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1 Introduction

Artificial neural networks have been studied for many years with the
hope of achieving human-like performance in solving certain problems
in speech and image processing. There has been a recent resurgence
in the field of neural networks due to the introduction of new network
topologies, training algorithms and VLSI implementation techniques.
The potential benefits of neural networks such as parallel distributed
processing, high computation rates, fault tolerance, and adaptive capa-
bility have lured researchers from other fields such as controls, robotics,
energy systems to seek neural network solutions to some of their more

difficult problems.

An artificial neural network can be defined as a highly connected ar-
ray of elementary processors or neurons. Algorithms are then crafted
about this architecture. Neurons are linked with interconnects analo-
gous to the biological synapse. This highly connected array of elemen-
tary processors defines the system hardware. Specification of weights

to perform a desired operation can be viewed as the net’s software.
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Commonly used neural networks, such as the layered perceptron, are

said to be trained rather than programmed in the conventional sense.

Computationally, neural networks have the advantage of massive paral-
lelism and are not restricted in speed by the von Neumann bottle neck
characteristic of more conventional computers. Neural networks are
characterized by high parallelism and, in many cases, are significantly
fault tolerant.

At this writing, the layered perceptron is receiving the most attention
as a viable candidate for application to power systems. The layered
perceptron is taught by example, as opposed, for example, to an expert
system, which is taught by rules. The preponderance of data typically
available from the power industry, coupled with the ability of the lay-
ered perceptron to learn significantly nonlinear relationships, reveals
it as a viable candidate in the available plethora of solutions for solv-
ing significant power systems engineering problems. A layered neural

network is illustrated in Figure 1.

Hopfield neural networks have also been proposed for application to
combinatorial search problems in the power industry. In Hopfield nets,

each neuron is connected to every other neuron, as is shown in Figure 2.

In this Chapter, we provide an overview of contemporary research
aimed at application of the artificial neural network to electric power

engineering.

2 A Brief History of Neural Networks

Serious mathematical treatment of neural networks is usually attributed
first to McCulloch and Pitts [35] and, later, Hebb [21]. A flurry of
activity in neural network research in engineering circles burned in the
fifties and early sixties [45, 52]. The end of this phase was marked by
the publication of the negative critique Perceptrons [38]. The spark



Figure 1: A layered neural network. As a layered perceptron, data is
presented at the input and the output. The weights of the interconnects
between the neurons are adjusted as a function of the data thereby

‘training’ the neural network the proper response.
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Figure 2: A homogeneously connected artificial neural network. Such
architectures are used for Hopfield type artificial neural networks. The
state (i.e. the number associated with) each neuron is determined by
the state and interconnect weights of the other neurons. The state
of one neuron may change, thereby changing another, etc., until the
network reaches a steady state.




the exhuberant promotion of neural networks by Hopfield [22, 23] and

some powerful nonlinear extensions of previous work [33].

We cannot, in this brief chapter, do justice to the recent rich history of
artificial neural networks. Besides, it has already been done admirably
elsewhere. The reader is referred specifically to the anthology of An-
derson and Rosenfeld [6] where the development of artificial neural net-
works is presented as a delightful mix of commentary and classic paper
reprints. Extensive bibliographies of the neural network literature are
also available [50, 26].

3 Neural Network Paradigms

There is often a comparison made between artificial neural networks
and their biological counterpart. Indeed, the reference to our circuitry
as ‘neural networks’ is due to the pioneering of the field by scientists
interested in the biological neuron [35, 21). The undisputed success of
biological neural networks remains highly motivating to those involved
in artificial neural network research, not unlike the motivation of the
flying bird was to the Wright brothers.

There is some shared terminology between the artificial and biclogi-
cal neural network. The links between neurons can be referred to as
synapses or, more simply, interconnects. The neurons have also been
referred to as nodes or, more recently, neurodes. Glossaries of terminol-
ogy can be found in Eberhart and Dobbins [15] and Dayhoff [13].

3.1 Lateral Inhibition

Lateral inhibition describes the competition between a number of neu-
rons for dominance. Roughly, as in capatalism, each neuron tries to
turn off the other neurons while reinforcing itsell. When the contest

is over, the strongest neuron or neurons win with a numerically larger
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Figure 3: Illustration of a winner-take-all net. Each neuron is trying

to turn off the other neurons while reinforcing itself.

state than the loosing neurons.

Specifically, consider the linear array of neurons illustrated in Figure 3.
The interconnect weights between all of the neurons is —w and the
autoconnection of a neuron to itself will be denoted as a. We will

assume both w and a are positive. Typically, a is much larger than w.

Let the state of the ith neuron at time n be u;[n]. The input into the
ith neuron at timen + 1 is

sifn + 1] = ay;[n] - z: wu;[n] (1)
I#
The new state of the neuron is then

u;[n41] = f(si[n+1]) (2)
where
0 ;z<
flz)=qz ;0<z<1 (3)
s>l

An inspection of the above equations reveals the dynamics of the
competitive nature of this simple neural network as described in the
first paragraph of this section. As an example, the reader is invited to
try a simple 3 neuron example with w = 0.1 and a = 1.1. For initial

states, [0.9,0.5,0.1], convergence occurs in less than ten iterations of
each neuron.

Neural networks of this type can either be implemented in discrete

or continuous time. For continuous time implementation, shunt
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capacitance in the weights results in a finite response time between two

neurons.

For obvious reasons, the neural networks described in this section are
referred to as winner take all nets. They have also been referred to as
maznets [30] and king of the hill [36] neural networks. Note that we

can view the operation of finding a maximum a simple search problem.

3.2 Combinatorial Search

The principle of lateral inhibition can be used in artificial neural net-

work architectures to solve certain combinatorial search problems (36,
23, 46, 47).

3.2.1 The Rooks Problem

A simple combinatorial search problem is the rooks problem. On an
N x N chess board, we wish to place as many rooks as possible so that
no rook can capture another. The maximum number of rooks that can
be thus placed is N. One clear solution is to place N rooks on the
diagonals. Although the rooks problem is simple, its discussion allows
easy conceptualization to the more complicated Queens and Traveling
Salesman problems [36].

To solve the Rooks problem, we form an N x N array of neurons. Each
row of N neurons will be connected in a winner-take-all configuration.
Also, each column is connected in a winner-take-all configuration. Our
aim is to require the N x N net to settle onto a solution that has, in
steady state, only one neuron at a high state for each row and each
column. The result is clearly a solution to the Rooks problem. The
initial states of the N? neurons can be chosen randomly.



The Queens problem is analogous to the Rooks problem, except that
queens, rather than rooks, are used. We must now provide, in addition,
winner-take-all neural networks along each diagonal. If two neurons
are connected by weights from two different winner-take-all nets, the

composite weight is just the sum of the components.

We illustrate the working®of the Queens neural network by borrowing
results from McDonnell ef.al. [36]. After random initialization, the
network responded with

-

o - - . - . (o] .
L e

where ® denotes a neural state close to one, o denotes an intermediate

value and - denotes a state close to zero. Additional iterations gave

- -

L g

Note that the third column has two neurons with states close to one.
Interestingly, so does the third row. Since two neurons are trying to

turn off the neuron in position (3, 3), the final steady state result turns



|, * ¢ ]
This is an acceptable solution. For N > 3, a chess board can support,

at most, N queens.

3.2.3 The Traveling Salesman Problem

The Traveling Salesman problem [23] can also be viewed as an ex-
tension of the Rooks problem. We have, say, N cities denoted by
A,B,C,D,E.... The physical separation between cities C and A is
dac = dca. We wish to arrange these cities in such a manner that a

global round trip will be of minimum distance.

We will solve the Traveling Salesman problem with the use of an N x N

neural network. If, in steady state, an N = 8 neural network reads

0 =] O G AW -
L]

ABCDETFHI|

L

we would visit city C first, city F second, city I third, etc.
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How do we set up such a net? Note, first of all, that the solution must
satisfy the rooks problem. In other words, only one neuron can be on in
each row and in each column. Thus, we start our net by using a Rooks
problem neural network. In addition, we would like to discourage cities
that are far apart from being listed together. This is accomplished by
lateral inhibition of adjacent cities proportional to their separation. A
large separation thus results in a large inhibition.

Consider, for example, neuron (C4) which means that city C is fourth
to be visited. We will connect this neuron to all neurons correspond-
ing to a visit in the number three and five positions. The connection
to neuron (F5), for example, would be with a weight proportional to
—dpg. The connection to neuron {A3) would be with a weight propor-
tional to —dac, etc. There is also a third set of weights to fine tune
the number of neurons that are on in steady state. If two neurons are
connected by more than one weight, the composite weight is simply the
sum of the composite weights.

Randomly initialized, for the proper choice of weights, the neural net-

work ideally approaches a solution of the traveling salesman problem.

3.2.4 Convergence proof

We will here offer a convergence proof for Hopfield type networks of the
binary type when the neural nonlinearity is a unit step function. If the
sum of the inputs to a neuron is positive, we set the state to one. We
will also disallow autoconnects. If the sum is negative, the state is set
to zero. Thus

ujfn + 1] = (Z T.-,-u,-[n]) (4)

J#

where T}; = Tj; is the interconnect weight between neurons 7 and j and

p(+) denotes the unit step function. We define the energy of the neural
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network of N neurons at time n by

N

N
Bln] = -3 3> 3 Tywslnluila (5)

i=1 j=1
where, due to no autoconnects, we recognize that T;; = 0. At time

n + 1, one neuron, say the kth, changes state. The overall energy of

the net can also change. Denote this change by

AE[n] Eln +1] - E[n] (6)

= -%Auk[ﬂ] Zi;ek Tikui[n]

where we have recognized that, for ¢ # k, we have the relation u;[n] =
u;[n + 1] and
Augn] = ug[n + 1] — ux[n]

Given that neuron k has changed state, Augln] can take on values
of only —1 and 1. However, if Auy = 1, then this resulted from
Aug[n] X izx Tikuiln] > 0 and AE[n] in (6) is negative. Similarly, if
Auy = —1, then this resulted from Aug(n] Tigx Tixuilr] < 0 and AE[n]
in (6) is again negative. Thus, if the input sum to a neuron is other

than zero, no matter what the state change, we have
AE[n) <0 (7)

Thus, each change in state reduces the energy metric. The energy in
(5) is only defined over the approximately N? possible combinations of
N states of £1. It thus has a lower bound. Under our assumptions, the
neural network must therefore cease decreasing energy at some point.
Note that, without procedures such as simulated annealing [18] to assure

otherwise, the iteration may stop at other than a global minimum.

Design of Hopfield type nets rests on one’s ability to craft the intercon-
nects so that the minimum of the resulting net's energy corresponds
to the desired solution. Hopfield nets have been applied to a num-
ber of problems other than combinatorial search. For a more complete

treatment, see Dayhoff [13] or Wasserman [49].



The fundamental Hopfield neural network can be used for applications
other than combinatorial search [47], including associative memory (23]
and converters [46]. There exist, however, numerous problems with
Hopfield neural networks. Their capacity has shown to increase less
than linearly with the number of neurons {2, 34]. The number of false
stable states has been shown to increase greater than linearly with
the number of neurons. This, despite the fact the required number of
interconnects grows as the square of the number of neurons. Also, the
time taken to program the neural network to generate the desired result
can be quite significant [47]. In addition, for different asynchronous
operations, Hopfield neural networks convergence to different solutions
[11, 39].

The authors believe that the generic Hopfield neural network will sur-
vive primarily as a footnote in the development of neural networks.
Nevertheless, there exists some other quite promising biologically mo-
tivated computational procedures for performing combinatorial search
problems [44]. These proposed procedures must be tested against other
cutting edge and more conventional methods of solving the combinato-
rial search problems. There are also some interesting variations on the
Hopfield neural network that are worth noting. Here is a partial list.

The Boltzmann Machine. A variation of the Hopfield neural net-
work which avoids false minima is the Boltzmann machine [1]. Here,
with a given probability, the state of a neuron will be switched from
that value dictated by the sum of its inputs. As time increases, this
probability decreases'. Stochastic processes play a significant role in

snhanced performance of many artificial neural networks [18, 31, 12].

!The name Boltzmann machine arises from the use of the Botzmann probability
distribution.



projection neural network (APNN) [32] is a viable alternative to the
Hopfield associative memory. If properly initialized, it has no false
minima, will converge properly independent of asynchronous opera-
tion [39, 40], has a capacity that is proportional to the number of
(excited) neurons and can operate with continuous instead of binary

neural states.

The Bidirectional Associative Memory. The bidirectional asso-
ciative memory (BAM) is a generalization of the Hopfield neural net-

work [49] and suffers many of the same fundamental problems.

3.3 The Layered Perceptron

Currently, the artificial neural network most commonly used is the lay-
ered perceptron. A layered perceptron with one hidden layer is shown
in Figure 1. Although convention varies, the interconnects from the
input to the hidden neurons along with the hidden neurons constitute
a layer. The hidden to output interconnects with the output neurons
constitute a second layer. Thus, the perceptron in Figure 1 has two
layers. In our treatment, we do not consider the input nodes to be

neurons,

Layered perceptrons are trained by numerical data, in contrast, for
example, to expert systems that are trained by rules. The layered
perceptron operates in two modes: training and test. In the training
mode, a set of representative training data is used to adjust the weights
of the neural interconnects. Once these weights have been determined,
the neural network is said to be trained. In the test mode, the trained
neural network is activated by test data. The response of the layered
perceptron should then be representative of the data by which it was
trained. Typically, the test and training data are different sets. As we

will discuss in the section on learning, training a machine to respond
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properly to the same data on which it is trained is not learning, but is,
rather, memorization.

A layered perceptron can be used as either a classifier or a regression
machine. As a classifier, the layered perceptron categorizes the input
into two or more categories. In power system security assessment, for
example, the trained perceptron will categorize the power either as se-
cure or insecure in accordance to the current system states. For regres-
sion applications, the output or outputs of the layered perceptron take
on continuous values. Power load forecasting is an example of a regres-
sion application. Here, the output of the neural network corresponds
to the forecasted load.

A layered perceptron with L layers if shown Figure 4. We assume there
are I inputs and N; neurons in the fth hidden layer. The interconnects
from the jth neuron in the £—1st layer to the ith neuron in the £th layer
will be denoted by w;;(£). The state associated with the 7th neuron in
the £th layer is denoted by 5i(€). The output of the layered perceptron
is given by the states {s:(L)|1 <1 < N} where the number of output
neurons is Ny. For the layered perceptron in Figure 1, L = 2, [ = 2,
Np=3and N, =9.

The sum of the inputs to the 7th neuron in the £th layer is

Ney

oi(€) = Y wi;(€)s;(£—1) (8)

J=1

The state of a neuron is related to this value by the nonlinearity

se(€) = f(ai(0)) )

vhere f(-) is referred to as a sigmoid or a squashing function. The most
:ommonly used nonlinearity is
1

= 10
fe) = (10)
Chis form has the useful property that
df(t)

= = o - 1) (11)
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Figure 4: A layered perceptron with L layers.

The interconnects to the £th layer can be written in matrix form as
W (£). Define the sigmoid vector operator, Sy, such that, for any vector
v of dimension N, the operation Syv results in a vector dimension N
such that the ith element in the new vector is equal to the ith element
in ¥ subjected to the sigmoid nonlinearity in (10). In other words, if ¥ is
the vector of the sum of inputs into a layer of neurons, then Syt is the
vector of the resulting vector states. We can then represent the input-

output relationship of the layered perceptron with L hidden layers by
the equation

3 = SN, W(L)Sn,_,W(L—1):+-Sy,W(&)-- Sy, W(1)1
=Wi (12)

where 7 is the input vector and 4 is the corresponding response and the
neural network operator is

W =8y, W(L)Sn,_ W(L=1)--8SyW(£)---Sn,W(1) (13)



There are commonly used variations on the layered perceptron archi-

tecture illustrated in Figure 4. The most common are

1. Interconnection between nonadjacent layers.

2. Feedback interconnects between layers (recurrent neural net-
works).

3.4 Training

The layered perceptron is trained with training data. For the load
forecasting problem, for example, input training data might consist of
a number of temperatures and the output is the forecasted load. Data
from the previous year, for example, can be used. Once trained, the
layered perceptron, presented with the temperatures of the current day
will provide, as output, a forecast of the load for the next day.

Assume there are M training data vector pairs. Let an input of i = @™
correspond to a desired target response of & = . For a given set of
weights, let the actual response of the layered perceptron be

= Wi (14)

Our goal in training is to choose the interconnect weights, and thus the
neural net operator, so that the response vectors, {f"|l < m < M}
are, in some sense, close to the corresponding target vectors, {{™|1 <
m < M}. For the mth training data pair, the measure most commonly

used is the mean square error
A
N
= TSR -rr) (15)

where the norm of a vector is defined by [|#]|* = #7#. The total error

can be written as

E= 2::5‘1 ™



For a given set of training data, {#™, |l < m < M}, this error is
totally specified by the weights in the set of matrices {W(€)|1 < € < L}.
Our goal in training is to find the values for these weights that minimize
the error in (16).

The task of finding the minimum of an error (or cost) function is a
familiar topic in optimization theory. Envision a weight space with
coordinates w;;(¢€). The error function E is a positive function in this
space. We wish to find that point in space where E is minimum. There
exists many approaches for finding such a minimum. The method most
often used in the layered perceptron is a variation of the steepest descent
method, called error back propagation [33]. Other methods, such as
conjugate gradient descent and random training, have also been used

to train the layered perceptron.

3.4.1 Steepest Descent

The training procedure for layered perceptrons called error back prop-
agation is a steepest descent method for finding the minimum of a
function. At the current point in the weight space, we compute the
steepest slope and take a step in that direction thereby changing our
location in weight space. The process is repeated until an acceptably
low error is obtained. For a weight w;;(f), steepest descent can be

written as

wsll) = wsl6) = s (17)

where 7 is the step size.

3.4.2 Error Back Propagation.

Finding the response of a layered perceptron to a stimulus, as in (14)
can, of course, be totally performed within the neural network architec-

ture. Such an ability is a strong attribute of the neural network in terms
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of parallel implementation. Error back propagation training of a lay-
ered perceptron has the same advantage. It can be performed totally
within the neural network architecture. Many other search methods

applied to the layered perceptron do not have this important property.

In its fundamental form, error back propagation is an implementation of
steepest descent search defined in (17). A steepest descent adjustment
to the weights is first made for the first training data pair. A second
step is made in response to the second training data pair, etc. In each
step, all of the weights in the network are adjusted. When all of the
training data has been used, the cycle is again repeated starting from
the first training data pair. The process is repeated until an acceptably

low error results.

Error back propagation is mathematically based on the chain rule of
partial derivatives from which we can write the derivative term in (17)

as
QE™  QE™ 0si(£) ai(f)

aw.,(e) - 33.(!) ao'.(f} aw.,(f)
We will now examine each of the three terms in this expansion. First,
define

(18)

6i(€) = —;E;)

We will say more about this term later. Since

si(€) = f (o:(€))
we can use (11) to write the second term in (18) as
ds;(€)
da;( L)
Thirdly, from (8), we conclude that
do,(€)
Thus, using Equations (19), (20) and (21), we can rewrite (18) as

oE™

Bug(l) &(€) [(si(€) (1 = si())] s;(£ = 1) (22)

(19)

= 8i(€) (1 = si(£)) (20)

= 3,‘(5— 1) (21)
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Our remaining job is to interpret §;(£) in (19) in order to interpret (22).
The result will explain the use of the phrase error back propagation.
First, for £ = L, we recognize that s;(L) = r[* and use (15) to write

6(L)= 25
- 8E™
= -r:n

= r*-" (23)

This value, of course, is simply the difference between the actual and
target response observed at the output of the neural network. For
1<¢<L -1, we have

6:(¢) = 25

thu gE™ Os (+l

3‘.‘;’(???
N a,,gtng aalguq
.J-“:l 81,((4-1) a,(f+1) Fa(L (24)
As before, each of these three terms is evaluated separately. From (19),
we recognize that the first term in (24) is

adE™
m =6;(£+1) (25)
The second term in (24) is
dsj(£+1) .
9o, 1) =s;(£+1)(1 —-s;(£+1)) (26)
The third term is Boi(L+1)
b oL S
o5l - w;; (€ + 1) (27)

Substituting (25), (26) and (27) into (24) gives the following desired

result.

Nesa

8i(6) = 3 &;(E+1)[s;(€+1) (1 —s;(€+1)]wi(E+1)  (28)

=1

The é; values on on the fth level can thus be determined by the §;
values on the £ + 1st level.



mth input, @™ gives a response of #. This response is compared to
the target response of {™ to determine how the weights in the neural
network might be adjusted to give a better response. Each weight in
the neural network is updated using the steepest descent equation in
(17). The required error gradient for each weight is given in (22). The
weight update, from this equation, is a function only of the states of the
two neurons which the weight connects and §;(£). At the output layer,
as is seen from (23), é;(L) is simply the error between the actual and
desired output. At other layers, we see from (28), the values of §;(¢)
at other layers can be calculated from the states, interconnect values
and the §;’s from the previous layers. Thus, é;(L — 1) can be evaluated
from &;(L), the values of §(L — 2) can be determined by é;(L — 1) and
onward, all the way to the input. Thus, the error at the output is
back propagated in order to adjust the weights using steepest descent?.
The m + lst input data pair is applied to the network and the process
repeated.

There are numerous variations to the basic error back propagation
training algorithm. In order to improve convergence, for example, a
momentum term can be and typically is included in the weight update
procedure. Here, in addition to the change in weight specified by steep-
est descent, a fraction of the previous weight change is added. The use

of momentum allows training to plow through some local minima.

3.4.3 Problems with back error propagation

Although back error propagation is the most widely used method to
train multi-layer perceptrons, it is not the only nor necessarily the best
approach. Indeed, most any algorithm that searches for a minimum can
be used to train a layered perceptron. Back propagation is attractive
because it can be performed within the neural network structure. The

2This training procedure is also referred Lo as the generalized delta rule.



algorithm.

1. Training time. Thousands of iterations can be required

to train a layered perceptron on even a simple problem.

2. Weight accuracy. Back error propagation requires high
computational precision. This is tied to the long training
time in Item 1. Each iteration can result in a change in bits
of only low significance. As such, training cannot be done
on high speed, but low accuracy, analog electronic or optical
devices. Once trained, however, a layered perceptron can

be tested using low analog percision.

3. Layering. The required computational precision increases

with the number of layers.

4. Scaling. The scaling problem can be illustrated through
the curse of dimensionality. Specifically, for a problem of
similar partition complexity, the required cardinality of the
training data set grows exponentially with respect to the
number of input nodes. Visualize, for example, a binary
classifier with two inputs and a single output. In order to
classify points within a unit square to a certain accuracy,
assume that we require, say, 100 input-output data pairs.
Increase the number of inputs to three now requires classi-
fication within a unit cube. For the same precision, we now
have to train on 10 planes with 100 points for each plane.
The required number of data pairs increases to about 1000.
Roughly, if P pairs are required in one dimension, then PV
pairs are required in N dimensions. We note, however, that
correlation relationships among the input data can affect
this argument. Note that this problem is not specific to
the layered perceptron, but is applicable to any classifier or
regression machine trained by example.
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4 Learning

The layered perceptron is an example of a classifier or, when the output
is continuous, a regression machine, which is trained by data. Once
trained, a good classifier or regression machine will properly respond
to test data. For proper performance, the test data and the training

data should be different, albeit from the same statistical source.

There is a difference between training and memorization. A trained
classifier or regression machine can respond with confidence to a pattern
which it has not seen before. The ability to properly classify data which
has not been seen before is referred to as generalization. Memorization,
on the other hand, guarantees that, when presented with a specific
element in the training data set, the classifier will respond in exactly
the same manner that it was trained. In the case of memorization,
the response to data other than training data is not considered in the
paradigm.

The ability to interpolate among the training data does not necessarily
imply good generalization. We illustrate with an example from detec-
tion theory.

Consider the two solid points in Figure 5. The one on the left is a
square and the one on the right is a circle. We assume the these are the
centroids of two two-dimensional Gaussian random variables with the
same variance. Given some observation point, the minimum probability
of error solution results simply from determination of whether the point
lies to the right or the left of the perpendicular bisector between the
two centroids.

Consider, then, memorization from the training data shown by the
hollow squares and circles. Since we require the classifier to properly
categorize all points, the resulting partition boundary would follow the
winding dashed line shown. Clearly, this line would become more wind-

ing with the increase of the data set cardinality. This observation leads
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us to the conclusion that some trained classifiers should not generate
a zero probability of error corresponding to the training data. This,

rather, is memorization.

Are there cases where the error corresponding to training data should
be zero? Yes. This is generally true when their is no noise or ambiguity
in the data. How then, might we determine whether the classifier or
regression machine has learned or memorized? The answer is that a
properly trained classifier or regression machine should respond with
the same error to training data as to test data. Note that this is a
necessary though not sufficient condition. If the error from the test
data is much higher than that from the training data, then, chances
are, the neural system is over determined. In other words, the degrees
of freedom in the classifier or regression machine is too high. For the
layered perceptron, this is the number of interconnects which, of course,
is related to the number of neurons in the hidden layer [10]. If the error
from the test and training data are similar, we are not guaranteed of
proper training. Note, for example, that any partition line passing
through the midpoint between the two centroids in Figure 5 would
result in a classifier with the same error for training and testing. Only

the perpendicular bisector gives the unique minimum error solution.

4.0.4 Classifier performance assessment

A measure of the goodness of learning for a classifier is the resulting
probability of error for test data. As explained in the previous section,

the optimal measure may not be zero.

Consider, as an illustration, the two dimensional closed curve in Fig-
ure 6. The solid line represents the unknown concept. Within the curve
we wish to classify the ordered pair as one. Outside, the classification
is zero. Based on available training data, the classifier tries to learn the
classification boundary. The estimate of the classification boundary is
the representation shown by the dashed curve. If the training data
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Figure 5: An illustration of the difference between learning and mem-
orization. The solid square and circle denote centroids of two gaus-
sian random variables with the same variance. The hollow circles and
squares are corresponding realizations. If the training data is memo-
rized, the winding broken line will be the classification boundary. Op-
timal detection theory, though, teaches that the vertical perpendicular
bisector between the two centroids is the optimal partition. It is this
boundary we wish to ‘learn’.

noise is uncorrupted by uncertainty, we would expect the representa-
tion boundary to approach the concept boundary as the cardinality of
the training data set increases. For a finite size training set, the result-
ing probability of error is equal to the probability of false classification.
This is equal to the shaded area in Figure 6 [48].

For a layered perceptron, the classification problem in Figure 6 can be
evaluated using two inputs corresponding to the (z,y) coordinates of
the input, and a single output corresponding which offers its estimate



concept~_J)

Figure 6: The concept, shown by the solid line, is to be learned. The
broken line denotes the learned representation. The probability of error
is equal to the probability a point is chosen is the shaded area. If the
training data is chosen randomly, then a decrease in the probability of

error also requires a decrease in the probability of learning something
new.

of the proper classification. The output neuron will typically take on
a continuous value between, say, zero and one. Typically, this value
would be thresholded at 1/2. That is, if the value of the output were
above 1/2, we would announce a ‘one’. A zero would result from an
output value below one half. The possible errors are the false alarm
with probability

a = Prob|l is announced given that the proper class is zero]
and the probability of a false negative
1 — B = Prob|0 is announced given that the proper class is one]

The quantity B is also sometimes referred to as the detection proba-
bility. Generally, as the detection probability increases, so does the
false alarm probability. In a layered perceptron with a single output,
this trade off can be realized simply by choosing different values of the
output neuron’s threshold. As the threshold decreases, the false alarm
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probability and detection probabilities increase. The relationship be-
tween the two errors is referred to in communications as the receiving
operating characteristic or ROC curves. Using ROC curves to assess
classifier performance was suggested by Eberhart and Dobbins [15].
The concept can be generalized to layered perceptrons with multiple

outputs.

There exists a relatively large literature on detection theory. To the
authors’ knowledge, a comparative study between neural networks and

more conventional nonparametric detectors has yet to be performed.

In certain cases, such as thermo nuclear meltdown and power system
security assessment, a relatively high false alarm rate can be tolerated
in order to achieve a high detection probability. In other cases, such as
choosing the most efficient of two power sources, we are more interested

in the total probability of error given by
Problerror] = a x Prob[0] + (1 — 8) x Prob[1}

where, for example, Prob[1] = the probability that the proper classifi-
cation is one. As we vary the threshold of the single output neuron from
zero to one, there exists an intermediate minimum value for Prob[error].
In the multi output case, there exists a setting of thresholds which will

minimize the error probability.

4.1 Determining the best net size

The degrees of freedom of the neural network, equal to the number of
interconnects and therefore related to the number of hidden neurons,
must be matched, in some sense, to the complexity of the classification
boundary. Visualize, for example, the problem of classifying the integer
parts of continuous numbers from one to ten as odd or even. This
problem clearly requires more degrees of freedom (and therefore more
neurons) than classifying whether the same numbers are greater or less
than five.



384 M. A. EL-SHARKAWI, R. J. MARKS II, AND S. WEERASOORIYA

Currently, in the absence of parametric guidance, the only proposed
method of determining the best number of hidden neurons is through
the use of comparative cross validation among two or more neural net-
works. (We consider the augmentation of one neural network to another
by an increase or decrease in the number of hidden neurons as a dif-
ferent net). Moving from a small number of hidden neurons to a large
number must decrease the overall probability of error while maintaining
an equivalent error performance for the test and training data. When
the perceptron’s performance on training data begins to lag, we have

started the process of memorization.

4.2 Query Based Learning

When a classifier or regression machine with a static architecture is
trained by random example, the more that is learned, the harder it is
to learn®. This is true of the multilayered perceptron. Indeed, in the
absence of data noise, additional learning takes place in a multi layered
perceptron only if new data is introduced that the neural network im-
properly classifies. The closer the representation comes to the concept,

the smaller the chance that this happens.

To illustrate, consider the classification problem of learning the location
of a point a on the interval 0 < a < 1. We choose a point at random on
the unit interval. If it is to the right of a, we assign it a value of one.
If it is to the left of a, the result is 0. [t is clear that, after a number of
data points have been generated at random on the unit interval, that a
lies somewhere between the rightmost 0 and the left most 1. Call this
subinterval C. If we generate a new data point that does not lie in the
subinterval C, we have learned nothing new. If the new point lies in
the subinterval C, then we revise the subinterval and make it’s duration
shorter. Doing so, however, decreases the chance that the next data

point contains new information. That is, the probability decreases that

3i.e. you can’t teach an old dog new tricks



the more we learn about the location of the point a, the harder it is to
learn. One approach to counteract this phenomenon is with the use of

oracles in query based learning [3, 24, 25].

4.2.1 Oracles

In supervised learning, each feature vector is assigned a classification
{or regression) value or Values. There is usually a cost associated with
this assignment, such as the cost of performing an experiment, com-
putational overhead or simply time. We can envision this process as a
presentation to an oracle the feature vector. For a cost, the oracle will
reveal to us the proper classification or regression value associated with
that vector. Note that, if we have deep pockets to pay the oracle, there
is no need to for a classifier or regression machine such as the layered
perceptron. Any feature vector we desire can be taken to the oracle for

proper categorization.

In many cases of interest, we have the freedom to choose the feature
vectors that we present to the oracle. Ideally, we would like to present
those vectors to the oracle that, in some sense, will result in training,
data of high information content. The motive is to effectively train the
classifier or regression machine with a low training data cost. Query
based training is concerned with the manner in which the training vec-

tors that will result in high information data are chosen.

Note that, as is illustrated in Figure 6, the binary classification prob-
lem is totally determined by the classification boundary. Indeed, here
is an obvious case where the importance of data to the classification
can be noted. Roughly, the closer a feature vector is to the concept
classification boundary, the more information it contains. One way to
exploit this observation is through interval halving. Between each fea-
ture vector classified 0 and each classified 1, there exists a classification

boundary. In many cases, taking the geometric midpoint of these two




the boundary. This is assured, for example, if the underlying concept

is convex.

To illustrate interval halving, let’s return to the problem of finding
the point a on the interval (0,1). After N randomly generated points
on this interval, we would expect (in the sense of statistics), that the
distance between the right most zero and the left most one is about
1/N. Using interval halving, on the other hand, this is reduced to

about 2V. The acceleration in learning is indeed remarkable.

4.2.2 Inversion of the Layered Perceptron

Another approach to query based learning is, in effect, to ask a par-
tially trained classifier or regression machine “What is it you don’t
understand?”. The response of the classifier or regression machine is
taken to the oracle for proper categorization and the result is added
to the training data set. The classifier is then further trained and the

process repeated.

How might we apply this query approach to, say, a trained layered
perceptron classifier with a single output? Assuming that the output
neuron is thresholded at one half to make the classification decision, the
representation boundary in feature vector space is the locus of all inputs
that produce an output of one half. This locus of points corresponds to
feature vectors of maximum confusion. In other words, when presented
with such a vector, the neural network is uncertain to the corresponding
classification. If there were a technique to find a number of these points,
they could be taken to the oracle to clear the confusion. The data from
the oracle could then be used for training data. The perceptron can
then be retrained to yield a higher accuracy. The question is, how can
the locus of confusion be generated? The answer is through inversion

of the neural network [24, 25, 29].
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One technique for inversion of the layered perceptron has been pro-
posed by Hwang et.al. [24, 25]. The approach is basically the dual of
back propagation. Instead of holding the training data constant and
adjusting the weights by using steepest descent, the weights are held
constant and the input is adjusted using steepest descent to give an
output of one half. Clearly, a number of inputs will give the response
of one half. Variations are imposed by changing the initial starting
point of the input in the iteration procedure. Use of inversion in query
based learning has resulied in a significant improvement in accuracy of
a trained layered perceptron in comparison with a second neural net-
work trained with a randomly selected data set of the same cardinality.
In practice, data near (rather than on) the representation boundary

was used to accelerate training.

4.2.3 Adaptive Learning

In the training of a layered perceptron, an assumption of stationarity
of the training data is typically made. In a number of cases of interest,
however, the training data is a slowly varying nonstationary process.
Consider, as an example, training data for the load forecasting problem
generated in a developing urban area. Training data from five years
prior will be different in character to data more recently generated. In
order for the layered perceptron’s weights to adapt to a slowly varying

nonstationarity, such a procedure should

1. still respond appropriately to previous training data if those
data are not in conflict with the new training data and

2. adapt to the new training data even when it is conflict with

portions of the old data.

The adaptively trained neural network (ATNN) of Park et.al. [43] as-
sures proper response to previous training data by seeking to minimize

a weight sensitivity cost function while, at the same time, minimizing



388 M. A. EL-SHARKAWI. R. J. MARKS 11, AND S. WEERASOORIYA

the mean square error normally ascribed to the layered perceptron. Al-
though space does not permit a detailed explanation, we will illustrate
the performance of the ATNN through an exemplar problem [43]. Later
in this chapter, the procedure will be applied to the load forecasting

problem.

In Figure 7, 100 training data pairs were generated using the solid
curve. When a layered perceptron is trained with these points using
error back propagation, the response to test data is indistinguishable
from the solid curve. The 101st data point is introduced ot 0.5. It is
10% larger than the other datum there. When the layered perceptron
is retrained using error back propagation, the generalization is shown
by the dots. When trained using the ATNN, the dashed line results
as the generalization. Clearly, the dashed line has adapted to the new
data point without a resulting drift of the other data. Such was not the
case for error back propagation. A detailed explanation of the ATNN
is given in Park ef.al. [43].

4.2.4 Unsupervised Learning

The layered perceptron is trained using supervised learning. The per-
ceptron is told the desired output for each input pattern. Unsupervised
learning, on the other hand, does not require knowledge of the output.
The classifier, rather, looks for similarity of structure in input patterns
and groups them accordingly. The most visible of neural networks
paradigms using unsupervised learning are adaptive resonance training
(ART) [20] and the Kohonen feature map [27] both of which exist in
various forms [6].

As a rule, if supervised training can be applied to a problem, it is
preferable to unsupervised learning. One learns better with a teacher

than without one.

Unsupervised learning typically compares an input pattern to a number
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Figure 7: Illustration of the use of the adaptively trained neural net-
work.

of representative stored templates. If the new pattern is sufficiently
close to an existing template, then information from the pattern is
used to modify and reinforce the template. If the pattern is not close

to an existing template, then a new template can be formed.
As with other neural network paradigms, there exist other non neural

network approaches to unsupervised learning (e.g. k-means clustering).

4.3 Comparative Performance

Other artificial neural networks have fallen from favor in an applica-

tion sense because, quite simply, they are not competitive with other
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regard to the layered perceptron. Does the layered perceptron preform
better than other classifiers or regression machines programmed from
examples using supervised learning? Although abstract analysis of this
question may be possible in some cases, it must ultimately be answered
in regard to actual data. Comparisons of the layered perceptron have
been performed with classification and regression trees (CART) and
nearest neighbor lookup for such problems as power security assessment
and load forecasting and, in each case, have shown the layered percep-
tron to perform better in terms of classification or regression accuracy
[7]. Both of these competing algorithms can be implemented using

parallel processing.

In comparison with nearest neighbor lookup, the layered perceptron was
shown to interpolate much more smoothly and with greater accuracy

for the problem of power security assessment (3, 16].

5 Neural Network Implementation

Implementation of artificial neural networks is still quite immature.
Implementation can currently be broken into the following categories.
1. Emulators and simulators. Currently, the most com-
monly used computational method for neural networks is
simulation using standard software and/or emulator boards.
Ironically, serial computation is here used to evaluate the
performance of these highly parallel algorithms. Emula-
tion packages and electronics are available from a number
of vendors. Software is also available in association with

some books on neural networks (15].

2

Analog Electronics. The speed of analog electronics is
attractive for implementing neural network algorithms [37].

The percision of analog electronics, as we have noted, is
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not high enough for back error propagation - the most com-
monly used training procedure. Analog electronics can be
used, however, in other neural networks and in the testing of

trained multilayer perceptrons. A superb overview is given
by Graf and Jackal [19].

. Digital Electronics. Digital electronics will be the imple-
mentation technology of choice for neural networks in the
near future. The technology as applied to neural networks
is expanding rapidly and will be the first viable option to

emulation. Atlas and Suzuki [9] give a thorough review.

. Optronic Implementation. Optics offers a quite promis-
ing medium for the implementation of neural networks [17].
Consider, for example, the high connectivity required for
neural networks. Multilevel VLSI must be used in elec-
tronics to avoid shorting since electrons cannot go through
electrons. Photons, on the other hand, can go through pho-
tons. For this reason, optics is capable of extremely high
interconnect capabilities. On the negative side, optical im-
plementation is quite far behind electronics in maturity of
implementation. As in electronics, fast optics is analog op-
tics. The same comments in regard to required accuracy

are also applicable here.

391
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6. Selected Applications to Power Systems

Artificial Neural Networks have been recently proposed as an
alternative method for solving certain traditional problems in power
systems where conventional techniques have not achieved the desired
speed, accuracy or efficiency.

Neural Network (NN) applications that have been proposed in the
literature up to date can be broadly categorized under three main
areas: Regression, Classification and Combinatorial Optimization.
The applications involving regression includes Transient Stability,
Load forecasting, Synchronous machine modelling, Contingency
screening and Harmonic evaluation. Applications involving
classification include Harmonic load identification, Alarm processing,
Static security assessment and Dynamic security assessment. In the
area of combinatorial optimization, there is topological observability
and capacitor control.

In the following sections, we provide an overview of the reported
Neural Networks (NN’s) applications to power systems. A more in
depth treatment of the material can be found in the respective
references.

6.1 TRANSIENT STABILITY

Stability of a power system deals with the electro-mechanical
oscillations of synchronous generators, created by a disturbance in the
power system. Whether or not the post disturbance process leads to
loss of synchronous operation, is the subject of primary concern.
When the disturbance is small and when the system oscillations

**Portions of this section are reprints with permission from IEEE
[16,51,54,55,56,57,58,59,62,63,65], 1989-1991.



equilibrium point, concepts of linearized systems analysis can be
applied to determine the stability of the power system. This is known
as steady state or small signal stability assessment. However, when the
disturbance is large and when the oscillatory transients are significant
in magnitude, nonlinear system theory or explicit time domain
simulations have to be used to analyze the system stability. The
ensuing analysis is known as transient stability assessment.

6.1.1 Problem Description
Ly
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Figure 8. Network reduction for stability calculation

Figure 8(a) shows a small test power system. It has 6 buses with 4
generators and three loads. Since transient stability analysis is focused
on the generator dynamics through a few cycles following the fault,
certain simplifying assumptions can be made. All generators are

replaced by the corresponding internal emfs (E) behind a transient
reactance (X ') Each load is replaced by a fixed admittance based on
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generic circuit reduction techniques, to reduce the topology of the
original power system to one that is shown in figure 8(b). This
reduced power system forms the basis for transient stability
calculations.

The admittance matrix of the base power system can be written as,

YGG YGL

Y Y

LG LL

where subscripts G and L stand for generator and load buses
respectively. The modified admittance matrix corresponding to the
reduced power system where all load buses are eliminated as shown in
figure 8(b) is given by,

G+jB = [Yj' + (diag%)"]"
di

where

. - -1
Yi [YGG YGL Yu. Ym]

For the reduced power system, the equations for generator and rotor
dynamics can be written as follows.

M (d’.si/dﬁ) + D (d8/dt) + P, = Py, (i=1.N) (29)

dé/dt = @ (30)

P, =E E E [G,cos(3,-8) + B,sin(3-8)] (31)

J
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where,

M,D, - inertia and damping constants of the i generator

P. - electrical power output of i generator

P, - mechanical power input to the i'" generator

E, - equivalent field voltage behind the transient reactance X

G,,-'Bi,- - real & imaginary parts of the reduced admittance matrix

65 - rotor angle of the ith generator relative to a synchronous
reference

@ - angular velocity of ith generator relative to the same

synchronous reference
N - number of generators in the system

G
Equations (29) and (30) are the differential equations governing the
rotor dynamics of the i generator. Equation (31) gives the electrical
power output of the i™ generator calculated by applying Kirchoffs
Laws.

Transient stability is determined by observing the variation of s’ as a

function of time in the post-fault period. Power system is said to be
transiently stable for a given disturbance if the oscillations of all rotor
angles damped out and eventually settled down to values within the
safe operating constraints of the system. For any disturbance, the
transient stability of a power system depends on three basic
components: the magnitude of the disturbance, the duration of the
disturbance and the speed of the protective devices. For example, in
the case of a transmission line fault, assume that the line section is
first isolated and then successfully reclosed. There exists a threshold
parameter known as the Critical Clearing Time (CCT) where if the
fault is cleared before this time, the power system remains stable.
However, if the fault is cleared after the CCT, the power system is
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likely to become unstable. Hence, stability analysis may involve the
calculation of the CCT for a given contingency.

CCT is a complex function of pre-fault system conditions, disturbance
structure and the post-fault conditions. There are two commonly used
methods for calculating CCT, namely 1) Numerical integration and 2)
Liapunov-type stability criteria [53]. The first method involves
extensive time domain simulation of the power system while the scope
of the second method is limited by its restrictive assumptions. Due to
the many possible pre-fault operating conditions and types of faults,
computationl effort needed to assess the CCT for each of these
scenarios is prohibitive,

6.1.2 Neural Network Approach

The estimation of CCT can be looked at as a regression problem
where pre-fault system parameters are used to predict the CCT for
the corresponding fault. A multi-layer perceptron was proposed to be
trained using back-propagation to learn a set of input attributes and
the corresponding CCTs for a specified fault under varying operating
conditions [53].

The inputs to the NN (ai) for a specified contingency are selected as,

o, - 6‘(10) - 60(10) (32)
h é = 3. Mo
where = Mo E X
M, = TM,
Pm--Pf

NG +i = —_‘M'—_" (33)
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angle. P corresponds to the reduced electrical power output of the iy,

generator during fault initiation. This change from the steady state
electrical power P, is brought about due to the change in network

impedance caused by the fault and also due to the effect of the
transient reactance of the generators.

aZNGﬂ = (Pmi' Pfi)szi (i=1...N ) (34)

The NN input quantity given by equation (33) gives a measure of the
rotor angle deviation at the instant of fault clearing. The input
quantity described by equation (34) is a measure of the individual
acceleration energy of the generators of the system accumulated
during the fault [53).

The output of the NN is the CCT corresponding to the given
contingency under the described inputs. During generation of training
data, CCT for the corresponding input quantities is obtained by
repetitive numerical integration of the post-disturbance system
equations using different reclosing times. The CCT would correspond
to the maximum time for reclosure after the initial isolation of the line
in order to maintain synchronous operation.

For a specific test of the algorithm, a 3-phase fault was simulated at
location shown in figure 3.1(a). The CCT was calculated for the case
where the fault was initially isolated by tripping the line and the
system subsequently restored by reclosing the line. 30 training
patterns were generated for a combination of different loading levels
and two different base power system topologies. The trained NN was
used to estimate the CCT for the same type of fault under varying
load levels and varying topologies. The estimated CCT was compared
to the analytical value calculated through numerical integration. Close
comparison of results was reported.
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The ability of a NN to generalize between different network
topologies was observed. This adaptability was facilitated by providing
training data corresponding to couple of different base topologies.
This is a key idea that could be applied to training NN’s for problems
with time varying power system topologies.

So far, the merit of the NN in calculating the CCT is limited to the
above mentioned fault scenario and the restrictive second order
model of the generator. Simulations are also restricted to simple 3-
phase line faults. The ability of the NN to predict CCT under more
complicated fault scenarios is not clear. The training data should be
produced by using a higher order generator model to include other
transients caused by the presence of damper windings and excitation
systems.

6.2 LOAD FORECASTING

Forecasting electrical load in a power system with lead-times varying
from hours to days, has obvious economic as well as other advantages.
The forecasted information can be used to aid optimal energy
interchange between utilities thereby saving valuable fuel costs.
Forecasts also significantly influence important operations decisions
such as dispatch, unit commitment and maintenance scheduling. For
these reasons, considerable efforts are being invested in the
development of accurate load forecasting techniques.

6.2.1 Problem description

Most of the conventional techniques used for load forecasting can be
categorized under two approaches. One treats the load demand as a
time series signal and predicts the load using different time series



NEURAL NETWORKS: APPLICATION TO POWER ENGINEERING 399

analysis techniques. The second method recognizes the fact that the
load demand is heavily dependent on weather variables. The general
problem with time series approach include the inaccuracy of
prediction and numerical instability [42). The main reason for
instability is not considering the weather information which is known
to have a profound effect of load demand. Numerical instability is
caused by computationally cumbersome matrix manipulations.

The conventional regression type approaches use linear or piecewise-
linear representations for the forecasting function. The accuracy of
this approach is dependent on the functional relationship between the
weather variables and electric load which must be known a priori.
This approach cannot handle the non stationary temporal relationship
between the weather variables and load demand.

6.2.2 Neural Network Approach

NN can combine both time series and regression approaches to
predict the load demand. A functional relationship between weather
variables and electric load is not needed. This is because NN can
technically generate this functional relationship by learning the
training data. In other words, the nonlinear mapping between the
inputs and outputs is implicitly imbedded in the NN.

The NN approach proposed in [42,54] uses previous load data
combined with actual and forecasted weather variables as inputs, and
the load demand as the output. As an example, to predict the load at
the kth hour on a 24 hour period, the NN uses the following
input/output configuration.

NNinputs  :k, L(24,k), T(24,k), L(m,k), T(m,k) and T (k)

NN output  : L(k)
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where,

k - hour of predicted load

m - lead time

L(x,k) - load at x hours before hour k

T(x,k) - temperature at x hours before hour k
T, (k) - predicted temperature at hour k

During training, the actual temperature T(k) is used instead of T,(k).
Different NNs are trained to predict the load demand at varying lead
times. The results are reported too be better than those obtained
through some of the existing extensive regression techniques.

One of the test results presented in [42] is given for brevity. Five sets
of actual load and temperature data were used in the study. Each set
contained data corresponding to 8 consecutive days as shown in table
1. Out of each set, data corresponding to the six weekdays were
selected. No weekends or holidays were included.

Table 1. Test data sets

sets Test data from

Set #1 01/23/89 - 01/30/89
Set #2 11/09/88 - 11/17/88
Sct #3 11/18/88 - 11/29/88
Set #4 12/08/88 - 12/15/88
Set #5 12/27/88 - 01/04/89

From [42] courtesy of IEEE, (C) IEEE,1990

The NN was trained to forecast the hourly load with one hour lead
time. Table 2 shows the forecasting error(%) of each day in the test
sets. Each day’s result is averaged over a 24 hour period. The average
error for the 5 test sets was found to be 1.40%.
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days sel #1 sel #2 set #3 set #4 set #5
day 1 *) 1.20 141 117 *
day 2 1.67 1.48 ) 1.58 2.18
day 3 1.08 (*) 1.04 (*) 1.68
day 4 1.40 1.34 142 1.20 173
day 5 1.30 1.41 * 1.20 *)
day 6 (*) 1.51 1.29 1.68 0.98
average | 1.35 1.39 1.29 1.36 1.64

(*: predicted temperature, T, is not available)
From [42] courtesy of [EEE, (C) IEEE, 1990

.2.3 Comments

'he results show that NN can be trained to predict the load demand
y among its training patterns. However, one network cannot handle
ll cases where enough and sparce representation exist in the training
'st. For example, a NN trained to predict electric loads of normal
eather conditions, may not do accurate prediction during extreme
eather conditions such as cold snaps and heat waves. To predict
lectric loads under these conditions, a separate NN may be needed.
Iso the holidays cannot be accurately predicted. It is also worth
lentioning that the above restrictions are also applied to all existing
:chniques.

3 SYNCHRONOUS MACHINE MODELLING

mchronous generators are the only available choice for bulk electric
ywer generation. Hence, the synchronous machine dynamics are
tal to power system stability in both steady state and transient state
rerating modes. Accurate modelling of the synchronous machine
mamics is imperative for the operation and control of any power
stem.



0.3.1 Froblem pescription

As mentioned in section 6.1, when stability analysis with a high degree
of accuracy is desired, a 2" order model for the synchronous machine
is often inadequate. Other operating modes of the synchronous
generator are needed in order to achieve the required degree of
accuracy. For example, the dynamics caused by the damper windings,
armature reaction, excitation system, saliency and other inherent
control loops are important in determining the accurate behavior of
the synchronous machine.

A
Vvvy
A
\i

Figure 9. (a) 3® windings of the synchronous m/c (b) d-q axis
equivalent model

Figure 9(a) shows a three phase representation of a synchronous
machine. The figure shows the stator, field and damper windings.
Figure 9(b) shows the equivalent d-q axis model obtained through
Blondale’s transformation. In addition to the two mechanical mode
equations, flux linkages of the d,q axis and field windings can be used
to derive the following 7t order model for the synchronous generator.
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dw 1
dt M (P,-P.-P)
dé
d—t = wb(w -1)
dy /w
—_:TE =Vd+raid+w\(¢q
dy /e
— ¢
m ¥, +r i - wd (35)
A /e, .
T = VF = l‘F 1 r
Wofo,
d = "o
—-—-——d‘bolwb = -r_i
dt oo
where,
Pm, Pe, Pa - mechanical, electrical and damping powers
v a"”q - d and q components of armature flux linkages
i d.iq - d and q components of armature currents
Vo', - d and q components of armature voltages
Tl - armature and field resistance
v Yo - d and q components of damper winding flux linkages
io'io - d and q components of damper winding currents
LA - d and q components of damper winding resistances
Vol . - flux linkages and current of the field circuit

The d,q and F axis fluxes and currents are related by the following two
matrix expressions.
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v, Xs Xma Xma 4
v, | = “’io X % x, i (36)
‘l’o md “md D io
‘pq _ 1 xq mq -lq
Q wG xmq xO IQ
where,
Xp xq - d and q components of armature self inductance
X " Xmg - d and q components of armature mutual inductances

Equations (35) and (36) are linked to the external power system as
follows.

Pe = iq wcl ) id u'q
v, =Y sin & (37)
U sin &

Equations (35) through (37) can be written as a nonlinear state space
model

a‘-‘;x = f(X,U) (38)
)
‘D r . 3
i v, sin o
Q
id Ve
where X = i and U = v, cos &
F
i P,
w L M
L & J




X(k+1) = F(X(k), U(k))
(39)
Y(k) = p(X(k))

The set of matrix equations described by (39) have to be solved at
each time step in order to generate an evolving trajectory of the states
based on a given input sequence. This type of trajectory generation is
common in time-domain transient stability analysis where the
generator responses are repeatedly simulated as function of time for
many operating and contingency scenarios. This type of calculations is
both repetitive and time consuming.

6.3.2 Neural network approach

In order to avoid the time consuming calculations associated with
solving a non-linear state space model, a NN approach is proposed
[55]). A multi-layer perceptron is trained to emulate the state space
equations of the synchronous motor. The proposed learning and
retrieving phases of the neural network are shown in figure 10.

Lets assume that there is a full state output, i.e Y(k) = X(k). During
training, patterns of Y(k) and U(k) are given to the NN with the
corresponding target Y(k+1). These patterns are either randomly
generated within the specified operating region or corresponds to
points on a set of pre-selected training trajectories. In the retrieving
phase, NN estimated state trajectories for different arbitrary input
sequences.



= Yon
= | ANN /%
(a) learning phase (o) retrieving phase

Figure 10. (a) Learning (b) Retrieving phases of the Synchronous
m/c NN simulator
From [55] courtesy of IEEE, (C) IEEE,1989

The NN has 11 inputs consisting of the elements of vectors Y(k) and
U(k) while the 7 outputs consist of the elements of vector X(k+1).
The specific example given in reference [55) compares the NN model

output against the actual motor states for a step change in the field
voltage vg. Close model following is observed for the given test.

6.3.3 Comments

Using an NN to simulate the synchronous machine dynamics can
significantly speed up the transient stability calculations. However,
accurately training a NN with 11 inputs and 7 outputs, to model the
synchronous generator within a bounded operating space, is non-
trivial. The training patterns should be sufficiently representative of
the operating space so that the NN can accurately generalize its
learning for an arbitrary input sequence. A recurrent neural network
topology with its inherent temporal properties, is probably more
suited for this type of application.
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5.4 CONTINGENCY SCREENING

5.4.1 Introduction

A contingency in a power system, is an abnormal event (such as faults)
vhich could be potentially damaging to power system components.
—ontingency screening is a relatively fast and approximate method of
dentifying whether a contingency may result in a violation of any of
he operating constraints of the power system. The evaluation of the
yperating constraints due to a contingency is called security assessment,
ind is discussed in Section 6.7. Contingency screening helps select a
rritical set of potentially damaging events for more accurate analysis.

»4.2 Problem description
“ontingency selection, in its simplest form, is dealing with forming a

ist of contingencies which may result in steady state voltage or
hermal limits violations in the post contingency power flow condition.

k= line 1

F:'net i ) l
Onet i Gik+ ) B;k
Vkek

line P

Figure 11. A simple power system

“or a simple power system, such as that in figure IL.4, the real and
eactive power injections at the i'" bus can be expressed as,
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Pm“i = Vi g Vk [ Gik cos B_Ik + Bik sin 8“‘] (40)
Qmi = Va zk: Vk{Gik sin eik - Bik cos Oik] (41)
where P, Q . are the net real and reactive injections at i" bus,

and 8“ is defined as

6 =0-06 and Y =G + jB
ik i ok

Equations (40) and (41) can be solved for V, and 0. at all nodes. The

power flow on line j between nodes i and k is then given by the
equations,

= 2 ) :
P“Mj = G (Vi -~ N Vk cos ﬂik) Bik Vi V& sin @ (42)
Qlim-. i B, (Vi“ - V, V, cos aik) - G, vi V, sind, (43)
_ 2 2
Slinc i \/ P!ine g T Pine i (44)

The voltage magnitudes (V) obtained by solving equations (40) and
(41) and line flows (Sﬁ‘m j) obtained from equation (44) constitute the
so called security variables, which are the variables that decide the
status of the system security. Any magnitude violation of these

variables will result in an insecure system. Post-contingency security
limits for bus voltages and line powers can be defined as,

V) ZV,

VvV 2
u Z,2 Z\) 2 Z (45)
S = 18]

L
z(M) denotes the post contingency value of the i security variable

corresponding to A" contingency. If all the above inequalities are
satisfied the system is labelled as secure under the A" contingency.




time consuming and often computer intensive. To obtain a fast and
approximate method for selecting key contingencies is known as
Contingency screening. Contingency screening can be performed by
several methods, among them are the Distribution Factor and the
Performance Index.

With the Distribution Factor based method, the post-contingency
Security variables are calculated by

S(A) = S(0) + H(\) AY(N) (46)

where AY(N) corresponds to the change in a network due to the Ath
contingency. This could be either a change in network admittance due
to a transmission line outage or the change in real power due to a
generator outage. H(\) is known as the transfer matrix whose
elements are a set of factors which represent the sensitivity of the line
flows to the above variations. Therefore, these partial derivatives can
either be line outage distribution factors or generation shift factors
corresponding to the type of the A contingency.

In the Performance index (PI) based methods, an index associated
with each contingency is calculated as follows:

PIA) = % Z w (VP-v )+ % Z w, (S, V7S, \ax) (47)

where
W, w, - weighting factors
\/i v " the desired value of V-.

S, yay - the maximum rating of the k™ line current

Based on the value of PI(A) being less/greater than a certain
threshold "TH", the contingency A\ is classified as secure/insecure.
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NN approach is proposed for contingency screening [56]. It is based
on identifying the contingent branch overloads. The question of
contingent voltages is not addressed in this study. This is known as
active power contingency screening which is based on the DC load
flow concept. By assuming that all voltage magnitudes Vi are equal to

unity and that all angles 0_‘ are small (sin 8& = ﬂi), equations (40) and

(42) can be reduced and put in matrix notation as,

P =B¢
net
(48)
. =T2#8
line
For secure operation, |P_ | = Souax Y ke {lines}

A collection of NNs are trained where each NN is dedicated to a
specific line outage. The inputs to the NN are:

Bij v i,j € {buses} (post-contingency system)

P vV i g {buses},

net i
and the outputs are:

vV k e {lines}

line k

binary flag e {0, 1} indicating secure/insecure status.

The concept was tested on a small power system with 6 buses and 9
lines. Training data was generated for 9 contingencies and 9 different
discrete loading levels giving 81 different patterns. Only line
contingencies were considered. A line contingency was simulated by
halving the admittance between the corresponding buses. Each
contingency was handled by a separate NN.
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6.4.4 Comments

The proposed NN based contingency screening method is effective for
a small power system. The minimum input dimension is equal to twice
the number of buses plus the number of lines. Therefore, for a larger
power system, the input variables can be excessively large. Under such
cases, training a single NN for contingency screening will be difficult.

6.5. HARMONIC IDENTIFICATION AND EVALUATION

6.5.1 Introduction

Nonlinear loads and other harmonic producing loads have existed in
power systems for many years. Today, the number of harmonic
producing devices is rapidly rising due to the development of high
power semiconductor switches and converters.

IRNEANIAW

IRNEA D,

Figure 12. Phase controlled rectifier

Figure 12 indicates a simple phased controlled rectifier connected to a
resistive load. The figure shows the load voltage and current. This
nonsinusoidal load current, unless filtered, will be drawn from the
power system. If a large number of such solid state devices and
circuits are used, the nonsinusoidal current will give rise to harmonic
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voltage drops across system components, thereby distorting the
voltage wave form of the system. This can cause potentially damaging
problems to the power system such as misoperation of protective
relays, overheating of capacitor banks, increased losses in
transmission systems, insulation failure in cables, increased losses in
transformers and noise in communication circuits.

6.5.2 Problem Description

It is necessary to analyze and predict the behavior of current and
voltage harmonics so that appropriate action could be taken to reduce
their adverse effects. So far, model based analysis has been
inaccurate and time consuming due to the nonlinearity of the
harmonic components, the random behavior of harmonic signals and
the wide variety of harmonic profiles of all solid state circuits.

6.5.3 Neural Network Approach

As a first step to identifying harmonic loads, a multi-layer perceptron
was used to identify the type of harmonic load from among a set of
pre-specified choices [57]. The training data for the NNs are
generated by monitoring the current wave forms corresponding to
each specific type of harmonic load. The fast fourier transform (FFT)
of the digitized current wave form is used to produce the harmonic
frequency spectrum. Different combinations of harmonic magnitudes
and phases are then fed to the NN as inputs with the corresponding
load type as the output.

Figure 13(a) shows the structure of the NN used to learn the
harmonic/load relationship in the example given in reference [57].
The NN input are chosen among 31 harmonic magnitudes and phases.
The output is one of S load groups, namely Personal Computer (PC),
Television Set (TV), Video Tape Recorder (VTR), Fans(FNS) and



1 NN is trained under each case with different combination of inputs.

harmonic components

! Ly

| L1l

FL TV VIR FNS PC
o 0 1t 0 O

(a) (b)

Figure 13. Identification of harmonic loads using NNs
From [57] courtesy of IEEE, (C) IEEE,1989

Case I: Magnitude of harmonic currents of order h = 1,2,.....31;
Case II: Magnitude of odd harmonic currents of order h = 1,3,5,....31;

Case III: Magnitudes of harmonic currents of order h = 2,3,4,5,7,
9, 11 and phase angles of order k = 3,5,7,9, 11;

Table 3 Correct classification as a percentage

Learning Set Testing Set
Case Case Il Case 111
A B C A B C A B C
A 0 92 86 9 73 68 | 100 100 100
B 94 N 78 84 98 95 | 100 100 100
C 61 99 97 92 9 97 90 9 100

From [57] courtesy of IEEE, (C) IEEE,1989
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currents is investigated for the three cases. NNs are trained and tested
using 3 separate data sets. Several NN architectures with different
numbers of hidden layers are used to find the optimal NN design.
Table 3 gives the performance under the 3 cases for the NN design
with six hidden neurons.

It is clearly seen that NN trained under case III configuration has the
best classification performance.

In subsequent development, a multi-layer perceptron was used to
predict the magnitude of a selected harmonic in a time series form
[58].

XOt+1) = £(XO@), Xt-1),......, XO(t-K))
where,
X®(t) - magnitude of the i harmonic at time t

A series of multi-layer perceptrons were trained to predict the
magnitude X“(1+1) based on a time series of the past magnitudes.
The structure of the NN is given in figure 13(b). The performance of
the NN was compared with another nonlinear system identification
algorithm known as the Revised Group Method of Data Handing
(RGMDH). The NN identifier was observed to give an error
distribution of lower variance compared with the RGMDH algorithm.

6.6 ALARM PROCESSING AND FAULT DIAGNOSIS

The control centers of a power system are continuously interpreting
large number of alarms signals to determine the status of the system
components and to evaluate the power system operation. This
process is very complex because of two key reasons:
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1. Alarm pattens are not unique to a given power system
problem. Same fault may manifest in different alarm patterns
based on the current topology and operating status of the
power system.

2. Alarm pattern are likely to be contaminated with noise due to
equipment problems, incorrect relay settings, interference, or
miscalibrated meters.

Expert system techniques have been widely tested for analyzing alarm
signals. The formulation of rules, however, requires precise definitions
of the power system and its operational strategies which may widely
vary depending on the utility. Therefore, expert system technique are
known to suffer from a high customization effort.

6.6.1 Neural network approach

The ability of a power system operator to diagnose a system problem
by analyzing a set of multiple alarms is a form of pattern recognition.
Accurate classification of noisy alarm patterns is also a key
shortcoming in most of the conventional techniques. Therefore, NN’s
with their ability to classify noisy patterns seems a logical choice for
alarm processing. The NN is also capable of associating different
alarm patterns to the same system fault by training the NN with a set
of information rich data that represents different operating scenarios
[59]. Figure 14 shows a block diagram showing the concept of
intelligent alarm processing (IAP) using NNs.

Learning and retrieving phases of the IAP NN is presented in figure
14. The NN training set is generated by first creating a credible set of
contingencies and then deriving the possible alarm patterns under
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Figure 14. Concept of using NN for IAP
From [59] courtesy of IEEE, (C) IEEE, 19389

each fault. These patterns are generated by the relay protection
schemes and power flow analyses. These patterns are then used to
train a multi-layer perceptron using back-propagation [59]. In the
retrieving phase, incoming alarm patterns from the energy
management system (EMS) are interpreted to predict the possible
fault scenario.

The concept was tested on a 115kV/12kV substation for 65 different
fault conditions with 99 bit alarm patterns [59]. It was also tested on
the IEEE 30 bus system for 72 different bus and line fault conditions



was able to correctly classify all noiseless input patterns. NN was also
able to correctly classify some of the noisy patterns. Noisy patterns
were generated by randomly toggling certain bits of the original input
pattern. It is also worth mentioning that when noisy patterns were
incorrectly classified by the NN, the system operator, given the same
noisy pattern, also reached the same wrong conclusion.

L

6.6.2 Comments

This is an area where NN seems to have great potential due to its
intrinsic noise rejection and self learning capabilities. The reported
study is preliminary in the sense that it does not take into account
some of the characteristics of the alarms such as the order in which
they are reported, the magnitude of the violations, and the behavior of
alarms over a certain time period. A combination of several NNs’ are
proposed to capture the different system problem characteristics and
the time-sequential significance of the alarm data in order to draw
more definitive conclusions.

6.7 STATIC SECURITY ASSESSMENT

Static security assessment is defined as the ability of a power system to
reach a state within the specified safety and supply quality following a
contingency. The time period of consideration is such that the fast
acting automatic control devices have restored the system load
balance, but the slow acting controls and human decisions have not
responded.

Static security assessment consists of three distinct stages. They are
contingency definition (CD), contingency selection (CS), and
contingency evaluation (CE). CD defines a contingency list to be
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is deemed sufficiently high. CS is the process that shortens the original
long list of contingencies by removing the vast majority of cases having
no violations. Two commonly used algorithms for CS are contingency
screening contingency ranking. These methods were introduced in a
previous section. There has also been an increasing effort towards
applying expert systems to augment the analytical CS methods [51].
CE is the process where the selected contingencies are simulated on
the power system in order to evaluate the post-contingency security
variables. The resulting system attributes are checked for security
violations. the calculations are performed on each of the list of ranked
contingencies. The number of cases evaluated depends on the amount
of time and computer resources available for the task.

6.7.1 Neural Network Approach

From a pattern recognition perspective, CE is a two class
classification problem where the pre-contingency system attributes are
used to predict post-contingency system security status. A multi-layer
perceptron can be trained to perform this pattern classification [51].
But for a large power system, where a large number of attributes and
operating conditions are needed to classify the system security, a
single NN approach may be an enormous computational exercise.
One way of reducing the dimensional complexity is to use a modular
approach where the security problem is divide into smaller tasks or
reduced topology. A modular NN can then be used to handle each
task or topology.

Figure 15 shows a possible modular approach to large power system
problem. A specific NN for predicting security status under a specific
contingency is proposed. This is necessary due to the variations in
which a contingency manifests itself based on the nature, location and
clearing strategy. Furthermore, for a given contingency, the
mechanisms leading to line and voltage violations are fundamentally
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lifferent. Line violations are brought about by real power overflows,
vhile voltage violations are brought about by an excess or a
leficiency of reactive power. Therefore, separate NNs are trained for
1ssessing line and voltage violations under the same contingency.

contingency vielation contingency  security
evaluation classification

L

contingency 1 <;:ZOQe e ::: ; — 1 g
contingency 2 voltage —_ ANN 3 __ 1, 0
Large e {line —— ANN 4 I (N
scale
ower contingency 3 voltage —__ ANN § — 1,0
gystem ;g d { {:line —— ANN 6 — 1,0
conti;\gency m <;::°ge — ::::: grr:—-\__ : g

Figure 15. The proposed NN’s approach to SSA

.7.2 Generating training Data

‘ach training pattern for a particular contingency is selected to
orrespond to a different power system loading condition. These
atterns can be generated by perturbing each of the real and reactive
bads with a uniformly distributed random variable within the
secified range. The perturbations are uncorrelated. The pre-
ontingency system states X°, are given by the solution to the power
ow equations,

ffx%u,L) =0 (49)
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where,
L - Load demand
U - Control vector (such as s generator real power and voltage)

(.)° - Pre-contingency value of "."

U and L are inputs to equation (49). The control vector U, is selected
to minimize an objective function F(X’,U) which represent a pre-
contingency optimal dispatch strategy,

N

F(X,U) = 2 (C,Pg* + C;Pg + C.) (50)

where Cm. Cli and Cui are coefficients, Pg; is generation of machine i.

The control vector U is given by
U = [Pg] = [Pg, Pg..... PgNg]T (51)

To minimize the cost index of equation (50), a Lagrangian function is
introduced,

LXSU, LN = FXLU) + AP, U, L) (52)

where A is the lagrange multiplier vector. The minimization process is
iterative with respect to X’ U, and A A gradient based search
technique is used for the process. The control vector U is bounded by
the constraint,

U =U=U (53)

min max

Based on generator ratings and system considerations. A solution to
this constrained optimization problem should satisfy the Kuhn-Tucker

corner conditions. This procedure is commonly known as an Optimal
Power Flow (OPF).




after the system states X" in the load flow equations is obtained,
CXLUSLY) = 0 (54)
where,

X" - post-contingency state vector
U" - post-contingency control vector
L* - post contingency demand

In this study, L* is assumed to remain equal to its pre-contingency
value. The post-contingency control vector U* is calculated based on
the type of fault: for a sizable disruption of real power, such as the
loss of a tie-line or a generator, the outputs of the remaining
generators are adjusted on the basis of their individual speed-droop
characteristics; or else, only the swing bus absorbs the slack
generation. The droop of each individual generator is assumed to be
proportional to its maximum ratings. Therefore, if tripping of a tie line
causes a surplus of real power Ap, the individual generator power
settings are adjusted as,

U"=U-AU (55)
where,

-—2ap -
AU = Pg(mm (i= 1""Ns)

Z Pg(max) i

The bus voltages and line currents are then checked against their safe
operating limits specified by,

G(x U =o (56)



is labeled secure if no violations are found, otherwise the power
system is insecure.

6.7.3 Feature selection

Each pattern vector should contain all possible variables affecting
system security such as load powers, bus voltages, line flows etc. With
feature extraction, the dominant variables are selected. By this
method, the dimension of the pattern vectors can be substantially
reduced. For example, assume a pattern with D dimensional
normalized measurement vector,

Y =0y, Yy Yl

Assume that the dominant number of variables is d<<D. The
security classification is then based on these d components. The
heuristic notion of interclass distance is used to accomplish this task.
Given a set of patterns with dimension D, it is reasonable to assume
that the pattern vectors for each of the two classes (secure/insecure)
occupy a distinct region in the observation space. The average
pairwise distance between the patterns is a measure of class
separability in the region with respect to the particular variable. The
following function F provides a measure of the importance in each
variable.

F = —f£—L 0<j<D (57)

1
mo= ;yj‘ 0<15N!i
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1 2 <
Ni Yy 0<n-—Ni
1
- 2: <1s
N (y m) D<1=N

ji2=-I;I1— Z(y m) 0<n£Ni

The subscript ’s’ stands for ’secure’ while *i’ stands for ’insecure’. N_
and N, indicate the number of secure and insecure patterns that form
the training set. m, and m, denote the corresponding in-class means
of the ™ attribute. o and a, are the standard deviations. The

variables are ranked according to the following steps.
1 Calculate Fj v 0 <j=D

2 Rank all Fj in a descending order

& Go to the 1% ranked variable.

4. Calculate correlation coefficients (CC) of all lower ranked
variables with respect to the 15t ranked variable. The CC is
defined as,

E((y, m) (5, - m)} |
= 0<j=D
1 ogU
i
5: Eliminate all lower ranked variables which have a |CC| > 0.9
6. Go to the next highest ranked variable and go to step 4.

The process is repeated until all the variables are ranked or discarded.
The resulting ordered list of variables are considered to be key
features in training the NN classifier.
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6.7.4 Training the neural nefwork

In order to evaluate the performance of the trained NN classifier, the
following definitions are introduced.

False Alarm: When a true secure operating point as described by the
oracle, is classified as insecure by the NN.

Fualse Dismissal: When a true insecure operating point as described by
the oracle, is classified as secure by the NN.

The following percentages are also introduced to obtain a quantitative
measure of the classification performance. The percentage false
alarms, false dismissals and false classifications are calculated using
the following definitions:

# of false alarms

% false alarms — x 100
total true secure states

St # of false dismissals
% false dismissals = : x 100
total true insecure states

T false alarms + false dismissals
% false classifications = : x100
true secure + true insecure states

6.7.5 Tests results

The concept is tested on the study system of Figure 16. It includes 4
generators (Ng=4), 8 loads (N, =8) and 16 transmission lines (N = 16).
The influence of the external networks is modelled by a bi-directional
power flow at boundary buses #9 and #10 respectively.

Table 4 shows the operating point and the allowed perturbation in the
real and reactive loads at each bus. The tie line flow is considered to
be either positive or negative depending on the direction of flow.
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Figure 16. The test power system

Table 4. The range of load parameters

bus bus type real load reactive load
# limits limits
(puMW) {puMVar)

1 slack 9.0-110 0.0-10
2 load 112-16.8 0.0-1.0
3 generation 13.5-16.5 0.0-10
4 {oad 140- 160 0.0-1.0
5 generation 13.5-16.5 0.0- 10
6- load 154 - 28.6 9.1-169
i generation 9.0 -1L0 0.0-1.0
8 load 00-20 50-150
9 boundary -7.5-15 -15-73
10 boundary -1.5-7.5 -1.5-75

In this test, the tripping of tie line #16 is investigated. A single pre-

contingency pattern contains 54 different attributes including all the
real and reactive generation (ng,Qg}_), real and reactive loads (ij,ij),

all the bus voltage magnitudes (Vbj) and all the line currents (ILk) in
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selected as described earlier. Six features were used for NN training:

QbB’ Vbs’ ng’ leO

the NN are given in Table 3.5.

,- The training and testing statistics of

Table 5 Training and testing statistics for the NN in Case L

Network architecture & Testing statistics

training information

inpats 6 testing data 500
outputs 1 true secure patterns 346
hidden layers 1 true insecure patterns 154
hidden neurons 6 false alarms 9
iteration step 0.05 | false dismissals 4
momentum factor 0.01 | % false alarms 2.601
training patterns 1550 | % false dismissals 2597
ileration cycles 2000 | %false classifications 2.600

Table 6. Training and testing statistics for the NN in Case IL

Network architecture & Testing statistics

training information

inpats 1 testing data 500
outputs 1 true secure patterns 160
hidden layers 1 true insecure patterns 340
hidden neurons 6 false alarms 3
iteration step 0.10 | false dismissals 2
momentum factor 0.01 | % false alarms 1.875
training patterns 1550 | % [alse dismissals 0.588
iteration cycles 1000 | %false classifications 1.000

In the second case, the contingency is the tripping of the transmission
line between buses #5 and #6. The training data are generated
similar to the previous case. The input attributes for the NN are

selected by the feature selection algorithm described earlier. The
features Que Qu» Qu Qun Iis iy and Iy, are selected. The

training and testing statistics for the NN in case II are given in table 6.




NEURAL NETWORKS: APPLICATION TO POWER ENGINEERING 427

6.7.6 Comments

The feature selection criteria is based on the heuristic notion of inter-
class distance. Selection of features based on their individual merit
does not always ensure accurate selection of the discriminatory
information.

Selection of loads based on a random number generator is not
realistic. Load variations in an actual power system consists of a
superposition of correlated and uncorrelated components. In this
study, no provision to handle any topological variations brought about
due regular powers system operating characteristics.

Security assessment by the above mentioned method would require a
NN for each possible contingency. To cover all possible contingencies,
a large number of NN may be needed. The implementation of such a
scheme is practical only when NN hardware becomes available.

6.8 DYNAMIC SECURITY ASSESSMENT

In dynamic security, or small signal stability analysis, the power system
model is linearized around a selected operating point and the
corresponding system eigen values evaluated to predict system
stability. For a power system to be evaluated at all possible operating
conditions, the linearization and eigen value analysis has to be
repeated for all the cases. This is a time consuming process that poses
a challenge to performing dynamic security assessment (DSA) on-line.
Thus NN may provide a potential avenue toward achieving this
objective.

6.8.1 Problem Description

In dynamic security assessment, the power system stability is evaluated
via frequency domain analysis. The power system is divided into a
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study system and an external system. The external system can be
replaced by a dynamic equivalent models while the study system is
modelled in detail. The model of the entire power system is
developed using the small signal analysis. The eigen values of the
system are then computed and assessed at various operating
conditions [16]. The linearized state space model of the power system
can be considered as an oracle for NN training. The linearized model
is derived by combining the set of state and algebraic equations listed
in section 6.3 for all generators in the study area of the power system.
The composite linearized state spaces equation take the form,

d AX

“a - A(XO,UU)AX + B(X,U) AU

where X = X + AX and U = U + AU are the state and input

vectors for the system. The stability of the system is determined by
calculating the eigen values of the system matrix A(X,U ). Any eigen

value with a non-negative real component is unstable mode of
operation.

The stability of the power system as described above is heavily
dependent on the operating condition and topology of the power
system. The computation of the eigen values of a large system is a
time consuming process that inhibits the on-line applications.

6.8.2 Neural Network Approach

Training data for dynamic security assessment can be generated off-
line by using an oracle. Training data can also include measurements
of previous assessments. A multi-layer perceptron is trained using
back-propagation to learn the dynamic security status with respect to
a selected set of variables U within a defined operating space [16]. A
test example of 9 bus, 3 generators was used to validate the method.
For simplicity, 3 independent input variables were selected as inputs




generator and complex power output (S = \/P* + Q) of another
generator. All other parameters were assumed to be constant. In the
retrieving (testing) phase, 2-dimensional dynamic security contours of
P,Q are obtained by fixing S at arbitrary values. The NN generated
contour compared well with the actual contour obtained using the
oracle [16].

6.8.3 Comments

The dimensionality of the security contours is a function of the size of
the system under investigation. In a high dimensional operational
space where a combination of correlated and uncorrelated variables
forms the input space, the development of a NN based system for
assessing dynamic security is a challenging problem.

6.9 CAPACITOR CONTROL

6.9.1 Introduction

Compensating the reactive power flow in utility systems is an area of
continuous development. Reactive power has limiting effect on the
operation of the power system due to the line losses and unnecessary
equipment load. The reactive power compensation can be viewed as
an optimization problem where several optimum sizes of capacitors
can be placed at optimum locations to minimize a cost index such as
line (or system) losses. This is a complex nonlinear optimization
problem. Many techniques have previously been used such as gradient
methods, linear, nonlinear and dynamic programming and expert
system methods.
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Consider a uniformly loaded feeder of 'h’ length as shown in figure
17(a).

1
—>ifl-z)
2 Ymd & &
1 1 1
(a) (b)

Figure 17. (a) Uniformly loaded cable (b) capacitor compensated
cable

The 3% power loss in an elemental length dx due to the resistance of
the cable is given by

dL,, = 3ri’(h-x)7’dx (58)
where

i - current per unit length

r - resistance per unit length

h - length of the cable

The total 3® power loss (w) along the feeder is given by

h

e .2 2 — w3 2
L, = 3ri l(h-x)dx~—r1h —RT!.‘_ (59)

0

where
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=rh - the total resistance of the cable

ih - the total load current drawn in to the cable

ming that the load is cyclic with a period of T hours, the total
gy loss (wh) can be calculated as,

iy T

_ _ 2 - 2
- ] L,dt = R_ J [7dt =RI LT  (60)

3 T T MAX s
0 0

consider the installation of a capacitor bank at location h_as

n in figure 17(b). The 3® power loss (w) can now be modified as,

h, h
L, =3r j (i (h-x)-i)* dx +l i? (h - x)? dx
0 he
(61)
L, =3r[0’?/3 + (h-2hh)ih + i’h ]
.

reactive component of current i

capacitive current provided by the bank

modified energy loss can be similarly calculated. The cost saving
to installing capacitors to decrease energy and power losses is
1 by,

C=KIAE”+K2AL” (62)

e K and K, are two cost factors. The optimum size and location

e capacitor bank can be explicitly calculated by setting the partial
atives (8 AC/d i) and (8 AC/d1) to zero.
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However, in a real power system, the situation is not that straight
forward. The distribution system can have multiple capacitors with
discrete tap settings. The load current may not be uniformly
distributed and the load variations at different parts of the distribution
network may be uncorrelated. Hence, no common load cycle can be
identified. Also, other economic considerations such as depreciation,
return on investment etc. may have to be inciuded in the optimization
model. In order to deal with these constraints, linear and nonlinear
programming techniques can be employed. Expert systems also have
been looked at as a possible alternative. However, solution accuracy
and computational time are a major concern in most of these
techniques.

6.9.3 Neural Network Approach

The NN assisted approach to the solution of capacitor control
problem is expected to drastically reduce the calculation times and
enable on-line adjustments. A specific example in the control of
capacitors on a radial distribution system is addressed in [62]. The
test power system is given in figure 18(a). The location of the
capacitors are assumed pre-determined. The entire power system is
divided into six subsystems, each with uniformly distributed loads

marked by dotted lines. There are 6 measurement locations marked
by M‘ through M. P, Q flow and the voltage magnitude V] are

monitored at the capacitor locations. The aggregated load in each
subsystem is assumed to take one of 4 feasible levels at 50%, 70%,
85% and 100% of the peak load with proportional variations in
reactive power. The current tap setting of each capacitor is also
known. The objective is to use 3 measurement quantities (P,Q,|V]) at
locations M1 through M6 and the current tap settings of the
capacitors C1 through CS in order to calculate the optimum tap
settings for the 5 capacitors.
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Figure 18. The capacitor control through NNs
From [62] courtesy of IEEE, (C) IEEE,1989

The problem is solved in two stages. Both stages use multi-layer
perceptrons trained by back-propagation. In stage I, 6 NNs, shown in
figure 18(b), are trained to perform a power flow calculation. The
training data for the this stage are the P, Q, | V| measurements for all
feasible combinations of load levels and capacitor settings. The
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figure, the circles placed on the lines indicate multiple measurements.

In stage II, the outputs of the NNs of stage I (i 1 through i e,') are used to

train 5 NNs as shown in figure 18(c). In this stage, the NNs are
trained to select the optimum tap setting of all 5 capacitors. Training
data for stage II are generated by the optimizing algorithm. Different
combinations of aggregated loads on the 6 subsystems are assumed.
In the retrieving phase, the NN estimated the optimum tap settings.

6.9.4 Comments

Perhaps one of the most significant contribution of this work is the
partitioning of the overall problem into in to smaller subproblems.
Then individual NN’s are used where each id dedicated to solve a
specific subproblem, This modular approach facilitates faster and
simpler training of the NN’s. Also it simplifies the maintenance
(updating) of the NN’s.

6.10 TOPOLOGICAL OBSERVABILITY

Topological observability is a method for selecting certain locations in
the power system where measurements can be collected in order to
observe the entire power network. Once the topological observability
is concluded, a State estimation technique is used to filter any errors in
the measurements and to estimate the states at locations where
measurements can not be obtained.

6.10.1 Problem Description

Consider the nonlinear measurement model for the power system
consisting of (n) states and (m) measurements, and m > n
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z = h(x) + v, (63)
where
z measurement vector {(mx 1)
X state vector (nx 1)
v measurement noise vector (mx 1)

The maximum likelihood estimate of x is obtained by minimizing the
sost function,

J(x) = (z-h(x))' R (z - h{x)) (64)
vhere R = Elv, vf], and E[.] is the expectation of "."
o obtain the optimal solution of x, the first derivative of the cost

unction is set to zero

=0~ )T R - ni)) = 0 (65)

vhere Hyr = g—:_"

Nhere x* is the estimated value of x.

‘or a linearized de-coupled measurement model, the measurement
quation takes the form

z =Hx + v (66)

‘here H is the linearized measurement matrix. In this case, the
ptimal state estimate x can be proved to be as follows

x = (HR'H'H R "2z (67)

he power system is said to be topologically observable if H has a
ink of (n). The question to be answered is whether or not a system js
bservable through a given types and locations of measurements. If
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the system is not observable, then the question is what other
measurements are required to make it observable.

Among the commonly used techniques for topological observability
are: heuristic methods, and graph theory methods. These techniques
are associated with different degrees of accuracy and computational
effort. In an effort to find the most efficient way to handle the
combinatorial complexity of this problem, a NN approach has been
looked at as a possible alternative.

6.10.2 Neural network approach

(o)

Figure 19. (a) 3 node test system  (b) corresponding measurement
allocation graph
From [63] courtesy of IEEE, (C) IEEE,1989

The proposed method [64], starts from a graph theoretic definition of
topological observability and converts it to an integer programming
problem. It is then solved by using a Hopfield neural network model.
Based on the converged solution of the Hopfield model, it can be
determined whether the system is observable under the assumed
measurement placement.

The topologically observable measurement allocation graph is defined
as having a structure where, a node has at least one measurement and a
measurement is assigned to at least one node.
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se elements represent the relationship between the meters and
nodes in the allocation graph. Elements of G can be defined as

a: meter z covers nodej: 1= a = 0: a - integer
: ; !

30= (68)
0: meter z does not cover node |

s important to note that the value of a, can take only values {0,1}

¢ the hopfield network iterates to a solution. But for the
aulation of G, the values of a, are assumed to be bounded within

interval {0,1}.) For the three node power system shown in figure
1), a graph G can be written as

4] 92 =3
a4 ag ag
ay ag 4ag

far as graph G is concerned, to meet the topological observability
dition, the following conditions must be met

Measurement z_is assigned to only one node. Hence, at least
i

one value of a; in each row should be equal to one, i.e
Z a = 1 wherek € row(i) (69)
k

Node n_has at least one measurement. Hence, at least one
1

value of a in each column should be equal to one, i.e

Z a z 1 where j € colm(i) (70)
j



eliminated by introducing slack variables. Once the slack variables are
eliminated from the basis, the following combined model results.

Da =1 : (71)

The vector a contains elements a, while elements of matrix D denoted
by dij take values {0,1} based on the constraint equations. Solving

equations (71) with the constraints (1 = a_= 0: a, - integer) is

equivalent to minimizing the cost function

1
E = 5[p,G, + p,G)] (72)

where,

I

G, Z (1- E dij a ) (i=1L.m+n j=1.n)
i=1 j

2 E ai(lnai)

i

Q
I

p; and p, are to weighting factors whose choice is arbitrary. The cost
index G, goes to zero when the matrix equation in (72) is satisfied

while index G, forces the values of a, to be either 0 or 1. Therefore

both G and G, should ideally converge to zero.

By equating the coefficients of the energy function in equation (72)
and the generic hopfield energy function given by,

E(Ql) = % Y X w a()a(l)- Y, 6a0) (ij = 1.N)
i i

(73)
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can be proved that

- -p, E d 4, + p,d, (74)

= p, E g - (75)

here k = 1,...m+n

Id

he solution procedure is as follows. First, the weights w and the
wesholds @ of the hopfield network are set according to equations
74) and (75) respectively. Starting from an arbitrary set of aj within
1e range [0,1], the hopfield network is allowed to converge to a stable
>lution where the energy function is sufficiently minimized. The
alues of a_are then taken from the converged hopfield network and

1bstituted in order to find a redundancy factor R given by

R=Zak-n (76)

k

here k = 1.....,nw (nw - number of variables as), and n is the

umber of nodes for a set of measurement placements, the system is
1id to be topologically observable if the value of R given by equation
79) is a non-negative quantity.

.10.3 COMMENTS

lue to the poor attractor dynamics of the hopfield network, the
slution was seen to converge to a local minimum thereby giving an

icorrect observability picture. The convergence was also largely
ependent on the choice of the parameter p and p,. Subsequently,

1e same formulation was solved using a Boltzman machine to obtain
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better results. Improved convergence properties were observed in this
formulation.

6.11 IDENTIFICATION AND CONTROL OF A DC MOTOR

6.11.1 Introduction

An electric drive system is considered "high performance" when the
rotor position or shaft speed can be made to follow a pre-selected
track at all time [66,67]). A track (or trajectory) is a desired time
history of the particular controlled variable. This type of high
performance drive system is essential in applications such as robotics,
actuation and guided manipulation where precise movements are
required [66,67).

A fast controller is an essential feature of such a drive system [66,67].
The objective of a speed controller is to manipulate the terminal
voltage in such a manner as to make the rotor speed follow a specified
trajectory with minimum deviation. The resulting control signal should
be reasonably well behaved in order to be implemented using a
general purpose converter [67].

One of the main difficulties with conventional tracking controllers for
electric drives is their inability to capture the unknown load
characteristics over a widely ranging operating point. This makes the
tuning of the respective controller parameters difficult [66-69]. There
are many techniques that can overcome this problem. In adaptive
control for instance, this problem is overcome by identifying the
overall behavior of the motor using a linear parametric (ARMAX)
model at prespecified time intervals [66,67,69]. But load torque is
usually a nonlinear function of a combination of variables such as
speed and position of the rotor. Hence identifying the overall
nonlinear system through a linearized model around a widely varying



which can lead to instability or inaccurate performance [69].

The ability of NNs to learn large classes of nonlinear functions is well
known [33,70]. It can be trained to emulate the unknown nonlinear
plant dynamics by presenting a suitable set of input/output patterns
generated by the plant [70-74]. Once system dynamics have been
identified using an NN, many conventional control techniques can be
applied to achieve the desired objective. Among these techniques is
indirect model reference adaptive control (MRAC) [69,70] which is
specifically useful in trajectory control applications. An attempt has
been made to merge the accuracy of MRAC systems and the
calculation speed of NNs to come up with a trajectory controller for a
dc motor.

This section introduces a NN based identification and control system
[65]. It is formulated as a MRAC system for trajectory control of a dc
motor. No prior knowledge of the load dynamics is assumed. The
main purpose of the controller is to achieve trajectory control of
speed when the load parameters are unknown.

6.11.2 Problem Description

The dc motor is the obvious proving ground for advanced control
algorithms in electric drives due to the stable and straight forward
characteristics associated with it. It is also ideally suited for trajectory
control applications as shown in references [66-68]. From a control
systems point of view, the dc motor can be considered as a SISO plant,
thereby eliminating the complications associated with a multi-input
drive systems.

The dc motor dynamics are given by the following two equations




Kia(t) = J[dwp(t)/dt] + pr(t) + T!.(t) (78)
where,

up(t) - rotor speed rad/s
V(1) -terminal voltage v
i (t) -armature current A

TL(t) - load torque Nm

J - rotor inertia Nm’

K - torque & back emf constant NmA™
D - damping constant Nm s

R. - armature resistance {1

L - armature inductance H

The load torque TL(t), can be expressed as
T, = ¥o) (79)

where the function ‘I'(wp) depends on the nature of the load. The

exact functional expression of ‘l’(up) is assumed to be unknown.

In order to derive training data for the NN and to apply the control

algorithms, a discrete-time dc motor model is required. Let’s assume
the load torque TL(t) of equation (79) to be

T () = we (1) [sign(e (1)) (80)

where p is a constant. The function is set up so that the direction of
load torque always opposes the direction of motion. The motivation
for choosing this particular function is that it is a common
characteristic for most propeller driven or fan type loads. However, it
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is important to note that the choice of load torque is completely
arbitrary and does not influence the proposed control algorithm.

The discrete-time model is derived by first combining equations (77),
(78) and (80) and then replacing all continuous differentials with
finite differences. The resulting state space equation is

wp(k +1) = amp(k) . ﬁwp(k- 1)
+ o [sign(w (K)]w *(K) 81)

+ 8 [sign(w (K))]w *(k-1) + £V (k)

where a, £, and £ are constant values based on the motor parameters
J,K,D, R, L , and the sampling period T, while - and 4 in addition to
being functions of the above parameters are also functions of pu. The
value k denotes the k™ time step.

A separately excited dc motor with name plate ratings of 1 hp, 220 v,
550 rpm is used in all simulations. Following parameter values are
associated with it.

J = 0.068 Kgm’
K = 3475 Nm A"
R =75@

L, = 0055 H

D = 003475 Nms
p = 0.0039 Nms’
T = 40 ms

6.11.3 Identification and Control using NN

Figure 19 shows the basic concept of identification and control of the
dc motor using an NN. The scheme is very similar to indirect model



A M. A EL-SHARKAWI, R. J. MARKS II, AND S. WEERASOORIY A

reference adaptive control [69,70) where the motor is first identified
between a combination of its input and output variables using an NN.
The weights from the trained NN identifier are then used in the
controller to calculate the terminal voltage which will asymptotically
drive the motor shaft speed wp(k) towards the reference model output

um(k).

mereaonce | ()
OOEL
(k)
‘T 1
ANN 1
cowmouier] viw [
L MOOEL |
NON LIEAR
PLANT

Figure 20. NN based identification and control system
From [65] courtesy IEEE (C) IEEE, 1991
In the case presented in figure 20, the quantities t:._(k) and sc(k) are
defined as the identification and tracking error respectively. The

objective in identification is to minimize

[e(k)]* v kT € [0,t]

while the control strategy is to calculate a suitable terminal voltage
Vl(k) which minimizes

le (k)] v kT € [0,1]

where [0, t(] is the time window under review. The desired behavior of

the motor is specified through a stable reference model. For a desired
speed trajectory {“’m(k)}' a bounded control sequence {r(k)} could be

derived by using the reference model. This forms the activation signal
for the control system.



determined by the consequent design of the controller. This is
because, as seen from figure 20, the controller uses information from
the identified model to predict the controlled input.

The dc motor characteristics are identified by presenting a set of
input/output patterns to the NN and by adjusting its weights
accordingly by using back error propagation. The extent of training
depends on the degree-of complexity of the dynamics to be learned.
One of the first tasks in training an NN is to define a region of
operation with respect to its input/output variables, In conforming
with the mechanical and electrical hardware limitations of the motor,
and with a hypothetical operating scenario in mind, the following
constrained operating space is defined.

-30.0 < "’,,(k) < 30.0 rad/s
{wp(k- 1) - wp(k)j < 1.0 rad/s

| Vi(k) | < 100v

Two different identification topologies are introduced. They are bath
oriented towards achieving the same control objective. Depending on
the circumstances, one or the other may be used. The NN
identification model performance is assessed by comparing the
estimated output and the actual motor output for a common arbitrary
excitation signal.

Equation (81) which describes the motor dynamics, can be
partitioned as

wk+1) = flok) k-] + £V (K (82)

where the function f [] is given by,
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+ v [sign(o,(k))] @ *(k) (83)

+ 8[sign(w (K))] wpz(k -1)

and is assumed to be unknown. A NN is trained to emulate this
unknown function f[.]. The values wp(k) and wp(k - 1) which are the

independent variables of f[.], are selected as the inputs to the NN,
The corresponding NN output target f [wp(k), wp(k- 1)] is given by

equation (83). The target is also equivalent to the value of wp(k +1)
in equation (81) with the terminal voltage V‘(k) set to zero. The latter

method is useful when deriving training data from actual hardware.

Table 7 Training and Testing statistics of the NN

number of inputs 3
number of outputs 1
number of hidden layers 1
number of hidden neurons 5
number of training patterns P 600
number of training sweeps 1000
learningstep 7 0.1
momentum gain v 0.1
Elolal threshold & 0.04

The NN is trained off-line using randomly generated input patterns of
[wp(k). wp(k - 1)] and the corresponding target f [wp(k), wp(k - 1)). The

choice of up(k) and wp(k - 1) have to satisfy the constraints previously

specified.

The motor speed is estimated by the trained NN predictor as

~

wp(k +1) = N [wp(k), wp(k- 1)) + EV'(k) (84)
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where N[.] denotes the NN output for a given set of "." inputs. A" "
indicates an estimated value of the quantity directly below it. The NN
topology and the training effort are briefly described by the statistics
in table 7.

As mentioned earlier, except for the number of inputs/outputs of the
NN, all other design and learning parameters are selected by trial and
error.

+ wplk+1) = w5 (k)
€l z"
& < =1
ANN z
wap(k}-"p(k" 1 )] <
Vil oc moror | ¥

Figure 21. Structure of the NN for identification of the dc motor
From [65] courtesy IEEE (C) IEEE, 1991

The trained NN is applied as a series-parallel type identifier as
described in reference [70], to estimate the value of the function f[.].
The structure of the identifier is shown in figure 21. z in any figure
indicates a unit time delay. The performance of the trained NN
identifier is evaluated by comparing the actual and estimated speeds
as calculated from equations (82) and (84) respectively for the
following arbitrarily selected terminal voltage sequence

V (k) = 50sin(2akT/7) + 45sin(22kT/3) v kT €[0, 20]
The results are given in figure 22. It is seen that the two tracks are

barely distinguishable from each other. The maximum identification
error is 0.36 rad/s.
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Figure 22. Actual and estimated rotor speeds
From [65] courtesy I[EEE (C) IEEE, 1991

It is important to note that this algorithm assumes the availability of
the value £ for its operation. It can be proved that £ is a function of J,
K, R, L, D and the sampling period T and that it can be explicitly
evaluated if these parameters are known. Since all the parameters are
motor specific, it is fair to assume their availability. However, when
none of the motor parameters are available, topology Il is proposed
for de motor identification.

6.11.4 Trajectory Control of DC Motor using NN

The objective of the control system is to drive the motor so that its
speed, wp(k), follows a prespecified trajectory, mm(k). This is done by

letting the dc motor follow the output of a selected reference model
throughout the trajectory [70]. The following second order reference
model is selected.

w(k+1) = 06w (k) + 02¢ (k-1) + r(k) (85)
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selected to ensure that its poles are within the unit circle and has the

type of response that can be achieved by the dc motor. For a given
desired sequence {w_(k)} (trajectory), the corresponding control

sequence {r(k)} can be calculated using equation (85).

The controller uses the previously trained NN to estimate the motor
terminal voltage V‘(k) which enables accurate trajectory control of the

shaft speed wp(k). Performance of the two controllers are simulated

for arbitrarily selected speed tracks {wm(k)}. A graphical comparison

of the specified and actual speed trajectories are presented.

Let’s for a moment assume that the tracking error & (k) is zero, and

that the nonlinear function f[.] in equation (82) is known. The control
input V (k) to the motor at the k™ time step can be calculated as

V) = [fle k), e k-1)]

(86)
+ 06w (k) + 02 (k-1) + r(k)]/§

Substituting this result in equation (82) and combining with equation
(85) gives the tracking error difference equation

ec(k +1) = 06 ec(k) + 0.2 zc(k- 1) (87)

Since the reference model is asymptotically stable, it follows that
lim ec(k+ 1) = O for arbitrary initial conditions. However, since f [.] is

not known, its value is estimated using the trained NN. The estimated
terminal voltage is given by,

Vi(k) = [-N fwp(k), wp(k - 1)]

(88)
+ 06 wp(k) + 02ap(k-1) + r(k)] /&



Figure 23. The overall structure of the controller
From [65] courtesy IEEE (C) [EEE, 1991

The overall structure of the identification and control system is
displayed in Figure 23. The tracking control capability of the model
was investigated for different arbitrarily specified trajectories. Only a
specific result is shown for brevity. In this case, the specified speed
trajectory is defined by

@ (k) = 10sin(202KT/4) + 165in(2.0aKT/7) v KT €0, 20]

For the above trajectory, the corresponding {r(k)} is derived by using

equation (85). This is applied to the model shown in figure 23. The
matrix e corresponds to the reference model coefficients (0.6 0.2].

Figure 24 compares the actual and specified speed trajectories for the
above sinusoidal reference track. Close model following is observed.
The maximum tracking error is 0.55 rad/s.
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Figure 24. Tracking performance for a sinusoidal reference track
From (65} courtesy [EEE (C) IEEE, 1991

11.5 Comments

dc motor has been successfully controlled using an NN. The
aknown, time invariant, nonlinear operating characteristics of the dc
otor and its load have been successfully captured by an NN. The
mcepts of model reference adaptive control have been used in
njunction with the trained NN to achieve trajectory control of the
itor speed. Two different controller topologies have been presented.
oth display good tracking performance. Simulations were also
:rformed under noisy operating conditions to study the degree of
bustness of the controller, which is an important consideration in
1y practical application.

entification of a time varying drive system using an NN is also of
nsiderable interest and needs to be studied. The overall system
ibility was never investigated from a conventional control theoretic
int of view and is worth studying. Implementation of the control
hemes on actual hardware is currently under progress.
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