
Inversion of Feedforward Neural Networks:
Algorithms and Applications

CRAIG A. JENSEN, RUSSELL D. REED, ROBERT J. MARKS, II,FELLOW, IEEE,

MOHAMED A. EL-SHARKAWI, FELLOW, IEEE, JAE-BYUNG JUNG,
ROBERT T. MIYAMOTO, GREGORY M. ANDERSON,AND CHRISTIAN J. EGGEN

Invited Paper

Feedforward layered perceptron neural networks seek to capture
a system mapping inferred by training data. A properly trained
neural network is not only capable of mimicking the process re-
sponsible for generating the training data, but the inverse process
as well. Neural network inversion procedures seek to find one or
more input values that produce a desired output response for a fixed
set of synaptic weights. There are many methods for performing
neural network inversion. Multi-element evolutionary inversion
procedures are capable of finding numerous inversion points si-
multaneously. Constrained neural network inversion requires that
the inversion solution belong to one or more specified constraint
sets. In many cases, iterating between the neural network inversion
solution and the constraint set can successfully solve constrained
inversion problems. This paper surveys existing methodologies for
neural network inversion, which is illustrated by its use as a tool in
query-based learning, sonar performance analysis, power system
security assessment, control, and generation of codebook vectors.

Keywords—Adaptive sonar, constrainted inversion, feedforward
neural networks, multilayer perceptron, nonlinear system inver-
sion, power system security assessment, query-based learning.

I. INTRODUCTION

For a given set of training data and through proper
training, a feedforward layered perceptron neural network
is ideally able to synthesize a mapping akin to the process
that is responsible for generating the training data. The
performance of a trained feedforward perceptron neural
network can be characterized by

(1)

where is the th neural network output corresponding to
a vector input vector, is a vector of the weights internal

Manuscript received March 30, 1998; revised May 7, 1999. This work
was supported by the Office of Naval Research (ONR), the National
Science Foundation (NSF), and the Electric Power Research Institute
(EPRI).

C. A. Jensen, R. D. Reed, R. J. Marks, II, M. A. El-Sharkawi, and
J.-B. Jung are with the Department of Electrical Engineering, University
of Washington, Seattle, WA 98195 USA.

R. T. Miyamoto, G. M. Anderson, and C. J. Eggen are with the Applied
Physics Laboratory, University of Washington, Seattle, WA 98105 USA.

Publisher Item Identifier S 0018-9219(99)06911-X.

to the network, and is a memoryless function de-
scribing the mapping from the input to theth output. The
structure of the feedforward perceptron (i.e., the number of
hidden neurons and the neuron connections, or weights)
is imbedded in . The neural network is trained by
fixing the input and output and adjusting the weights until
an acceptable performance is achieved. If a single scalar
output is assumed, can be replaced by and by

in (1).
Inversion of a neural network consists of clamping the

weights and the neural network output while adjusting the
input in (1) until an equality or a best possible fit occurs
for one or more values of. In the analysis to follow,
the weights of the neural network are assumed fixed. The
dependence of the output on will therefore be assumed
implicitly in the notation .

In general, as illustrated in Fig. 1 for two inputs,and
, () and one output, , numerous different

inputs can generate the same output. Each contour of the
plot in Fig. 1 corresponds to for a different
constant . Inversion is generally not unique when the input
dimension is greater than the output dimension. It consists,
rather, for a given, of finding one or more elements of the
set of inputs on a contour (or a set of disjoint contours)
where

(2)

Depending on the application, feedforward neural network
inversion focuses on finding: 1) any solution point in;
2) a point or points in obeying one or more externally
imposed constraints; or 3) a number of evenly dispersed
points in .

II. I NVERSION TECHNIQUES

A common formulation of the inversion problem is to
establish an objective function, e.g.,

(3)

0018–9219/99$10.00 1999 IEEE

1536 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Fig. 1. The inversion of a neural network typically has numerous
solutions. Each of the input ordered pairs lying on a given contour
generate the same neural network output. The contours can be
disjoint.

and then to search for, or a subset thereof, that minimizes
the error for a specified. The number of points needed
from the set is application dependent. Neural network
inversion algorithms can be placed into three broad classes:

1) exhaustive search;
2) single-element search methods [2]–[4];
3) multicomponent (i.e., population-based) evolutionary

methods that operate on a plurality of potential solu-
tions [5], [6].

In choosing among inversion techniques, exhaustive search1

should be considered when both the dimensionality of the
input and allowable range of each input variable is low.
The simplicity of the approach coupled with the swiftness
in which a layered perceptron can be executed in the
feedforward mode make this approach ever more attractive
as computational speed increases. In single-element search,
one search point explores the landscapedefined for fixed

as a function of . An example is a gradient-based
method similar to the gradient descent error backpropaga-
tion learning algorithm [2]. Only one point onis found for
each search and is typically dependent on the initialization.
Multicomponent evolutionary methods, on the other hand,
seek to minimize the objective function using numerous
search points in turn resulting in numerous solutions on or
close to .

A. Single-Element Search

1) Williams, Linden, and Kinderman (WLK) Inversion:
The notion of single-element network inversion via the
gradient approach was first proposed by Williams [2] and
later by Linden and Kinderman [3]. These methods make
use of standard error backpropagation optimization. The
search is initialized with an input vector. If is the th
component of the vector , then gradient descent suggests

1When the neural network input space isRn, exhaustive search is not
possible. In such cases, the input space is typically sampled at a predefined
interval over which exhaustive search can be performed.

the recursion

(4)

where is the step size and is the iteration index.
Familiar alterations can be made to the recursion (e.g., use
of momentum and scheduling step sizes) to improve both
the rate of convergence and the final error level [7].

Assuming a general feedforward topology, the iteration
for inversion in (4) can be solved as follows,

where, for any neuron

(5)

and

the sets of input, hidden, and output neurons,
respectively;
the weight value from neuron to neuron ;
the derivative of the th neuron squashing
function;
the activation of the th neuron;
the desired output of theth neuron.

Note the neuron derivatives, , in (5) must be solved in a
backward order from output to input similar to the standard
backpropagation algorithm. The absence of feedback is the
only assumption made regarding the neuron connections in
(5).

Example 1—Sonar Performance Analysis:A useful appli-
cation of WLK inversion is analysis of sonar performance
under various environmental conditions. The scenario is
shown in Fig. 2. A surface ship controls the depth to which
a sonar unit is submerged. The surveillance area assigned
to the sonar is shown in Fig. 2 as a shaded region. For
analysis, the surveillance area is divided into pixels. For
each pixel, the signal to interference ratio (SIR) delivered
by the sonar can be computed using computationally inten-
sive software emulating acoustic propagation. The SIR at
each pixel is a function of a number of parameters including
sonar depth, wind speed (surface roughness), bottom type,
and sound velocity as a function of depth. An identified
target area, shown by a black square in Fig. 2, can consist
of one or more pixels. The inverse problem is to determine
a set or subset of input parameters that will yield a high
SIR in the target area.

A neural network approach to this problem is illustrated
in Fig. 3. A neural network is trained to generate SIR pixel
values as a function of sonar and environmental parameters.
Once trained, the inverted neural network can provide
input parameters to generate desired SIR performance in a
specified target region. In Fig. 3, the sonar parameters are
assumed fixed and are therefore clamped to specific values.
The target portion of the surveillance region specifies
a subset of output pixels. The remaining pixels in the
surveillance region are in a “don’t care” category and are
allowed to float in the inversion process to arbitrary values
typically constrained to lie within a specified range. WLK

JENSENet al.: INVERSION OF FEEDFORWARD NEURAL NETWORKS 1537

Fig. 2. An illustration of the sonar performance analysis problem. A neural network is trained to
evaluate the signal to interference ratio (SIR) at each pixel in the surveillance area as a function
of environmental and sonar parameters.

(a) (b)

Fig. 3. (a) A feedforward neural network is trained on data generated by computationally intensive
emulation software. The output SIR is a function of both environmental and sonar parameters. (b)
For fixed SIR’s in a specified target region and for designated sonar parameters, the neural network
is being inverted to determine corresponding environmental parameters. The neural network output
corresponding to pixels not contained in the target region are allowed to float, i.e., take on arbitrary
values.

inversion of the neural net in Fig. 3 is performed on the
environmental input parameters. The result indicates an
environment in which the clamped sonar parameters work
best. Alternately, the net can be inverted to specify the best
sonar settings for a fixed set of environmental parameters.
In this case, only a single point on is needed because
any solution that maximizes the sonar performance in the
target region is acceptable.

In practice, for a given target region, the exact SIR values
to invert are unknown. Rather, the maximum deliverable
SIR is desired. This can be achieved by clamping the neural
network pixel outputs in the target region to a value that
exceeds the maximum achievable SIR ratio as determined
by the training data. In such a case, the objective function

cannot reach zero. The minimum value reached by the
error function, however, corresponds to selected values of

that produce the maximum SIR in the target region.
Using data generated by the sonar simulation software, a

neural network consisting of five inputs, three hidden layers

of 15, 10, and 30 neurons, respectively, and 390 outputs
were trained. Five inputs are supplied, of which four are
environmental parameters (wind speed, bottom type, and
two samples of sound speed at different depths) and one
is the sonar depth. There are 390 outputs, corresponding
to a grid of 13 depth pixels by 30 range pixels covering,
respectively, a surveillance range of 180 m by 6 km. During
training, the data input for each pixel is normalized to
give a value of one for the maximum training pixel value
and a zero for the minimum. For inversion, the depth
input and bottom type (sand) were clamped and the three
remaining environmental parameters were evaluated from
the inversions. The surveillance area was tiled with 2
2 nonoverlapping target pixel regions (except the final
row because the 13 pixel depth is not divisible by 2).
Inversions were performed sequentially for each 22
pixel target. Each target pixel was clamped to a value of
1.0, corresponding to the normalized maximum achievable
value. Plots of the inverted SIR and absolute error between

1538 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

(a) (b)

Fig. 4. Inversion performance of a neural network trained to calculate the acoustic SIR as a function
of environmental and sonar parameters. The inversion is performed on a neural network trained such
that all training data are normalized to fit inside a unit box, i.e., the pixel data were normalized to one
for the maximum pixel value input and zero for the minimum. The inversion for the unnormalized
training and the resulting error are shown in (a). The corresponding normalized plots are shown in (b).

the model-generated target and the inverted SIR are shown
in Fig. 4.

An alternate approach to this problem is replacement
of the trained feedforward neural network in Fig. 3 with
the Applied Physics Laboratory (APL) sonar simulation.
The software’s slow execution time, however, renders this
approach ineffective. The speed at which neural network
inversion is performed and, as is illustrated in Fig. 4,
the observed accuracy are distinct advantages of neural
inversion approach to this problem.

2) Nearest Inversion—Finding the Inverse Solution Lying
Nearest to a Specified Point:Nearest inversion [22] is a
single-element search method that addresses the following
problem. Given a function , a target output level ,
and an initial base point , find the point that satisfies

and is closest to in some sense. The Euclidean
distance is used in the analysis and applications to follow. In
applications, the base point might represent the operating
point of a controlled system and the solutioncould be
the nearest point achieving a desired operating performance
or a danger point to be avoided. An example application of
nearest inversion to power security assessment is offered
in Section III.

Nearest inversion is a constrained optimization problem.
One method to find a solution is outlined below. To simplify

the description, define “inside” and “outside” as
inside the surface and outside. Assume the base
point is inside the surface, . If it is not, use the
function instead.

The basic idea is to generate random pointsaround
and:

1) for points outside the surface, use interval halving or
a similar scheme to locate the surface;

2) for points inside the surface, , follow the
gradient down to the surface;

3) once the points reach the surface, perform constrained
gradient descent to minimize the distance ,
i.e., move toward while staying on the surface.

The initial points sample a region of interest that contains
both and some part of the boundary. Steps 1) and 2)
move the candidate points onto the surface and step 3) then
moves the points along the surface toward.

a) Generation of initial candidates:Initial search points
are generated by adding Gaussian noise towith the
variance adjusted dynamically so that approximately half
of the initial points fall on either side of the boundary. The
goal is to produce points both nearand near the boundary
surface. By requiring that a significant fraction of the initial

JENSENet al.: INVERSION OF FEEDFORWARD NEURAL NETWORKS 1539

Fig. 5. Nearest inversion seeks to find the pointi� on the
manifold f(i) = c closest to a base pointi0. In this figure, the
point ix is a local minimum solution to be avoided.

points lie on either side of the boundary, we ensure that the
search diameter is at least as large as the distance from
to the boundary. If enough initial candidates are generated
in this region, there is a reasonable chance of avoiding
potential local minima such as is illustrated in Fig. 5. When

is near the surface, will be small and remote points
in irrelevant regions will be ignored. Similarly, when is
far from the surface, will be larger and a larger area
will be searched.

Ideally, a significant fraction of the initial points should
lie on both sides of the surface. This, however, may
not be attainable because, with curved surfaces in high-
dimensional spaces, a spherical noise distribution is un-
likely to yield equal numbers of points on both sides of
the boundary. Sometimes most of the input space is either
inside or outside the surface. In such cases, candidates on
the same side as can be found by making sufficiently
small. Finding points on opposite sides may be difficult,
however, unless is much larger than the distance from

to the surface.
A running tally is kept of the number of points on either

side of the surface and is adjusted as new candidates
are generated. Since the input is usually normalized,
can be initialized to 0.1. If none of the candidates lies on
the opposite side, the initial search scale is too small and
none of the candidates is near the surface, i.e.,is too
small and should be increased. If most candidates fall on the
opposite side, then is too large and should be reduced.

The number of required candidate points depends
on the dimension of the space and the complexity of the
boundary surface. More points improve the probability of
finding the true nearest point at the expense of increasing
computation time. If is too small, the algorithm does
not see enough of the function and may return a poor
result if the surface has local minima. The search time
might also be unnecessarily slow in the constrained
gradient following phase.

b) Moving the points to the surface:The next step is to
move candidate points to the boundary contour. There are
two cases depending on if lies inside or outside the
surface.

1) Points Inside the Surface:If candidate point is inside
the surface (), then follow the negative gra-

Fig. 6. The tangent vector. The vectorv = r � (rTn)n is the
component of the vectori0�i tangent to the surfacei. Infinitesimal
movement alongv minimizes the distancei0 � i subject to the
constraintf(i) = c.

dient down to the boundary. In many cases, a simple
gradient descent procedure with an adaptive step size
is adequate. If is smooth and local minima are
not a problem, more efficient methods may be used.
If the gradient exists but is not available, less efficient
evaluation-only gradient-following methods can be
used.

2) Points Outside the Surface:If the candidate point
is outside the surface, the boundary contour must lie
between and and the problem is one of finding a
zero of along the line from to . There
are standard routines for this which can be very
efficient if is smooth. Our implementation uses
interval-halving methods as a compromise between
robustness and efficiency. Although first- and second-
order interpolation methods may be faster when
is approximately linear or quadratic betweenand

, they are inefficient when approaches a step
function as is common in neural network classifiers.

c) Minimizing the distance to0: Once the candidate
point is effectively on the surface, where is
a tolerance parameter, the next step is to move it along the
surface to reduce the distance . This is a constrained
minimization problem: minimize subject to

.
A gradient descent method to minimize this is described

below (see Fig. 6). Let be the unit vector normal to the
boundary surface, i.e., the gradient ofwith respect to ,
normalized to unit length. The vector points
from to and has a component of length normal
to the surface. Removal of this normal component yields
the tangent vector . When is at a local
minimum of the distance function, vanishes becauseis
parallel to .

Ideally, infinitesimal movement along reduces the
distance to while staying on the boundary surface. For

1540 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Fig. 7. If vTn < 0, the surface normal (into the surface) points
in a direction opposed to the vector fromi to i0. In this case,
i is considered to be outside the surface and a zero-finding step
is performed to move across the “valley” to the section of the
surface nearer toi0.

noninfinitesimal step sizes and highly curved surfaces, a
step along may fall out of the tolerance region,

, and it may be necessary to move the point back
onto the boundary.

d) Other cases:Occasionally the case illustrated in
Fig. 7 may arise. If , the surface normal (pointing
“into” the surface) points in a direction opposed to the
vector from to . In this case, is considered to be outside
the surface and a zero-finding step is done to move across
the “valley” to the section of the surface nearer to.

B. Evolutionary Methods

Multicomponent population-based evolutionary algo-
rithms [8]–[11] use numerous points to search for the
contour set . As the algorithms progress, new points are
generated to replace existing points in such a way as to
explore the landscape. Multicomponent search methods
are typically more computationally demanding than single-
component methods but offer the advantages of being less
sensitive to both local minima and initial conditions.

1) Genetic Algorithms:Eberhart and Dobbins [5] were
the first to suggest an evolutionary approach for the in-
version of a trained feedforward perceptron with hidden
nodes. They applied a standard genetic algorithm [11]
for neural network inversion. The basic operations of the
genetic algorithm on the search points are: 1) selection
based on fitness; 2) recombination of genetic material based
on crossover; and 3) mutation. When applied to neural
network inversion, each network input search point was
encoded as a single bit string. A fitness function, such as

(6)

where is a positive constant, returns a fitness score
based on the quality of each search element. There is no
provision in the basic genetic algorithm, however, to assure
the solution points are evenly dispersed on.

2) Boundary Marking—An Evolutionary Algorithm for In-
version: Reed and Marks [6] proposed an evolutionary
algorithm for neural network inversion that seeks to evenly
distribute points on the manifold described by .
The selection process allows only the fittest individuals to

Fig. 8. Repelling crowded search points. The vectorij is moved
away from its crowding nearest neighbor,ik, perpendicular to the
gradient atij .

have a chance of producing offspring and only a subset of
the population is replaced during each generation. A step is
added whereby the most crowded points are moved apart
to help spread them evenly across the inversion manifold.
Convergence is illustrated in Fig. 8. The algorithm, dubbed
boundary marking, is governed by two basic goals.

1) The points should lie on the surface .
2) The points should be evenly distributed over the

manifold surface.

The first goal is achieved by periodically eliminating points
that are distant from the inversion contour. The second goal
is achieved by generating point replacements using pertur-
bations of the least crowded remaining search elements.
The second step discourages reproduction in regions that
are already crowded with search elements and encourages
exploration of sparsely populated regions close to the
contour.

After randomly generating points in the input search
space of interest, the algorithm iterates as follows.

1) Evaluation:Sort the points by their errors.
2) Selection:Delete the search points with the largest

errors.
3) Repopulation: Generate a replacement for each

deleted point.

a) Sort the remaining points in order of , their
average distance to their nearest neighbors.
A common distance measure is the Euclidean
distance but, in general, any distance metric may
be used.

b) Select a parent from the least-crowded points.
Random selection from the first points in
the sort order is typical.

c) Generate the new point in the input space,
where is a random vector

[e.g., zero mean independently, identically,
distributed (i.i.d.) Gaussian random numbers
with variance]. During the initial stages,
is chosen to be sufficiently large to explore the
search space. In later stages,may be decreased
to focus the search.

4) Repelling Crowded Points:

a) For each of the most crowded search points (e.g.,
), calculate a vector away from its nearest

JENSENet al.: INVERSION OF FEEDFORWARD NEURAL NETWORKS 1541

Fig. 9. Illustration of various stages of the evolutionary boundary
marking in two dimensions. The search points, denoted by hollow
circles, attempt to evenly disperse along the contour. The parame-
ters used in this example areN = 50; M = 3,m = 2; s = 0:01,
and � = 0:05 (from [6]).

neighbor. If is the point, then the vector is

(7)

where is the nearest neighbor of . A unit
gradient vector, , is computed at using

(8)

where the gradient is

(9)

b) The vector is the component of perpendicu-
lar to , . The perturbation imposed
on is

(10)

where is a step size, i.e., the vectoris moved
to . Since the move is perpendicular to
the gradient, we generally expect

(11)

This process is illustrated in Fig. 9.

5) Go to step 1) and repeat until desired convergence.
Various stages of convergence of a two-dimensional
example are shown in Fig. 8.

3) Query-Based Learning:Query learning [1] is a
process whereby a partially trained neural network
is inverted to determine inputs points wherein the
classification is uncertain. These points are then verified via
an oracle that always responds with the correct answer. An
oracle is an expensive source of highly accurate training
data, such as a computationally intensive emulator or a
data gathering field trip.

If the output layer of a feedforward neural network is
passed through a sigmoid nonlinearity, and each output
lies between zero and one. A threshold, e.g., , is
typically applied in binary classification to determine the
classification of the input. The most ambiguous points in
the classification are those that are close to the classification
boundary. The classification boundary is the manifold de-
fined by the locus of input points for which the output is the
threshold . Conversely, those points that are far removed
from the boundary tend to be classified more accurately.
Therefore, in the absence of pronounced jitter [13], the
addition of training points that lie close to the classification
boundary results in the greatest potential improvement in
classification accuracy. Boundary marking is a technique
whereby evenly spaced boundary points can be generated
for eventual presentation to the oracle.

Query-based learning has been applied to a number of
applications, include cytology screening [16], [17], power
system security assessment [18]–[20], and classification of
incomplete data [23].

Example 2—Query-Based Learning Applied to Power Sys-
tem Security Assessment:An application of neural network
query learning using boundary marking is in the field of
power system security assessment. This deals with the abil-
ity of a large-scale electric power system to deliver a contin-
uous uninterrupted supply of electric energy to consumers.
An interruption in the supply of electric energy can have
serious detrimental effects on consumers ranging from the
loss of basic living requirements such as heating and light-
ing for residential customers, to the loss of entire production
runs for industrial customers. The goal of power system
security assessment is to determine if an electric power
system will be able to continue to deliver energy following
a contingency, which is defined as a disturbance to the
system and can range from a sudden large change in system
load to a short circuit on a high-voltage transmission line.

The equation of motion of the rotor of a synchronous
generator connected to an electric power system is given
by

(12)

which is commonly referred to as the swing equation and
represents the movement of the rotor angleduring a
disturbance. The defining variables are:

inertia constant;
initial angular velocity of the rotor;
angular position of the rotor with respect to a
rotating reference;
electromagnetic torque;
mechanical torque;
damping coefficient.

A contingency causes a sudden change in the electri-
cal characteristics of the system, which in turn causes a
disturbance to the electromechanical torque on the shafts
of nearby generators. The disturbance causes the system

1542 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Fig. 10. The power system security boundary predicted by the neural network before and after
query learning compared to the actual security boundary determined by the simulation software.
Initially, the rms error between the security boundary defined by the neural network and the
simulator was 48.53, query learning improved the accuracy of the neural network and reduced
this error to 10.11. The axes of this figure represent the power output of the generators on buses
73 and 76, respectively.

to enter a transient period where one or more genera-
tors experience oscillations. The oscillations will either
increase or decrease depending on the initial conditions
and the damping of the system. If the oscillations are
not sufficiently damped, one or more machines will be
disconnected by their protection systems, resulting in a
further disturbance to the system. This is called a cascading
outage and may lead to a breach in system security such
as a blackout.

Neural networks have shown promise in the fast screen-
ing and detection of operating conditions that may lead to
blackouts [19], [20]. In these applications, neural networks
are trained to classify a power system as secure or insecure
based on a set of features of the prefault system such
as transmission line flows, generation settings, or system
voltage levels. The neural networks are then used during
the everyday operation of the system to assess the security
status of the system.

The system studied is based on the IEEE 17-generator
transient stability test system [22]. It consists of 17 genera-
tors and 162 buses. Classical machine data are available
for each of the 17 generators. The data consist of the
rotor inertia time constant and transient reactance. The
first swing stability criterion is used to classify the system
stability. The criterion monitors the rotor angle of each
generator during the first oscillation. If any generator angle
loses synchronism with the rest of the system, the system
is said to be unstable. The Extended Transient/Mid-Term
Stability Program (ETMSP) from The Electric Power Re-
search Institute (EPRI) is used to conduct the simulations
[21]. This software can accurately simulate the dynamic
response of very large scale power systems to a number of
contingencies.

The neural network used in this study consists of 12
inputs and a single output. The 12 inputs are the real and
reactive outputs of the five generators that are closest to the
disturbance and the system’s real and reactive load level.
The neural network was then trained with a small set of

training data (100 patterns) followed by application of the
query learning algorithm to refine the accuracy of the neural
network near the classification boundary. The classification
boundary was defined by a neural network output of 0.33
corresponding to a critical clearing time of 0.33 s. Several
different network topologies were experimented with and
the best results were obtained with a single hidden layer
with ten neurons.

Results of the query learning algorithm applied to power
system security assessment are shown in Fig. 10. The
security boundary as defined by the neural network is
plotted in two dimensions and compared with the actual
security boundary that was determined from the simulator.
The experiment involved training two neural networks,
each with 500 patterns. The training data for the first
network was created by randomly perturbing the system
and then determining the corresponding security level by
simulating perturbations. The training data for the sec-
ond neural network was generated via the evolutionary
boundary-marking algorithm explained in Section II-C2.
Specifically, an initial network was trained on 100 patterns
generated from the simulator. Next, the boundary-marking
algorithm was used to evenly spread 400 additional data
on the security boundary as defined by the initial network.
The simulator was then used to determine the true security
margin of these data and the network was retrained. The
average multirun rms error for the neural network trained
via the query learning algorithm was 10.11 compared with
an average of the 48.53 for networks trained without query
learning.

III. ENFORCEMENT OFCONSTRAINTS IN

NEURAL NETWORK INVERSION

Many neural network inversion applications require the
imposition of constraints on the solution. Therefore, the
inversion must not only lie on , but also within a given
constraint region. For this case, we want to find the set of

JENSENet al.: INVERSION OF FEEDFORWARD NEURAL NETWORKS 1543

points

(13)

where is the constraint set. is the intersection of the
set of points obeying the inversion and the constraint set

(14)

During inversion, constraints can be enforced in two ways:

1) internally through modification of the objective or
fitness function;

2) externally through iterative interaction with a con-
straint operation.

Range constraints, for example, can be enforced through
the modification of the objective function or by simply
clipping the search points during the inversion to the desired
constraint region. More complex constraints are typically
enforced through iteration with a constraint function. The
inversion method and the application usually dictate the
choice of the constraint enforcement mechanism.

A. Objective Function Modification
for Single-Element Search

The input layer in most networks does not make use
of a nonlinear activation function, e.g., a sigmoid function.
Therefore, the direct solution of (4) can result in undesirably
large components in the solution vector. Linden and
Kinderman [3] proposed a method to enforce limits on the
input vector during single element inversion such that

. A fictitious input activation function
is inserted in the network input. This function has a limited
output range of . A reasonable choice for
is the modified sigmoid function

(15)

Performing gradient descent in thespace and then trans-
forming the solution back to thespace via (9) guarantees
the inversion will be constrained to the hypercube defined
by .

Linden and Kinderman also introduce the concept of
attractors to neural network inversion. Attractors tend to
pull the inversion toward a desired input pattern. A modified
error function can be written as

(16)

where is the th attractor and is the strength of
the attraction. Setting tends to pull the solution
vector toward zero resulting in an input decay similar to
the standard weight decay [7]. By setting , the
inputs’ activations are pulled toward the binary values of

1 which is useful for inverting to binary inputs. Similar
modifications can be made to minimize or maximize the
input activation level [3], [12]. It should be noted that when
the modified error function (16) is used, the optimization is
being performed in the space and the solutions may no
longer be local minima of .

Fig. 11. The solution to the constrained inversion problem can
be obtained by iteratively inverting the net to find an element in
�, followed by a projection onto the constraint set�. The solution
set ��, shown by a thick line, is the intersection of the set of
allowable inversion points,�, and the constraint set�.

B. Objective Function Modification
for Multi-Element Search

Evolutionary methods offer much flexibility in the en-
forcement of constraints. Typically a penalty term is added
to the fitness function to penalize solutions that violate
the constraints. The penalty term allows the algorithm to
explore regions of the input space that are in violation of
the constraint in the hope of discovering new regions that
provide better solutions. The penalty term also allows the
solution to converge to a compromise between constraint
satisfaction and inversion solution in the event of an empty

.

C. Enforcement of Constraints via Alternating Projections

Constraints can also be imposed on the inversion by
the interaction of the inversion algorithm with a constraint
enforcement procedure. Hwanget al. [14] proposed an
iterative method similar to the alternating projection onto
convex sets algorithm [15] to find a point that is a member
of the intersection of and the input constraint set .
The alternating projection solution is found by iteratively
inverting the network to and then projecting onto the
constraint set . The process is shown for a two-input,
one-output network in Fig. 11.

The algorithm proceeds as follows.

1) Starting with an initial input, use a nearest inversion
single-element search algorithm to find a point on.

2) This point, in general, will not be in the constraint set
. The point is therefore projected onto the constraint

set.2

3) Using the point on the constraint set as initialization,
nearest inversion results in a new point in the set.

4) Return to step 2) and repeat until the desired conver-
gence is attained.

Convergence of the alternating projections procedure to
a point in the intersection is guaranteed if bothand

are convex or, more generally, if the cascading of the
operations in steps 2) and 3) form a composite contractive

2A projection onto a set of points is defined as the point that is closest
to the original point in the mean square sense.

1544 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Fig. 12. When the inverse set� and the constraint set� are both
convex, alternating projections will reach a limit cycle between two
points—each a point in one set that is closest to the other.

operator [15]. Even though convergence cannot generally
be guaranteed, remarkably good results occur often. An
example is given in Section IV.

The above approaches assume that the setis not
empty. In general, if is empty and and are convex
[15], the alternating projections will converge to a point
that does not satisfy the desired objective. The constraint
can then either be relaxed or the suboptimal solution can
be accepted. If the iteration continues to convergence and
is stopped on constraint set, the result is a point in that
lies closest to the inversion set, [15]. This is illustrated
in Fig. 12.

Example 3: Jensenet al. [18] proposed the use of al-
ternating projections using neural network inversion as a
means to identify and track the security boundary for large-
scale electric power systems. More specifically, a neural
network is trained to assess the security of the large-scale
electric power system described in Example 2 based on a
set of 33 prefault features. The features include generator
real and reactive power outputs as well as the total system
load. The security index is based on the concept of critical
clearing time (a measure of the maximum allowable fault
duration for a specific fault). The longer a fault can exist on
the system before instability occurs, the higher the critical
clearing time and, hence, the more stable the system is said
to be.

Constrained neural network inversion is used to locate the
security boundary relative to the current operating state of
the system. Knowledge of the exact location of the security
boundary relative to a given operating configuration is
useful in the everyday operation of the system because it
provides operators with the ability to steer the system away
from insecure regions. In the event of a breach of system
security, knowledge of the exact location of the boundary
can also be used to regain security.

The neural network inversion was performed using the
nearest inversion procedure [25] discussed in Section II-A1.
As shown in Fig. 13, the algorithm begins by projecting a
randomly generated search point onto the security boundary
and then performs a constrained gradient descent on the
security boundary to locate the point that is closest to the
current operating state. Repeated searches were performed
starting from different perturbations of the current operating
point to increase the likelihood of finding the global minima
and to identify the security boundary in several directions.
Electric power flow constraints were enforced by iterating

Fig. 13. The power system security border is identified by per-
forming repeated searches starting from (a) perturbations of the
current operating state. Each search consists of (b) a gradient-based
neural network inversion to locate the security border, followed
by (c) a constrained gradient descent on the security border to
locate the operating point closest to (d) the current power system
operating point.

with an external power flow simulation program. This
ensures that the inversion converges to a feasible power
system operating point that obeys Kirchhoff’s laws.

Jensenet al. [18] conducted an experiment where the con-
strained inversion algorithm is performed on 100 randomly
generated power system operating states. The solution
points verified by the simulation software were found to
be feasible power system operating states. In an attempt to
verify that the inversion found the nearest boundary point,
a local search for a superior3 solution was conducted by
repeatedly adding random noise to the solution points and
simulating the resulting points. In no case was a superior
solution found, thus verifying that the solutions found from
the constrained inversion are locally optimal.

IV. OTHER APPLICATIONS OFNEURAL

NETWORK INVERSION

A. Extraction of Codebook Vectors

For a trained neural network, a codebook vector is
“an input pattern that results in a maximum or nearly
maximum activation value for a given output neurode” [5].
The extraction of codebook vectors is useful for revealing
characteristics of the input space that are important to a
particular output vector, i.e., act as an explanation facility to
aid the user in better understanding why a network reaches
a particular decision.

Eberhart and Dobbins [5] describe an application where
a neural network is trained to perform the diagnosis of
appendicitis. The researchers were interested in which
combinations of input features made up the quintessential

3A superior solution corresponds to a solution that lies closer to the
given search point and satisfies the given constraints.

JENSENet al.: INVERSION OF FEEDFORWARD NEURAL NETWORKS 1545

cases of appendicitis and nonspecific abdominal pain as
well as what cases represent the decision surface.

The neural network used to address the diagnosis problem
consisted of 106 binary input features, some of which
represented the presence or absence of particular symptoms.
Other features were used in combinations to represent fields
of information such as age. The network was trained to
discriminate between appendicitis and nonspecific abdomi-
nal pain. Cases of appendicitis were assigned a binary one
and nonspecific abdominal pain were assigned a zero. The
threshold for appendicitis was determined to be 0.78.

The neural network was then inverted using a genetic-
based inversion algorithm. Several codebook vectors for
each of the above cases were extracted from the trained neu-
ral network by inversion with the output set to appendicitis
(1.0), nonspecific abdominal pain (0.0), and the decision
surface (0.78), respectively. A physician then reviewed the
codebook vectors and found them to be “reasonable and
consistent,” thereby increasing confidence in the networks’
ability to accurately diagnose appendicitis.

In another application, Linden and Kindermann [3]
trained a neural network to classify the handwritten digits
0–9. The digits were coded as 118 bitmaps. The neural
network consisted of 11 8 88 inputs, 20 hidden
units, and ten output units representing the digits 0–9.
The network was trained with 49 sets of the ten digits
for a total of 490 training patterns. Codebook vectors for
each digit were then extracted by inversion using gradient
descent with the output corresponding to the particular digit
of interest. The codebook vectors were then compared to
typical examples of each digit to assess the networks’
generalization.

B. Model Reference Adaptive Control

Hoskinset al. [24] proposed the use of neural network
inversion as a means to find a control input that causes a
plant to respond with desired error perturbation dynamics.
The system consists of several components (see Fig. 14),
the first being a performance model which is a discrete time
representation of the desired closed loop system behavior
in response to the command input, . The second is the
convergence model that determines the desired perturbation
dynamics of the true plant about the output of the perfor-
mance model. The last component is a controller based on
a neural network trained to the nominal forward dynamics
of the system. The neural network model is updated online
via backpropagation learning to adapt to changing plant
dynamics.

The action of the controller follows. The performance
model generates a reference signal and the convergence
model specifies the desired perturbation behavior of the
system. A Lyapunov function is found based on the con-
vergence model. The neural network is then inverted to
find the control input that minimizes the difference between
the predicted and desired values of the Lyapunov function.
This technique has the advantage over existing neural
network-based control methods in that it removes the highly

Fig. 14. Neural network model reference adaptive controller
(NN-MRAC) structure.

nonlinear neural network from the direct feedback path,
thus simplifying analysis [24].

C. Additional Applications

1) Martin and Millan [26] and Beheraet al. [27] use
neural network inversion as an aid in the control of
multilink robot manipulators. A feedforward neural
network is trained to approximate the forward kine-
matics of the manipulator arm. Martin and Millan
[26] invert the trained neural network to produce a
goal vector which specifies the direction the robot
arm should follow to approach a desired position.
Beheraet al. [27] propose a similar control strategy
using an extended Kalman filter-based neural network
inversion scheme.

2) A frequency selective surface (FSS), consisting of
a periodically arranged identical metallic patched or
aperture elements supported by dielectric layers on,
for example, an aircraft’s surface, exhibits varying
electromagnetic wave reflection properties for dif-
ferent incident frequencies. The forward problem of
computing the frequency response of a given FSS
is well understood. The inverse design problem is
to find an FSS for a desired frequency response.
The traditional method of FSS design is a trial-
and-error manual search of a knowledge base until
a surface is found with the desired characteristics.
The process is laborious and tedious. Hwanget al.
[14] use constrained neural network inversion as
a method for automated FSS design. The process
begins with a neural network that has been trained to
learn the one-dimensional (1-D) frequency responses
of various two-dimensional (2-D) FSS’s. Given a
desired frequency response, a constrained inversion
scheme is used to invert the neural network to produce
a FSS with desired characteristics.

3) Neural network inversion is proposed as a means
of controlling the growth of crystals by Ishida and

1546 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Zhan [30]. The crystalline growth process requires a
specific temperature profile throughout the growth.
The temperature is controlled via several electric
heating elements positioned in the growth chamber.
It is desired to predict the required control signal for
each of the heating elements so that the temperature
profile throughout the chamber follows a desired
track. This is accomplished by first learning the
forward problem of predicting the temperature,, at
time given the temperature and the heat supply
rate at time for each of the heaters. The trained
neural network is then inverted with the outputs fixed
to the desired temperature at time to determine
the required heat rate at time .

4) Weijer et al. [32] trained a neural network to learn
the relationship between the physical structure of
polyethylene terephthalate (PET) yarns and their me-
chanical and shrinkage properties. The trained neural
network is inverted to find the physical structure(s)
that correspond to a desired set of shrinkage proper-
ties. The inversion procedure uses a genetic algorithm
approach.

V. CONCLUSIONS

Trained feedforward perceptron neural networks are often
able to capture both the forward and inverse mappings of
the underlying process that generated the training data. The
trained neural network can be inverted using a number
of optimization techniques including single-element and
multi-element (population-based) evolutionary approaches.
Evolutionary techniques, in particular, are useful when a
number of inversion points are desired. Neural network
inversion has proved to be a valuable in tool in numerous
engineering applications.

The best choice of inversion algorithm to use is prob-
lem specific. Single-element inversion is appropriate in
problems where any single inverse solution suffices. For
instance, in the sonar example, any inversion solution that
gives sufficient signal-to-interference ratio is an acceptable
answer. For the problem presented, there is no need to
generate and compare a number of inverse points, therefore,
use of single element inversion is appropriate. A disad-
vantage of single-element methods, besides the possibility
of premature convergence due to local minima, is the
increased difficulty in imposing constraints on the solution.
Although there are specific cases where iteration between
a steepest descent solution and constraint projections are
assured to be stable, the cases are both difficult to prove
and, in our experience, unlikely to occur.

Premature convergence becomes probable when multiple
local minima exist. In such cases, the inversion algorithm
must be restarted from numerous different starting points to
assure the global minimum is detected. Multi-element in-
version is appropriate for problems that: 1) require multiple
solutions; 2) involve numerous local minima; or 3) require
the enforcement of complex constraints. The principal
disadvantage of multi-element inversion methods is, due

to multiple solutions being required each generation, the
comparatively slow solution speed. Inversion to a plurality
of solutions is also possible through repetition of sequential
single element inversions using different initializations. Our
experience is, however, that single-element inversion often
results in several unique basins of attraction where large
regions of initialization result in similar inverse solutions,
while other inverse solutions remain illusive from any
initialization.

While this paper has concentrated on inverting feedfor-
ward perceptron neural networks, the inversion methods
described herein can also be applied directly to memo-
ryless time-invariant (i.e., static) nonlinear functions with
multiple inputs and outputs. For nonlinear systems with
memory, the mapping at any point in time is a function
of prior inputs. Inversion of recurrent neural networks and
similar nonlinear systems with memory is a more ominous
problem—one not yet addressed in the literature. Similarly,
dynamic (i.e., time-variant) nonlinear systems—such as
neural networks with temporally adjusting weights—have
mappings that change with time. Their inversion is likewise
more problematic.

REFERENCES

[1] J. N. Hwang, J. J. Choi, S. Oh, and R. J. Marks, II, “Query based
learning applied to partially trained multilayer perceptrons,”
IEEE Trans. Neural Networks,vol. 2, pp. 131–136, 1991.

[2] R. J. Williams, “Inverting a connectionist network mapping by
backpropagation of error,” inProc. 8th Annu. Conf. Cognitive
Science Society.Hillsdale, NJ: Lawrence Erlbaum, 1986, pp.
859–865.

[3] A. Linden and J. Kindermann, “Inversion of multilayer nets,”
in Proc. Int. Joint Conf. Neural Networks,vol. II, Washington,
DC, 1989, pp. 425–430.

[4] J. N. Hwang, J. J. Choi, S. Oh, and R. J. Marks II, “Classifica-
tion boundaries and gradients of trained multilayer perceptrons,”
in Proc. IEEE Int. Symp. Circuits and Systems,1990, pp.
3256–3259.

[5] R. C. Eberhart and R. W. Dobbins, “Designing neural network
explanation facilities using genetic algorithms,” inProc. Int.
Joint Conf. Neural Networks, vol. II, Singapore, 1991, pp.
1758–1763.

[6] R. D. Reed and R. J. Marks, II, “An evolutionary algorithm
for function inversion and boundary marking,” inProc. IEEE
Int. Conf. Evolutionary Computation (ICEC’95),Perth, Western
Australia, 1995, pp. 794–797.

[7] , Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks. Cambridge, MA: MIT Press, 1999.

[8] D. B. Fogel, Evolutionary Computation: Toward a New Phi-
losophy of Machine Intelligence.Piscataway, NJ: IEEE Press,
1995.

[9] Z. Michalewicz,Genetic Algorithms + Data Structures = Evo-
lution Programs,3rd ed. Berlin, Germany: Springer-Verlag,
1996.

[10] D. B. Fogel, Ed.,Evolutionary Computation: The Fossil Record.
Piscataway, NJ: IEEE Press, 1998.

[11] D. E. Goldberg,Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[12] J. Linderman and A. Linden, “Inversion of neural networks by
gradient descent,”Parallel Comput.,pp. 277–286, 1990.

[13] R. Reed, R. J. Marks II, and S. Oh, “Similarities of error regu-
larization, sigmoid gain scaling, target smoothing and training
with jitter,” IEEE Trans. Neural Networks,vol. 6, pp. 529–538,
May 1995.

[14] J. N. Hwang, C. H. Chan, and R. J. Marks II, “Frequency
selective surface design based on iterative inversion of neural
networks,” in Proc. Int. Joint Conf. Neural Networks (IJCNN
’90), vol. 1, San Diego, CA, 1990, pp. 39–44.

JENSENet al.: INVERSION OF FEEDFORWARD NEURAL NETWORKS 1547

[15] R. J. Marks II, “Alternating projections onto convex sets,” in
Deconvolution of Images and Spectra,P. A. Jansson, Ed. San
Diego, CA: Academic, 1997, pp. 476–501.

[16] D. T. Davis, J. N. Hwang, and J. S. Lee, “Improved network
inversion technique for query learning: Application to auto-
mated cytology screening,” inProc. Computer-Based Medical
Systems: 4th Annu. IEEE Symp.,Baltimore, MD, 1991, pp.
313–320.

[17] D. T. Davis and J. N. Hwang, “Attentional focus training
by boundary region data selection,” inProc. Int. Joint Conf.
Neural Networks, (IJCNN’92),Baltimore, MD, June 1992, pp.
676–681.

[18] C. A. Jensen, R. D. Reed, M. A. El-Sharkawi, and R. J. Marks
II, “Location of operating points on the dynamic security border
using constrained neural network inversion,” inProc. Int. Conf.
Intelligent Systems Applications to Power Systems, (ISAP’97),
Seoul, Korea, July 1997.

[19] M. A. El-Sharkawi and S. S. Huang, “Query-based learning
neural network approach to power system dynamic security
assessment,” inProc. 1993 Int. Symp. Nonlinear Theory and
Its Applications (NOLTA’93),Hawaii, Dec. 1993.

[20] , “Application of query-based learning to power system
static security assessment,” inProc. 2nd Int. Forum on Ap-
plications of Neural Networks to Power Systems (ANNPS’93),
Yokohama, Japan, Apr. 1993, pp. 111–117.

[21] EPRI, “Extended transient midterm stability program: Version
3.0,” Palo Alto, CA, EPRI TR-102004, vol. 1-6, 1993.

[22] IEEE Committee Report, “Transient stability test systems for
direct stability methods,”IEEE Trans. Power Syst.,vol. 7, pp.
37–44, Feb. 1992.

[23] J. N. Hwang and C. J. Wang, “Classification of incomplete
data with missing elements,” in1994 Int. Symp. Artificial
Neural Networks, (ISANN’94),Tainan, Taiwan, Dec. 1994, pp.
471–477.

[24] D. A. Hoskins, J. N. Hwang, and J. Vagners, “Iterative inversion
of neural networks and its application to adaptive control,”IEEE
Trans. Neural Networks,vol. 3, pp. 292–301, Mar. 1992.

[25] R. D. Reed, R. J. Marks, II, C. A. Jensen, and M. A. El-
Sharkawi, “A neural network inversion procedure,” inInt. Joint
Conf. Neural Networks (IJCNN’98),Anchorage, AK, 1998.

[26] P. Martin and J. R. Millan, “Combining reinforcement learning
and differential inverse kinematics for collision-free motion
of multilink manipulators,” in Int. Work-Conf. Artificial and
Natural Neural Networks, (IWANN’97),Lanzarote, Spain, June
1997, pp. 1324–1333.

[27] L. Behera, M. Gopal, and S. Chaudhury, “On adaptive trajectory
tracking of a robot manipulator using inversion of its neural
emulator,” IEEE Trans. Neural Networks,vol. 7, no. 6, Nov.
1996.

[28] K. Yoshitomi, A. Ishimaru, J. N. Hwang, and J. S. Chen,
“Surface roughness determination using spectral correlations of
scattered intensities and an artificial neural network technique,”
IEEE Trans. Antennas Propagat.,vol. 41, pp. 498–502, Apr.
1993.

[29] M. Sase, N. Kinoshita, and Y. Kosugi, “A neural network for
fusing the MR information into PET images to improve spatial
resolution,” inProc. (ICIP’94), vol. 3, Austin, TX, Nov. 1994,
pp. 908–911.

[30] M. Ishida and J. Zhan, “Neural model-predictive control of
distributed parameter crystal growth process,”AICHE J., vol.
41, no. 10, pp. 2333–2336, Nov. 1995.

[31] G. C. Vasconcelos, M. C. Fairhurst, and D. L. Bisset, “Enhanced
reliability of multilayer perceptron networks through controlled
pattern rejection,”Electron. Lett.,vol. 29, no. 3, pp. 261–263,
1993.

[32] A. P. Weijer, C. B. Lucasius, L. Buydens, and G. Kateman,
“Using genetic algorithms for an artificial neural network model
inversion,” Chemometrics Intell. Lab. Syst.,vol. 20, no. 1, pp.
45–55, Aug. 1993.

[33] J. N. Hwang and C. H. Chan, “Iterative constrained inversion
of neural networks and its applications,” inProc. 24th Conf.
Inform. Sci. Syst.,Princeton, NJ, Mar. 1990, pp. 754–759.

[34] J. Takeuchi and Y. Kosugi, “Neural network representation of
finite element method,”Neural Networks,vol. 7, no. 2, pp.
389–395, 1994.

[35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” inParallel Dis-
tributed Processing (PDP): Exploration in the Microstructure of

Cognition. Cambridge, MA: MIT Press, 1986, vol. 1.
[36] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised

learning with a distal teacher,”Cognitive Sci.,vol. 16, pp.
307–354, 1992.

[37] M. I. Jordan, “Constrained supervised learning,”J. Math.
Psych.,vol. 36, pp. 396–425, 1992.

[38] B. L. Lu, H. Kita, and Y. Nishikawa, “Inversion of feedforward
neural networks by a separable programming,” inProc. World
Congr. Neural Networks (Portland),vol. 4, 1993, pp. 415–420.

[39] , “A new method for inverting nonlinear multilayer
feedforward networks,” inProc. Int. Conf. Industrial Elec-
tronics, Control and Instrumentation,Kobe, Japan, 1991, pp.
1349–1354.

Craig A. Jensen received the B.S.E.E. and
M.S.E.E. degrees from the University of North
Dakota, Grand Forks, in 1993 and 1995, respec-
tively, and the Ph.D. degree from the University
of Washington, Seattle, in 1999.

He was employed at Otter Tail Power Com-
pany in Fergus Falls, MN, as an Engineering
Intern in the System Planning and System Engi-
neering Departments. His research interests are
neural networks, computational intelligence, in-
telligent systems applications to power systems,

and computer programming.

Russell D. Reedreceived the B.S. and M.S.
degrees in electrical engineering from Texas
A&M University, College Station, TX, in 1981
and 1986, respectively, and the Ph.D. degree
in electrical engineering from the University of
Washington, Seattle, in June 1995.

In the past, he has served as a Research As-
sistant Professor in the Department of Electrical
Engineering, University of Washington. He is
currently with Bass Software, Longview, TX.
He is a coauthor ofNeural Smithing, Super-

vised Learning in Feedforward Artificial Neural Networks(MIT Press,
1999). His research interests include neural networks, pattern recognition,
machine learning, biologically inspired computational mechanisms, and
artificial intelligence.

Robert J. Marks, II (Fellow, IEEE) is a Pro-
fessor and Graduate Program Coordinator in the
Department of Electrical Engineering, College
of Engineering, University of Washington, Seat-
tle. He is the author of numerous papers and is
coauthor of the bookNeural Smithing: Super-
vised Learning in Feedforward Artificial Neural
Networks(MIT Press, 1999). He currently serves
as the faculty advisor to the University of Wash-
ington’s chapter of Campus Crusade for Christ.
His hobbies include cartooning, song writing,

Gunsmoke, and creating things for his website.
Dr. Marks is a Fellow of the Optical Society of America. He served

as the first President of the IEEE Neural Networks Council. In 1992
he was given the honorary title of Charter President. He served as the
Editor-in-Chief of the IEEE TRANSACTIONS ONNEURAL NETWORKS and as
a Topical Editor for Optical Signal Processing and Image Science for the
Journal of the Optical Society on America A. For more information see:
cialab.ee.washington.edu/Marks.html.

1548 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Mohamed A. El-Sharkawi (Fellow, IEEE) re-
ceived the B.Sc. degree in electrical engineer-
ing in 1971 from the Cairo High Institute of
Technology, Cairo, Egypt, and the M.A.Sc. and
Ph.D. degrees in electrical engineering from
the University of British Columbia, Vancouver,
B.C., Canada, in 1977 and 1980, respectively.

In 1980, he joined the University of Washing-
ton, Seattle, where he is presently a Professor of
Electrical Engineering and the Associate Chair.
He has also served as the Chairman of Graduate

Studies and Research. His major areas of research include intelligent
systems applications, high-performance precision drives, and power elec-
tronics applications to power systems. He has published more than 120
papers and book chapters in these areas and holds five licensed patents:
three on adaptive var controller for distribution systems and two on
adaptive sequential controller for circuit breakers. He is the coeditor of
the IEEE tutorial book on the applications of neural networks to power
systems and author of a forthcoming textbook on electric drives. He has
organized and taught several international tutorials on intelligent systems
applications, power quality, and power systems.

Dr. El-Sharkawi is Founder of the International Conference on the
Application of Neural Networks to Power Systems (ANNPS), cofounder
of the International Conference on Intelligent Systems Applications to
Power (ISAP), a member of the administrative committee of the IEEE
Neural Networks Council representing the Power Engineering Society,
Video Tutorial Chair of the IEEE Continuing Education Committee
and the IEEE Neural Networks Council, Founding Chairman of several
IEEE task forces and working groups and subcommittees (including the
task force on Application of Neural Networks to Power Systems, the
working group on Advanced Control Strategies for dc-type Machines, and
the task force on Intelligent Systems Application to Dynamic Security
Assessment), and cofounder of the IEEE Subcommittee on Intelligent
Systems. He is a current or past member of the editorial board or Associate
Editor of several journals, including IEEE TRANSACTIONS ON NEURAL

NETWORKS, Engineering Intelligent Systems, and theInternational Journal
of Neurocomputing. He was Chairman of the IEEE International Electric
Machines and Drives held in Seattle, WA, in May 1999, and he has
organized and chaired numerous panel and special sessions in IEEE and
other international conferences.

Jae-Byung Jung received the B.S. and
M.S. degrees in electronics engineering from
Hanyang University, Seoul, Korea, in 1993 and
1995, respectively. He is currently working
toward the Ph.D. degree at the University of
Washington, Seattle.

His research interests include neural net-
works, genetic algorithms, fuzzy systems,
and other topics related to computational
intelligence.

Robert T. Miyamoto received the B.A. degree
in mathematics and physics in 1973 from the
University of California, Irvine, and the Ph.C.
degree (Candidate for Ph.D.) in oceanography
in 1976 from the University of Washington,
Seattle.

He joined the Applied Physics Laboratory
of the University of Washington in 1979. He
currently heads the Environmental and Informa-
tion Systems Department at the same university.
His primary area of expertise is interpretation,

analysis, simulation, and prediction of acoustic reverberation in the ocean.
He is also an expert in estuarine dynamics. He has a thorough knowledge
of acoustic models and simulations and a broad understanding of computer
operating systems, data-analysis software, and programming languages.
His projects involve such problems as: environmental effects on the per-
formance of sensors aboard Navy aircraft, surface ships, and submarines;
littoral zone environmental effects on tactical decisions; development and
extension of computer models of midfrequency active sonars, acoustic
and nonacoustic prediction models, and databases; and development of an
algorithm to identify environmental parameters. His other projects include
development of an algorithm to identify fish schools through acoustic
backscatter images and development of an interactive CD-ROM about the
effects of factors such as increased population, pollution, and overfishing
on the Puget Sound environment.

Gregory M. Anderson received the B.S. de-
gree in agriculture, the B.S. degree in applied
mathematics, and the M.S.E.E. degree from the
University of Idaho, Moscow, in 1974, 1975,
and 1980, respectively.

In 1990, he joined the Applied Physics Labo-
ratory of the University of Washington, Seattle,
where he is currently a Senior Electrical Engi-
neer. He has experience in systems engineering,
digital simulation, statistics, optimization, expert
systems, and object-oriented programming. He

is applying these skills to develop technical information and analysis
systems that are easy to use. His current work includes estimating
parameters for ocean environmental models from acoustic reverberation
measurements, constructing a data storage and analysis system for environ-
mental parameters, and developing a CD-ROM-based system for training
firefighters in the handling of hazardous materials.

Christian J. Eggen received the B.S. and M.S.
degrees in physics and the M.S.E.E. degree from
the University of Washington, Seattle, in 1968,
1975, and 1998, respectively.

Since 1977, he has been with the Applied
Physics Laboratory of the University of Wash-
ington, Seattle, where he is currently a Principal
Physicist. He specializes in sonar technology
and simulations. He is an expert in the detection
and classification of high-frequency echoes and
has worked on the Mk 46 and Mk 50 torpedo

projects. He has worked on the application of artificial intelligence, neural
nets, and morphological processing to classification problems and on
surface modeling. His recent degree focused on signal processing and
communications. He has served on numerous Navy technical advisory
teams, including the Target Strength Standardization Committee and the
Mobile Offboard Sonar Technology Committee. He is currently working
on tomography and low-frequency mine-hunting projects.

JENSENet al.: INVERSION OF FEEDFORWARD NEURAL NETWORKS 1549

