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Abstract

A new technique for adaptation of fuzzy membership functions in a fuzzy inference system is
proposed. The technique relies upon the isolation of the specific membership function that con-
tributed to the final dedision, followed by the updating of this function’s parameters using steepest
descent. The error measure used is thus back propagated from output to input, through the min
and max operators used during the inference stage. This is feasible because the operations of min
and max are continuous differentiable functions and therefore can be placed in a chain of partial
derivatives for steepest descent backpropagation adaptation. More interestingly, the partials of min
and max (or any other order statistic, for that matter) act as ‘pointers’ with the result that only
the function that gave rise to the min or max is adapted; the others are not. To illustrate, let
a = max(5,, 5. --,8~n]. Then 3a/38~ = 1 when 3. is the maximum and is otherwise zero. We
apply this property to the fine tuning of membership functions of fuzzy min-max decision processes
and illustrate with an estimation example.

1 Introduction

Fuzzy membership functions chosen for a control or decision process may require adaptation for purposes
of fine tuning or adjustment to stationarity changes in the input data. Use of neural networks to perform
this adaptation has been proposed by Lee et al. [1]. Other techniques proposed can be found in (3], (4], (5]
Our method more closely parallels that proposed by Nomura, Hayashi and Wakami [2]. In their work,
membership functions were parameterized and steepest descent was performed with respect to each
parameter using an error criterion, in order to obtain the set of parameters minimizing the error. To
straightforwardly differentiate the error function with respect to each parameter, they used products
for the fuzzy intersection operation. The output error backpropagated this way, was used to adjust the
fuzzy membership functions.

In this paper, we show that the more conventionally used minimum operation for fuzzy intersection
and maximum operation for fuzzy union can be similarly backpropagated. Unlike the method of Nomura
et al. which updates all fuzzy membership function parameters in each stage, the method proposed herein
tesults only in the adjustment of the fuzzy membership functions that gave rise to the control action
or decision output. Backpropagation of fuzzy min-max rules allows for fine tuning and adaptation of
membership functions using performance data.

2 Differentiation of MIN and MAX Operations

Differentiation of the min or max operations results in a ‘pointer’ that specifies the source of the minimum
or maximum. To illustrate, let

a = max(f,f,---,0N]
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where U(-), a unit step function, is 1 for positive arguments and is zero otherwise. Note that the max
operator in Eq. 1 is continuous and can be diiferentiated as

da

2 = U(Bn -

35, ‘13‘ (Bn = Be)
_ 1 ; if B, is maximum 0
- 0 ; otherwise

Similarly, let
§ = min[y;, 73, ", TM]
M
= Y v [JUlre=1s) (3

=1 (¥ 34

The min function is also continuous and
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_ 1 ; if y4 is minimum (9
- 0 ; otherwise

Indeed, any order statistic operation (e.g the third largest number or, for N odd, the median) can
likewise be differentiated. In each case, the partial derivative points to the number or index that gives
the order statistic result.

3 Fuzzy Min-Max Estimation

To illustrate adjustment of fuzzy membership functions by steepest descent, consider the fuzzy estimation
problem illustrated in Fig. 1. We wish to generate an estimate f(z,z2) of a target function t(z,z;)
using a set of fuzzy IF ... THEN rules. Here we have:

t(z1,z3) = sin(xz,) cos(wz3) : ()

The rule table (Table 1) is generated by partioning the domain of t(z;,z2), {(z1,2z2) | =1 €
[-1,1],z2 € [-1,1]} into 64 (8 x 8) regions and assigning a fuzzy membership function to each re-
gion in accordance to the values of t(zy,z,) in that region. For instance if t(z;, z,) takes on values
close to 1 in certain regions, then the membership function used for those regions of the domain will be
“Positive High” (PH). Initial membership functions for f are thus formed in this way. The values of z,
and z; are fuzzified in a similar manner. The initial membership functions chosen are Gaussian and are
shown in Figure 2 for z,,z3 and f(zy,z2).

To illustrate, consider the fuzzy IF ... THEN rules with a positive medium (PM) consequent. These
are highlighted in Table 1. Reading from left to right from the top of the table, they are:
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IF z, is PZ AND z; is P8
Figure 1: A fuzzy estimation problem: a) 3-D

THEN plot and b) coatour plot, of the signal to be es-
timated: ¢(z;, z3) = sin(xz,) cos(xz3) over the do-
f(21,23) is PM. main {(zlv"'?) l € [-1, 1]112 € ["1, 1]}
Similar rules exist {or the other five categories of f.
z, ) §:§ 1] ¥S ¥Z PZ PS PX PH
z
NE PM | PS ¥S ¥¥ N¥ NS PS PM
NM PE | PYM | M 48 ¥H NM_| PM | pH
NS PE | PM | NX NE §H NM PM | PH
NZ PM | PS ¥S ¥4 NM NS PS PM
PZ EH ¥S PS PM | PM | PsS NS NM
PS EH M PM | P PH PV | NM NH
PH EH ¥4 | PV | PR PH PM | NM NH
PE 1.1 ¥s | PS PM | PM | Ps NS NM

Table 1: Dedsion Table for fuzzy estimation.
Table contents represent the estimated fuzzy
value of the output f for a given choice of
values for z; & z;. Rules with a consequent of
Positive medium (PM) are highlighted.

31 Feedforward Procedure

for purposes of analysis, let the membership functions for the variable z; be denoted by i, i =
1,2,--+ N, those for the variable z; by 44, j = 1,2,--- M, and those for the output variable f by
+ s
b k=1,2,-% K.

For a given output membership function pi, the rules, as shown in Table 1, are of the form:

Ifz,ispi and z3is b, OR Ifz is p} and z,is p7 OR
Then ... fis pb.

X — 473



Let us define a set Sy as follows:
Sy = {l,m | u} and uJ are antecedents of a rule with consequent u3} {8
The familiar operations to arrive at the output are as follows.

1. Perform a pairwise fuzzy intersection (e.g. minimum or outer product) on each of the membership
values of z; and z; in p} and uJ for every rule with consequent u5, forming activation values(:

G = min (i(21), 47 (22)) Y
MESy
2. Collect activation values for like output membership functions and perform a fuzzy union (ey
maximum).
_ E
Wi = l,ﬁ:g.(gm) (8)

3, These values are defuzzified to generate the output estimated value, f(zy,z;), by finding the
centroid of the composite membership function u:

K
> wing U
k=1

o=
o - Bt
where
A = [l ez, (1)
ci %‘i;(-%)—d%f (1) 1

Ay and ¢; are, respectively, the area and centroid of the consequent membership function pf.

Backpropagation Adjustment

Expert heuristics are typically used to specify the membership functions for the input (z,, z2) and output
(f). These functions can be adapted or fine tuned using supervised learning. The steps to adapt the
input membership functions are as follows.

We first form the error function by taking the squared difference between the estimated output f,
and the desired target value ¢

B!
E=5(/ -t} (1

Assume now that we wish to update parameters of a Gaussian membership function that appeas
either in the antecedent or the consequent of a rule. Denote these parameters by mi[q] and the corre
sponding membership function by . In our example, for [ = 1,2, the index i = 1,2,---8 and for [ =},
the index i = 1,2,---6; q =1,2, and:

. z — mi[1])?
yite) = exp (Gl ) (1
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The steepest descent update rule is:

: 9E
mig] <= mi[q] - * Gmilal (18)
We have, for the general case:
dE ar 610).) Py
6m, E (313;, 8;1; dmilq] (%)
This in turn can be written in the following way (see Eqs. 7 and 8):
o8 _oE & ( o (awk oek ) o
i T2 e — = . 17
Fmifd fg(wnégaﬁam Fmifg] (4

)

55; = 8w = (i) (18)
g¢t ;

Ba = gich, — ul (19)

where §(], the Kronecker delta function, is equal to one for zero arguments and is zero otherwise.
Substituting the above two equations in Eq. 17, we obtain:

9f(we) iy | 0 -

IymeSy

It is clear that the two Kronecker delta functions now serve to isolate the membership function whose
parameter is being updated. Other membership functions that are not used in the decision process are
not adapted. Eq. 20 finally simplifies to:

0E _ OE 0f(ui(z;)) ol

—— i — : 21
Gl = 9 own Il s
where
f o Ax Z =1 WpAp(cr = cp)
- = (22)

(szl wpcp)?

In general u! is a function of many parameters milgl, ¢ =1,2,---. For our estimation problem, using
Gaussian membership functions, there are two parameters to adapt. These are the mean (m;j[l]), and
the variance (mj}[2]). We thus have:

@f=fwaﬁm)
omill] ~— "' (m][2))?

‘9#? =P;(3“f“§[1])2
emil2l ~ " (mi2])?

(23)

(24)
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4 Results

We present here results of the application of this technique to the estimation problem discussed in
section 3. Fig. 3 illustrates the input and output membership functions after adaptation and Fig. 4
shows the (much improved) estimation resuit.
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Figure 2: Initial membership functions for a) z;, z; and b) f(z),2:). Here NH = Negative High, NM
= Negative Medium, NS = Negative Small, NZ = Negative Zero, PZ = Pesitive Zero, --
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Figure 3: Final membership functions for a) 3, b) z; and <) f(z),z;). Bere NH = Negative High,
M = Negative Medium, NS = Negative Small, NZ = Negative Zero, PZ = Pesitive Zero, - --

Estmated Signal

Figure 4: Result of fuzzy estimation: a) 3-D plot and b) contour plot, of the estimated signal: f(z,,z;) =
in(rz,) cos(xz;) over the domain {(z,z,) | z, € [-1,1], 2, € (-1, 1]}
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