs, for his suggested
emendations to this paper.

REFERENCES
[1] E.B. Allen and T.M. Khoshgoftaar, “Measuring Coupling and

Cohesion: An Information-Theory Approach”, Sixth IEEE
International Symposium on Software Metrics, Boca Raton, Florida, p.
119, 1999.

[2] W.E. Combs, “Reconfiguring the Fuzzy Rule Matrix for Large, Time-
Critical Applications”, Third Annual International Conference on
Fuzzy-Neural Applications, Systems and Tools PennWell Publishing
Company, 10 Tara Blvd., 5th Floor, Nashua, NH 03062-2801, Nov.,
1995.

[3] W. E. Combs and J. E. Andrews, “Combinatorial rule explosion
eliminated by a fuzzy rule configuration,” IEEE Trans. Fuzzy Systems,
vol. 6, no. 1, pp. 1-11, Feb., 1998.

[4] W.E. Combs, “Using Fuzzy Logic in Large, Complex Data Mining
Applications”, IEEE World Conference on Computational Intelligence,
May, 2002.

[5] M.S. Gazzaniga, R.B. Ivry and G.R. Mangun, Cognitive Neuroscience:
The Biology of the Mind, 2nd. Ed., pp. 400ff, W.W. Norton and Co.,
2002.

[6] W.W. Gibbs, “The Unseen Genome: Gems Among The Junk”,
Scientific American, pp. 46-53, Nov., 2003.

[7] W.W. Gibbs, “The Unseen Genome: Beyond DNA”, Scientific
American, December, pp. 106-113, Dec., 2003.

[8] D. Gordon, Ants at Work: How an Insect Society is Organized, pp. 29ff,
W.W. Norton & Co., 1999.

[9] R. Grabowski, L.E. Navarro-Serment and P.K. Khosla, “An Army of
Small Robots”, Scientific American, pp. 63- 67, Nov., 2003.

[10] S. Johnson, Emergence, p. 18, Scribner, 2001.
[11] E. Klarreich, “Computation’s New Leaf: Plants may be calculating

creatures”, Science News, vol. 165, pp. 123-124, Feb. 21, 2004.
[12] L. Margulis and D. Sagan, Acquiring Genomes: A Theory of the

Origins of Species, Basic Books, 2002.
[13] D.W. Mount, Bioinformatics: Sequence and Genome Analysis, Cold

Spring Harbor Laboratory Press, 2001.
[14] C.W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral

Model, in Computer Graphics”, 21(4) (SIGGRAPH ’87 Conference
Proceedings), 1987, pp. 25-34. See http://www.red3d.com/cwr/boids/

[15] J. J. Weinschenk, W. E. Combs, R. J. Marks II, “Avoidance of rule
explosion by mapping fuzzy systems to a disjunctive rule
configuration,” IEEE Int’l Conference on Fuzzy Systems, St. Louis,
MO, pp 43-48, 2003.

[16] J. J. Weinschenk, R. J. Marks II, W. E. Combs, “Layered URC fuzzy
systems: a novel link between fuzzy systems and neural networks,”
Proc. IEEE Intl’ Joint Conf. on Neural Networks, Portland, OR, pp.
2995-3000, 2003

[17] J. J. Weinschenk, W. E. Combs, R. J. Marks II, “On the avoidance of
rule explosion in fuzzy inference engines,” Submitted to IEEE Trans.
Fuzzy Systems, Nov. 12, 2003.

[18] See http://www.isixsigma.com/

http://www.red3d.com/cwr/boids/
http://www.isixsigma.com/

	Introduction:
	A Brief Overview of Symbiogenesis
	Characteristics of Genomic Systems Design
	Areas of Benefit
	Conclusion
	Acknowledgements
	References

