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Abstract--The Neural Network (NN) approach to the Transient 
Stability Analysis (TSA) has been presented as a potential tool for 
on-line applications, but the high diiensionality of the power 
systems turns it necessary to implement feature extraction 
techniques to make the application feasible in practice. At the 
same time, feature extraction can offer sensitivity information to 
help the identification of input features best suited for control 
action. Tbii paper presents a new learning-based nonlinear 
classifier, the Support Vector Machines (SVMs) NNs, showing its 
suitability for power system TSA. It can be seen as a different 
approach fo cope with the problem of high dimensionality due to 
its fast training capability, which can be combined with existing 
feature extraction techniques. SVMs’ theoretical motivation is 
conceptually explained and they are applied to the IEEE 50 
Generator system TSA problem. Aspects of model adequacy, 
training time and classification accuracy are discussed and 
compared to stability classifications obtained by Multi-Layer 
Perceptrons (MLPs). Both models are trained with complete and 
reduced input features sets. 

Index Terms--Feature Extraction, Support Vector Machines, 
Multilayer Perceptrons, Neural Networks, Transient Stability 
Analysis. 

I. INTRODUCTION 

T HE Transient Stability Analysis (TSA) is a crucial 
operation procedure to ensure secure performance of a 

power system experiencing a variety of distnrbances and 
operating condition changes. The power system operates in a 
secure manner, from the transient stability viewpoint, when the 
generators maintain synchronism after the system is subjected 
to severe disturbances. 

In the: last few decades, TSA methods of practical use 
have been developed, and the transient stability schemes of 
current use are mainly based on time-domain simulations [ 11. 
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These techniques, however, require the numerical solution of a 
system of nonlinear equations using time-consuming numerical 
integrations for each contingency. 

With the power systems expansion and the increase in their 
complexity, the dynamic security analysis has become a very 
crucial and complex process. The current deregulation trend 
and the participation of many players in the power market are 
contributing to the decrease in the security margin [2]. This 
makes the security evaluation even more important, and 
demands the investigation of fast and accurate techniques to 
allow on-line TSA. 

The NN approach has been introduced as an alternative 
solution for the analytical TSA [3], [4], and has been recently 
studied with potential use for real-world, large-scale power 
systems [4]-[6]. In such a process, the NN-based TSA would 
be applied to a group of selected critical contingencies. The 
nonlinear input/output mapping capability of a NN can be used 
to produce a security index that classifies the current operating 
point as secnre or insecure [3], [5]-[7]. 

The NN uses training data sets that are representatives of 
different loading conditions and generation schednlings, 
different types of contingencies and different topology 
configurations. 

Although successfully applied to TSA [3], [5], [83, Multi- 
Layer Perceptrons (MLPs) implementations require extensive 
training process. In general, this is the major drawback for NN 
applications in large power systems with hundreds (even 
thousands) of generators, because such a large grid will require 
a large number of input variables to train a NN. This can be a 
prohibitive task. Therefore, a feature extraction/selection 
method is needed to reduce the dimensionality of the NN’s 
input space. The main objective is to use as little number of 
inputs as possible to reduce the NN training time, while 
maintaining a high degree of classification accuracy [93. 

A new type of nonlinear learning based classifier has been 
recently introduced which has very interesting theoretical 
promises, the Support Vector Machines (SVMs) NNs [lo]. 
They can map complex nonlinear input/output relationships 
with good accuracy and they seem to be very well suited for 
the TSA application [ 111. SVM classifiers rely on training 
points located on the boundary of separation between different 
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classes, where the stability evaluation is critical. A good 
theoretical development of the SVM NN, due to its 
foundations on the Statistical Learning Theory (SLT) [lo] 
made it possible to devise fast training techniques even with 
large training sets and high input dimensions [12]-[14]. This 
feature can be exploited as an approach to address the problem 
of high input dimension and large training datasets in the TSA 
problem. 

However, the SVMs capabilities cannot be explored 
without a good understanding of their conceptual details. In 
this paper, the SVM classifier is explained and analyzed in 
terms of advantages and disadvantages. The aim is the 
application to power system TSA, which is developed as 
follows: three feature extraction techniques are applied to the 
training/test transient stability data with the objective of 
dimensional&y reduction, as presented in [9]. Stability 
classifications are obtained by MLP and SVM NNs, 
comparing the good generalization capacity of both models 
and exploring SVMs’ fast training. Expectations are that input 
feature dimensionality reduction is of lower concern for SVMs 
due to their fast training, but accuracy must be checked for 
complete and reduced features sets. Results for the IEEE 50- 
Generator system are presented, discussed and compared in 
terms of modeling characteristics, generalization performance 
and training time. 

The structure of the paper is as follows. Section 2 briefly 
presents the feature extraction/selection techniques as applied 
in the TSA. In Section 3, a summarized description of SVM 
classifiers is sketched with the conceptual ideas and 
discussions on advantages and disadvantages. In Section 4, the 
TSA application and results are presented. Finally, the 
conclusions are drawn in Section 5. 

II. FEATURE EXTRACTION/SELECTION 

The feature extraction problem can be explained by 
assuming the classification task in 2 disjoint classes with a 

training set Tof ordered pairs (xi, yi), T = {xi, yi}&, where 

xi is a real-valued n dimensional vector (i.e., Xi E Rn) 

representing the operating point and yi E {+1,-Z} is a label 

that represents the security index. The feature extraction goal 
is to determine a transformation f = F( A, x) from the 

original space R” to a subspace Rd (for dimensionality 
reduction, d c n), where A is a matrix of transformation 

parameters and f E Rd. The original data is represented in a 

new training set, T = Gfi, yi}El* If the feature 

extraction/selection is successful, a point in Rd can be 
assigned to one of the 2 classes with a minimum error. Hence, 
the expected number of misclassifications for a test set should 
be as low as possible. 

Three feature extraction techniques are used in this work, as 
presented in [9], based in Sequential Search, Genetic 
Algorithms and Principal Components Analysis to perform 
dimensionality reduction of the input vector. 

III. SUPPORT VECTOR MACHINES CLASSIFICATION 

SVMs are nonlinear models based on theoretical results 
from the Statistical Learning Theory [lo]. This theory formally 
generalizes the empirical risk minimization principle that is 
usually applied for NN training when the classifier is 
determined by minimizing the number of training errors. In 
NN training, a number of heuristics is traditionally used in 
order to avoid overfitting and to estimate a NN classifier with 
adequate complexity for the problem at hand. 

An SVM classifier minimizes the generalization error by 
optimizing the relation between the number of training errors 
and the so-called Vapnik-Chervonenkis (VC) dimension. This 
is a new concept of complexity measure that can be used for 
different types of functions. 

A formal theoretical bound exists for the generalization 
ability of au SVM, which depends on the number of training 
errors (t), the size of the training set (I), the VC dimension 
associated to the resulting classifier (h), and a chosen 
confidence measure for the bound itself (q ) [ 151: 

R <f+ h(ln(2Z/h)+1)-Zn(~/4) 

1 i 1 
(1) 

The risk R represents the classification error expectation 
over all the population of input/output pairs, even though the 
population is only partially known. This Risk is a measure of 
the actual generalization error and does not require prior 
knowledge of the probability distribution of the data. 
Statistical Learning Theory derives inequality (1) to mean that 
the generalization ability of an SVM is measured by an upper 
limit of the actual error given by the right hand side of (l), and 
this upper limit is valid with probability I-77 (0 c 17 < I). As 

h increases, the fist s ummand of the upper bound (1) 
decreases and the second s ummand increases, so that there is a 
balanced compromise between the two terms (complexity and 
training error). 
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Fig. 1. Maximum margin classifier 

The SVMs used for two-class problems are based on linear 
hyperplanes to separate the data, as shown in Fig. 1. The 
hyperplane is determined by an orthogonal vector w and a 
bias b, which identify the points that satisfy w.x + b = 0. By 
fmding a hyperplane that maximizes the margin of separation, 
p , it is intuitively expected that the classifier will have a 
better generalization ability (Fig. 1). The hyperplane with the 
largest margin on the training set can be completely 
determined by points that are closest to the hyperplane. Two of 
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such points are x1 and xI in Fig. l(b), and they are called 

Support Vectors (SVs) because the hyperplane (i.e., the 
classifier) depends entirely on them. 

Therefore, in their simplest form SVMs learn linear 
decision rules 

f(x)=sign(w’x+b) (2) 
so that (H?, b) are determined as to correctly classify the 

training examples and maximize p 

For linearly separable data, as shown in Fig. 1, a linear 
classifier can be found such that the first summand of bound 
(1) is zero. It is always possible to scale w and b so that 

w’n+b=fl (3) 
for the SVs, with 

w’x+b>+l and w’xcb<-1 (4) 
for non-S\Js. Using the SVs x, and x2 of Fig. 1 and 

Equation (3), the margin p can be calculated as 

P =&h -xA=fi (5) 

For linearly separable data the VC dimension of SVM 
classifiers can be assessed by [lo] 

h<min{n,$}+l=min~,D2/~ujl’)i-i (6) 

where n is the dimension of the training vectors and D is the 
minimum r,adius of a ball which contains the training points. 
Therefore the risk (1) can be decreased by decreasing the 
complexity of the SVM, that is, by increasing the margin of 
separation p , which is equivalent to decreasing llwll. 

As practical problems are not likely to be separable by a 
linear classifier, the linear SVM can be extended to a nonlinear 
version by mapping the training data to an expanded feature 
space with a nonlinear transformation: 

~(x)=(~,,(x),...,~~,(x))E R* (7) 
where m > n. Then, the maximum margin classifier of the data 
on the new space can be determined. With this procedure, the 
data that are non-separable in the original space may become 
separable in the expanded feature space. The next step is to 
estimate the SVM by minimizing 

v(w)= $wIw (8.1) 

subject to tlhe condition that all training patterns are correctly 
classified, that is, 

yi(w’@(xi)+b)21, i =I,...,Z (8.2). 

However, dIepending on the type of nonlinear mapping (7), the 
training points may happen to be not linearly separable, even 
in the feature space. That means, it will be impossible to find 
an SVM classifier that fulfills all the conditions (8.2). 
Therefore, instead of solving (8), a new cost function is used 
to minimize (1) [lo]: 

vcw,e,+wtw +& (9) 
id 

where 1 slack variables ci are introduced to allow for training 

errors, that is, training patterns for which 

yi(W’9(Xi)+ b)S 1 -&i and Ei > I . By minimizing the fist 

summand of (9), the complexity of the SVM is decreased and 
by minimizing the second s ummand of (9), the number of 
training errors is decreased. C is a positive penalty constant 
that must be chosen to act as a tradeoff between the two terms. 

The minimization of the cost function (9) leads to the SVM 
training as a quadratic optimization problem with unique 
solution. In practice, the nonlinear mapping (7) is indirectly 
obtained by the so called Mercer Kernel Functions, which 
correspond to inner products of data vectors in the feature 

space, K(a,b)= @(ay@(b), a,be R” [14]. In order for this 

equivalence to be valid, a Kernel function must satisfy some 
requirements called Mercer Conditions. These conditions have 
limited the number of Kernel Functions applied in practice so 
far, and the most commonly used are the Gaussian RBF Kernel 

kbf 
K(a,b) = e CT’ (10) 

and the Polynomial Kernel 

K(a,b)= @b+l)D (11) 
where the parameters ts and p in (10) and (11) must be pre-set. 
Details on the solution of (7) and the final SVM architecture 
are shown in the Appendix. 

In summary, some nonlinear mapping (7) can be indirectly 
defined by a Kernel Function (i.e., there is no need for 
specifying (7)), for example (10) or (11). The parameters 
cr and p affect how sparse and easily separable the data are in 
feature space, and consequently, affect the complexity of the 
resulting SVM classifier and the number of training errors. 
The parameter C also affects the model complexity. Currently, 
there are no clues on how to set C, how to choose the best 
Kernel Function (the nonlinear map @ ) and how to set the 
Kernel parameters. In practice, a range of values has to be 
tried for C and for the Kernel parameters, and then the 
performance of the SVM classifier is assessed on each of these 
values. 

IV. TRANSIENT STABIL~Y ANALYSIS TESTS AND RESULTS 
This section explains how the feature extraction 

techniques, connected with MLP and SVM NNs’ training, are 
actually applied to obtain power system transient stability 
evaluations. 

The IEEE 50Generator system has been used 1161 to 
generate training and test examples. Different operating 
conditions have been created by changing the generation and 
load patterns of the system Each case has been validated by a 
load flow execution. For each operating condition, the same 
contingency has been simulated in the time domain using the 
ETMSP software 1171 and the corresponding critical clearing 
time (CCT) has been determined. The complete input features 
set is composed of the active and reactive powers of each 
generator and the total active and reactive loads of the system 
at the moment of the fault, with a total of 102 inputs and 1 
output indicating the security class. 
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The feature extraction techniques presented in [9] have 
been run on the training set to reduce the input space 
dimension. Besides the complete set of features, reduced sets 
have been obtained with d = SO, 30,20 and IO. 

Multi-Layer Perceptrons have been trained with the 
Levenberg-Marquardt backpropagation training algorithm to 
give security estimations based on binary outputs 
corresponding to the stale/unstable classes. The classification 
of the system as stable/unstable is determined based on a given 
security threshold, which represents the realized clearing time 
of the contingency. If a given sample output i.e., the simulated 
CCT, is above the threshold, the input state is considered 
stable, otherwise it is unstable. 

SVMs have also been trained on the examples with binary 
outputs to indicate the stable and unstable classes. Gaussian 
RBF (10) and Polynomial (11) Kernels have been used. The 
parameters for theses Kernel functions have been sought in a 
heuristic manner. The software SVMfigh’ has been used for 
training[ 131. 

Fig. 2 presents Receiver Operating Characteristic (ROC) 
curves of the Gaussian RBF SVM performance on the test set, 
after it has been trained with the complete set of 102 input 
features. The false dismissal rate on the x-axis is the ratio of 
test points that have been incorrectly classified as stable. The 
detection rate on the y-axis is the ratio of stable test points that 
have been correctly classified. Several SVMs have been 

trained with increasing values of 0’ and the corresponding 
values of the detection and false dismissal rates are shown in 
Fig. 2. These are two conflicting values that increase together 

for a fixed value of C and increasing o2 . Values of C = 0.1, 
I, IO, 100, IO00 and 10000 have been tried. The solid line in 
Fig. 2 corresponds to the SVM with C = 1. The dashed line 
corresponds to the SVM with C = IO, 100, 1000 and 10000, 
which show the same results. The curve for the SVM with 
C = 0.1 is not shown in Fig. 2 due to the difference in scales. 
It presents much higher values of false dismissal rates, going 
as far as 0.08 and lower values of detection rate than the 
curves shown in Fig. 2. ROC curves like these can also be 
drawn when a Polynomial SVM is used, but now the False 
Dismissal Rate and the Detection Rate change with p, the 
Polynomial Kernel parameter. 

I(05 
False Dismwal Rate 

ROC curves can help to identify a classifier with good 
performance, which is required to present low False Dismissal 
Rates and high Detection Rates. 

An MLP has also been trained on the complete set of 102 
features, but an ROC curve like the one of Fig. 2 cannot be 
drawn to show the performance on the test set. The number of 
factors affecting its performance is large and interrelated. 

On Table I the performances of the classifiers trained on the 
complete features sets is indicated with the headings SVM- 
G102 (RBF Gaussian SVM), SVM-P102 (Polynomial SVM) 
and MLP-102 (MLP with 5 hidden neurons). Table I shows 
specifications of the input features, the detection rate, false 
dismissal rate, error rate (ratio of test points which have been 
incorrectly classified), training time and number of SVs. 

Next, SVM and MLP classifiers have been trained on 
reduced features sets. For the MLP, a cross-validation training 
has been performed until the test error started increasing or 
stopped decreasing. 

For SVMs trained with different features sets, ROC curves 
have been drawn for different values of C. Then, for the values 
of C that resulted in the best ROC curves, fixed values of False 
Dismissal Rates have been set: 0.02 and 0.03, which could be 
reached with specific values of the Kernel parameters. These 
models are shown in Table II as SVM-GO.02, SVM-GO.03 
(RBF Gaussian Kernel), and SVM-PO.02 and SVM-PO.02 
(Polynomial Kernel). For the MLP model, MLP-1 is the model 
with the lowest test error rate and MLP-2 is the model with the 
smallest training time. 

Table II shows the models trained with reduced input 
features that resulted in the best test performances, in terms of 
Detection Rate, FalseDismissal Rate and Error Rate. For 
example, for an RBF Gaussian SVM with parameters set to 
give 0.03 False Dismissal Rates (SVM-GO.03) the 30 input 
features selected by the Sequential Search (SS) technique 
resulted in the best performance; for a Polynomial SVM with 
parameters set to give 0.03 False Dismissal Rates (SVM- 
PO.03) the 30 input features selected by the Genetic Algorithm 
(GA) technique resulted in the best performance. 

Tables I and II show that SVM classifiers are a viable 
model for the TSA application, with performance results that 
are comparable to the MLP and much faster training times. In 
these TSA tests, the RBF and Polynomial Kernel showed 
similar results on both criteria of classifier performance and 
training time. Table II shows that it is possible to achieve a 
good reduction in the input features dimensionality, with 
performance results that are comparable to the complete 
features set and much lower training times for the MLP model. 

It could be noticed that the MLP training time dramatically 
increased with the number of input features and the number of 
hidden neurons. The SVM training time depends on the 
number of input features, on the Kernel parameters values and 
on the number of SVs of the resulting classifier. 

Tables I and II show that the adequacy of feature extraction 
techniques depends on the classifier, as expected. 

V. CONCLUSIONS 

This paper shows that the SVMs are a new NN model that 
fits the TSA application. It provides a different strategy to Fig. 2. SVM ROC curve 
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tackle the curse of dimensional@, regarding computational 
effort, because of very low training times compared to MLPs. 

In this application, the reduction on the number of features 
from 102 to 30 and 50 resulted in classifiers with the best 
performances. The accompanying reduction in the sparsity of 
the data has turned the training process into an easier task for 
SVMs and MLPs. On the other hand, larger training sets could 
be used for SVMs to improve the performance, while the 
training time would not be considerably increased. 

The SVM model allows a good understanding of its 
theoretical details, as shown in Section 3, and this can be used 
to identify the important parameters for the classifier. 

The feature extraction techniques shown in this paper are 
good candidates to be used with artificial intelligence tools in 
control centers to avoid potentially vulnerable power system 
states. They can provide not only dimensionality reduction, but 
also the most important rules to prevent the system from 
getting closer to unstable situations. 

VI. APPENDIX 

The computation of the decision boundary of an SVM, 

f( x ) = sign( W%(X)+ b) , for the non-separable case consists 
in solving the following optimization problem [lo]: 

minimize :V(W,&) =+W’W +C~Et 
i=l 

subject to : yi(w’@(ri)+ b)2 l-q, i = I,...,1 (12) 

Ei > 0, i = I,..,1 

Instead of solving (12) directly, it is much easier to solve the 
dual problem (13), in terms of the Lagrange multipliers, ai 

[lo]: 

minimize :W(QJ)=-$OJi ++& ,~~YiYl~Pj9GiY~(xj)= 

=-iai +$i $,Yi-Yjala,K(xitxj) 
i=l r-l j-l 

1 
subject to : Cypi = 0 and 0 S OZi 5 C, i = I,...,1 

i=l 

(13) 
which is a quadratic optimization problem. From the solution, 
aj, i = I,..., I of (13) the decision rule f(x) can be 

computed as [lo] 

rG)=w~s(~)+b=~iyC(~ir~(~)+b= 

I (14) . 
= CaiyiK(xt>x)+b 

i=l 

The training points with ai > 0 are the SVs, and (14) depends 

entirely on them. The threshold b can be calculated using (3), 
which is valid for any SV: 

b = YSV - wt@P(xsv ) (15) 
An SVM can be represented as in Fig. 3, where the number of 
units K(x, Xi) is determined by the number of SVs. 

A WXJ,) 

Fig. 3. SVM NN architecture 
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TABLE I 
IEEE ~O-GENERATORSSYSTEMTRANSIENTSTAB~LITYCLASSIFICATIONS-COMPLETEFEATURESSET 

SVM-G102 SVM-P102 MLP-102 

Input Features 102 102 102 
Detection Rate 0.92 0.92 0.91 

False Dismissai Rate 0.026 0.026 0.021 

Error Rate 0.047 0.047 0.047 
Training Time 37 seconds 32 seconds 40min42sec 

Nr. Of SVs 433 241 

TABLE II 
IEEE SO-GENERATORSSYSTEMTRANSI~~NTSTABILITYCLASSIFICATIONS-REDUCEDFEATURESSET 

Input Features 
Detection Rate 

Faise Dismissal Rate 
- Error Rate 

Training Time 
Nr. Of SVs 

SVM-GO.02 SVM-GO.03 SVM-PO.02 SVM-PO.03 MLP-1 

30-ss 30-ss 30-ss 30-GA 50-ss 

0.85 0.95 0.96 0.95 0.95 
0.02 0.03 0.0215 0.0314 0.023 
0.06 0.043 0.033 0.046 0.036 

34 seconds 12 seconds 19 seconds 20 seconds 1 lmin24sec 
1065 298 156 178 

MLP-2 

IO-GA 
0.92 

0.024 
0.046 

1minQsec 
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