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Abstract — When the situation arises that only “normal”
behavior is known about a system, it is desirable to develop a
system based solely on that behavior which enables the user to
determine when that system behavior falls outside of that range
of normality. A new method is proposed for detecting such
novel behavior through the use of autoassociative neural
network encoders, which can be shown to implicitly learn the
nature of the underlying “normal” system behavior.

I. INTRODUCTION

The ability to detect an error within a system is critical in
any real-world situation. Many methods are available for
monitoring a system, detecting a fault, and ascribing a
specific nature to the detected fault, thus enabling correction
of the problem. However, a problem arises when no prior
knowledge of what sort of faults may occur is given. In such
a situation, the best one can hope to do is monitor the system
for “normal” behavior, and when its performance falls
outside of an acceptable range, set off some sort of flag
indicating that the system is no longer normal, but novel.
That is to say, all that is known about the abnormal system
status is that it is new (from a prior-knowledge standpoint),
not specifically “good” or “bad” in any definitive sense.

This paper proposes a new method of novelty detection
through the application of a neural network autoencoder. In
essence, an autoencoder is a neural network (in this case, with
a standard, fully-connected feed-forward structure) in which
the output has been trained to be identical to the input (more
detail on the specific structure and nature below). The
autoencoder has a number of uses, from principle component
analysis and information compression, to the recovering of
missing sensor data [1]-[4]. The most striking ability of
autoencoders is their remarkable ability to implicitly leamn
certain underlying characteristics of the input data. That is, it
can learn certain traits inherent to the input space without any
prior knowledge or specific instruction to do so. For
example, an autoencoder trained with colored Gaussian noise
can implicitly learn the mean and autocovariance of the noise.
Likewise, an autoencoder trained on parameterized chaos can
learn the parameters of the chaos. This phenomenon is
explored in greater detail below with specific attention on the
novelty of the usage of a computer network hub.
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II. THE AUTOENCODER

As shown in Figure 1, an autoassociative neural network
encoder (or simply “autoencoder”) has two primary features.
The first, as previously mentioned, is the “autoassociative™
nature of the network. That is, the input of the neural
network is identical to the target output of the neural network
during the training phase. The other key factor is the
presence of a so-called “bottleneck” that occurs in at least one
of the hidden layers of the neural network.  The
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Figure 1: A basic representation of an autoencoder. Note that
the inputs are identical to the outputs, and that there exists at
least one hidden layer of low er dimenionality than the inputioutput
layers.

size of the bottleneck, while very application-specific, must
be of a dimension smaller than the input layer. This is the
level at which the actual “encoding” takes place; specifically,
the information contained in the entire input space is
essentially projected onto a lower-dimensional space at the
smaller layer. Note that, for this “encoding” to occur, the
neural network must necessarily have a feed-forward type of
structure (otherwise, the reduction in dimensionality is not
guaranteed to occur). All neural networks discussed herein
were trained using standard error-backpropagation methods,
and all networks were fully connected {1]. ,
As a final note on the behavior of an autoencoder, it is
worthwhile to mention that an autoencoder essentially
behaves as a projection of some input x(2) onto some set C in
the input space. That is, if x(2) lies within the region for
which the autoencoder is trained, it should remain relatively
unchanged by the encoder (except for perhaps a reduction in
detail due to a corresponding reduction in dimensionality).
However, if x(¢) is substantially different from anything

2878



previously seen by the encoder in its training phase, the
output will resemble an approximation of x(z) as some
member of C.

III. NOVELTY DETECTION

Novelty detection refers not to any sort of error correction,
nor specifically to error detection. Rather, it is a method by
which one can establish some level of “normal” system
behavior, and from that, assess a level of novelty to some sort
of aberrant output of a system. Figure 2 illustrates this.

A number of methods have been proposed for

Figure 2: G represents the entire signal space of “normal”
sysembehavior. C is the corvex hull of space G. The x's
represent novel behavior of the system.

novelty detection, including matched filtering, fitting an
ellipse to a set of data [5}-[7], and projecting onto a linear
manifold of a linear fit of the training data [3]. This paper
presents a method employing the autoencoder [1],[9]. The
shell G in Figure 2 indicates the signal space in which resides
all “good” system behavior. In real-world situations, this
space can be determined by a number of methods, from a
priori knowledge of the system and (hopefully)
accurate system models, to simply collecting a
sufficient amount of certifiably good data and
forming a hull around that data. One relatively
simple method is to fill out the convex hull of the
known data, and to assume that anything falling
within the hull can safely be considered normal,
and anything outside of the hull can be treated as
novel. The region bordered by C in Figure 2
demonstrates the creation of a convex hull from
data that is not necessarily convex. Obviously,
the data must be sufficiently close to convex for
the convexity approach to be valid; otherwise,
distinctly novel data lying within the concave
regions outside the actual “good” signal space
could be labeled as normal.

Once a region of “normalcy” versus a region
of “novelty” has been established, a method for
determining whether or not a given point lies
within either space must be developed. This is
the thrust of this work. Figure 3 demonstrates
the concepts underlying the method for detecting

x(t)

0-7803-7278-6/02/$10.00 ©2002 IEEE

novelty proposed by this paper. Some input signal x(?), taken
from the output of the system we wish to monitor, is pre-
processed before being used in novelty detection in order to
put it into some form useable by an autoencoder. This
process is very application-specific, as will be seen below in
Section IV. An autoencoder is then trained on normal system
behavior to the extent that the autoencoder implicitly learns
the underlying behavior of the system. When normal data is
presented to the autoencoder, it should pass through the
encoder with minimal distortion; thus, the output of the
summing junction z(z) should be very small. Given the
projection nature of the autoencoder as described above, any
large departure from normal behavior in y(?) should also be
very distinct in z(#), since yy(t) represents the “normal
behavior” portion of the input y(#). Thus, in a raw form, we
have that z(?) represents some measure of novelty of x(?), the
output from some system. As described in the figure, that
raw measure of novelty can then be post-processed via a
variety of methods to determine m(¥), a definitive level of the
novelty of the given input to the novelty detector.

IV. EXPERIMENTAL RESULTS

In order to determine the effectiveness of an autoencoder
novelty detection system, a number of different scenarios
were investigated in a variety of ways. First, a simple
heuristic model was developed. The “normal system
behavior” was modeled as simple colored noise, and
“novelties” took the form of pulses or similarly deviant
artificial signals additively introduced into the noise.
Following extremely promising resuits from that situation,
some real-world data was obtained and a novelty detector
was formed around it, with equally promising results.

2(t)

'y'](t)

Figure 3: A modelof the proposed novely detector. x(t)
represents the raw input signal from a given system. y(J) is that
input processed in some menner ot make it useablke by the
encoder. y, (9 is the oufput of the autoencoder. z(t) & the
difference betw een the input and the output of the autoencoder.
n(t) is some measwre of novelty determined by the post-
processing methods used in the final block
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Figure 4: Example of the “normal” system behavior described
in section VA. The top plot is an example of the colored
noise; the bottom plot is that noise run through the novelty
detector.

1 i
600 800 1000 1200

| 1 i

-1 L
0 200 400

1

!
1400 1600

1
1800 2000

Figure 6: performance of novelty detector with additive small
sinusoid. The sinusoid added had an amplitude of 0.5, well
wihin the [-2,2] dynamic range of the “normal” system behavior.
Note how prevakent the sinusoidal behavior & after the novelty
detection is applied.

A.  Novelties in the Presence of Artificially Generated
Colored Noise

1) Generation of data: A system’s “normal” mode of
behavior is colored noise. The noise was obtained by
generating discrete Gaussian white noise (with adjustable
mean and standard deviation), and then using a standard
Butterworth filter to “color” the noise in a band-pass sense.
Thus, the system was governed essentially by three
parameters: y, o, and B (mean, standard deviation, and
bandwidth, respectively).

0-7803-7278-6/02/$10.00 ©2002 IEEE

1200 1400

1000

¥ i I ¥ T

800

$
P

1 i { ] i

Figure 5: performance of novelly detector on normal
system behaviorwith additive puise novelty.

The method by which the network was trained is as
follows: a neural network of 20-18-20 structure (20
inputs/outputs, and a single hidden layer) was created and
trained as an autoencoder. The training data was generated as
described above, and a “sliding window” of 20 data points at
a time was taken from that data set to be used as a training
pattern. That is to say, given a data set {x;} consisting of the
colored noise, the i* training pattern would be the sequence
{X20(-1» X20(-1y+15--- X2o)}. Roughly 20,000 training patterns
were generated in such a manner, and the network was
trained until a sufficient level of convergence was reached.

2) Testing of the novelty detector: The initial test of the
neural network was as follows: a new sequence of noise {g;}
was created in the same manner as before (i.e., with the same
three parameters). This sequence was run through the
novelty detector using the same method used in training. If
correctly working, the novelty detector should reduce those
differenced sequences to a very low level. Figure 4 shows
the results of such a test, and very clearly the novelty detector
is working as expected. The original input sequence is shown
for comparison. - Following that, Gaussian-shaped pulses of
varying sizes were additively added into another noise
sequence, and the entire resulting data set was run through
the detector. The results from this can be seen in Figure 5.
Again, the novelty detector works remarkably well. The
background noise has been dramatically reduced, while the
novelty of the Gaussian pulses is brought out very
prominently.

Fearing that the detector was working simply as a
thresholding mechanism (that is, merely passing anything
relatively large, while eliminating all small variations), a
smaller signal was added to the “normal” noise sequence.
Specifically, a sinusoid of amplitude well within the dynamic
range of the “normal” system behavior was introduced into
the “system.” Very clearly, while the resultant has no

2880



% deviation of inpat variance from testing-level

Figure 7: Sensitivity of novelty detector to changes in both
mean and variance. Note minimum at operating points of
both parameters.

novelties visible to the unaided eye, the novelty detector does
an excellent job of reducing the background noise and
enhancing the presence of the weak sinusoid. This effect can
be seen in Figure 6.

3) Sensitivity and implicit learning: At this point, an
investigation into the underlying behavior of the novelty
detector became warranted. Specifically, it would be useful
to determine what sorts of modifications are needed on the
input to contribute to novelty. Given that we have three
distinct control parameters of the noise as mentioned above, it
is instructive to see how the novelty detector reacts to
systematic changes in those parameters.

To accomplish this, new noise sequences were generated in
the same manner, with two distinct parameters adjusted
simultaneously. The mean was adjusted simply by adding or
subtracting a constant from the entire sequence (the training-
level of that parameter was at p = 0). The variance was
adjusted by scaling the sequence approprately, while
conserving the mean (initially, 6 = 1). The bandwidth
parameter was a bit more complicated to adjust. Initially,
given a normalized bandwidth of {0,1], a center-frequency of
0.45 was set, and the band [0.3,0.6] was set as the pass-band
of the colored noise. To adjust this, the center frequency was
maintained at 0.45 while the width of the passband was
adjusted symmetrically around that central value.

Since, for this particular novelty detector, the level of
novelty is determined by the deviation about zero of the
output signal, the variance of each length-20 section is a good
measure of that novelty. Wanting some consistent measure
of the ability of the novelty detector to remove the “normal”
portion of the behavior, a good sensitivity measure is
var(m(1))/var(x(t)). Thus, we are able to investigate changes
on the output with respect to changes in the input. If the
input to the system is very similar to the normal operation of

0-7803-7278-6/02/$10.00 ©2002 IEEE

A5 0

Figure 8: Sensitivity o changes in mean versus
changes in bandwidth. Minimum as expected. -

Figure 9: Senrsitivity to changes in variance versus
changes in bandwidth.

that system, then the output of the novelty detector will be
very close to zero. However, as the input deviates from
normal operation, clearly that value will rise. Therefore,
theory would indicate that the sensitivity should hit a local
minimum around some operating point. The average result of
such a calculation over a number of realizations for the same
set of parameters was obtained to increase accuracy.

Using the methods described above, an investigation into
the variance of two simultaneous parameter adjustments was
performed. Given the expectations outlined above, we
anticipate some sort of bowl-like form, with the shallowest
point occurring around the operating point. Figures 7, 8, and
9 show these plots for changes in p and o, B and p, and § and
o, respectively. Here, we see what we have predicted; the
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Figure 1Q the novelty measure described in (1) applied b the
netvark server utility data. The top plot represents the novelty for
the correspording “hump” (a single day) on the bottom plot.

minima of the plots all occur around the operating points of
their respective parameters.

The most remarkable aspect of these sensitivity plots is
that the novelty detector has, in effect, implicitly learned the
salient features of the underlying system behavior. At no
time in the training were the specific values of B, p, or ¢
revealed explicitly to the process; in fact, the detector was, in
a sense, completely oblivious to their existence. Rather, the
autoencoder learned the parameters independently of any
outside manipulation or influence.

B. Network Hub CPU Usage Data

1) Description of data: In an effort to apply the concepts
of novelty detection described herein to a real-world situation
and in order to better determine the robustness of these
methods, some raw data was obtained. On a particular
network server, a measure of the average CPU utility over a
period of 15 minutes is taken every quarter hour, for a total of
96 data points per day, from Monday through Friday. This
data was collected over a period of roughly 10 weeks. It is
desired to determine when, over a given period of time, the
performance of the machine falls out of some “normal” mode
of operation. To expand the base data set, the entire data set
is divided into four separate sets, such that the first set
represents the first data point of each hour, the second set the
second data point of each hour, etc. Then, each 24-hour
period (measured between successive 12:00 am data points)
is treated as a single 24-dimensional data point.  Thus, we
are limited in this line of investigation to determining the
novelty over an entire day rather than at any given instant.

2) Convex combinations of insufficient training data: It
became evident, especially in the early stages of this line of
research, that the data set provided was insufficient to fully
characterize the signal space [8]. Thus, a method for
generating more data points was needed. One option is
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simply employing jitter — that is, adding random noise to
existing data points [9]. This method, however, proved to be
insufficient in satisfactorily filling out the space. However,
under the assumption that the space is convex, we can, as
described above, generate many convex combinations of the
given data set to completely fill out the convex hull with
(hopefully) valid training data.

3) Results: The bottom of Figure 10 shows that there are
clearly some days (each “hump” is essentially an entire day
from midnight-to-midnight) that fall into a noticeable pattern,
while some distinctly fall out of that range, either above or
below it. The data was then segregated into “good” and
“novel” data sets simply through heuristic eyeballing of each
24-hour period. The majority of the “good” data points are
used for training data, while the remainder is used for testing.
A large number of convex combinations (with additive-noise
smoothing) are generated to fill the convex hull of the data
set. This expanded data set is then used to train an
autoencoder, which is in turn used to construct the novelty
detector. The autoencoder had of course 24 inputs and
outputs, with 3 hidden layers in a 20-16-20 structure.

After creating the novelty detector, some measure of
novelty is required. Since we have 4 data points per hour, we
can easily split each day up into 4 vectors, each of which can
be run through the detector. These sequences can then be
recombined to form a 96-point-long sequence. Using this
recombination, the following metric is used:

24 4
OEDINI IS M
i=l j=1
where £ is the day over which the novelty is measured, i is the
hour, and j is the quarter of the hour, resulting in 1, the daily
measure of novelty. One can further set some arbitrary
threshold value, such that any novelty measured above it is
flagged “novel,” and anything below, “normal”. ‘

Using the metric for novelty described in (1), the entire set
of network data was run through the detector. Figure 10
shows partial results, displaying the original data along with
the measure of novelty for each day. Note that the novelty
detector picks out days that fall both above and below the
“nominal” operating levels. Compare, for example, the
results for days 13 and 21. Both had an equivalently high
level of novelty; but looking at the corresponding actual data
for those days, 13 seems to be well above the nominal level
of behavior, and 21 is clearly well below that level. This is
not to say that the detector acts simply as a thresholding
mechanism; observe that days 1 and 3 appear to be within the
dynamic range of “normal” system behavior; however, they
both register some level of novelty.

At this point, some further investigation into the sensitivity
of the detector to various parameters is needed. The most
obvious (and easily adjustable) parameters for this
configuration are relative amplitude and convexity. For the
amplitude case, random “good” vectors are chosen, and tested
using the detector, after being multiplied by a range of scalar
multiples. This is repeated over a large number of random
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Figure 11: Sensitivity of server-load novelty detector o
changes in amplitude. x-axis & the scalar multiplier of
the input vector. Note the minimumat 1.

choices of input, and averaged. Figure 11 shows the resultant
sensitivity curve. Once again we see the minimum directly at
the operating point of the network (a multiplier of unity).
The “sensitivity to convexity” follows in such a manner:
since the network was trained on a large number of convex
combinations of the input vectors, any convex combination of
two input vectors should lie within the operating region of the
novelty detector. Thus, any combination of two vectors
Ax+H(1-L)x,, with A€[0,1], should result in a minimum on the
graph. When A deviates outside of the [0,1] range, we should
see an increase in the level of novelty. Figure 12 clearly
demonstrates this exact behavior. Note that this curve is
generated by taking a very large number of pairs (around
500), performing the sensitivity analysis on each pair, and
averaging the results together.

Again, we see, to a stunning degree, the level of implicit
learning being performed by the novelty detector. At no time
was a specific level of amplitude, or even the concept of
convexity, introduced as an explicit parameter during the
training phase of the novelty detector. And yet, again, we see
that the autoencoder clearly “knows” about these parameters,
in the sense that it rejects things falling outside of an
acceptable range. This is a remarkable property of this
method of novelty detection.

Y. CONCLUSION

Clearly, a neural networks approach to novelty assessment
has a great deal of potential. Using an autoencoder to learn
the underlying nominal behavior of a system is an effective
method by which one may construct a novelty detector, and
such learning has more substance than a simple memorization
or table look-up process. This is evident in the implicit
manner in which the detector can learn underlying system
behavior, demonstrated most clearly in the sensitivity
analysis described herein.
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