Neurocomputing 3 (1991} 69-95
Elsevier

69

Homogeneous alternating projection neural
networks

Seho Oh, Robert J. Marks II and Dennis P. Sarr

Department of Electrical Engineering, FT-10). University of Washingion, Seartle, WA 98195, USA

Abstract

Oh, .. R.J. Marks I and D.P. Sarr, Homogencous alternating projection neural networks, Neurocomputing 3 (1991}
69-95

The homogeneous form of the alternating projection neural network (APNN) performs as a content-addressable memory.
We analyze and illustrate the characteristics and performance of the homogeneous APNN. Convergence of the iterative
reconstruction becomes faster when the percentage of the clamped neurens, corresponding to known states, increases and
the number of stored library vectors decreases. For a bipolar {=1) library. we demonstrate one-step convergence when the
number of output neurons is sufficiently small. A new per-step minimization method for relaxation is intreduced and is
favorably contrasted in performance to other relaxation methods. We also propose a modified training procedure that
rcquires neither a global norm operation nor division. Lastly, the noise characteristics of the APNN are examined and

illustrated.
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1. Introduction

The homogeneous form of the alternating pro-
jection neural network (APNN) is a content-
addressable memory. It is structured as a maxi-
mally connected array of L neurons wherein a
set of library vectors, {f, |1 < n < N}, are stored
in the interconnects. The interconnection matrix
projects onto the space spanned by library. The
neurons perform clamping and thresholding op-
erations. In synchronous form, the APNN can be
viewed as alternatively projecting between two
or more convex sets [1-3]. The APNN has also
been shown to perform successfully in an asynch-
ronously and skewed mode [4].

Neurons in an APNN can be clamped to pre-
assigned value and provide the network stimulus.
Alternately, a neuron’s state can float in accord-
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ance to the stimulus of other neurons. The status
of a neuron as clamped or floating may change
from application to application. Under certain
conditions to be stated, the APNN can recon-
struct any one library vector by clamping an
otherwise arbitrary subset of the neurons to the
values equal to the elements of that vector. The
states of the remaining floating neurons will then
converge to the unknown vector clements. The
capacity of the APNN is proportional to the
number of clamped neurons.

An exampte of an APNN’s operation is shown
in Fig. 1. A total of 40 images were stored in the
net. One of the images is the girl’s face in the
upper left hand corner. As is shown in the upper
middle picture, a portion of the image is lost.
The neurons corresponding to the known portion
of the figure are clamped to their known values.
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Fig. 1. Image reconstruction sequence. Top left to lower right sequence: original image, clamped image, iteration 0,
iteration 1, iteration 2, iteration 3, iteration 5, iteration 10, iteration 19. A total of 40 images were stored on the APNN.
Each image is 32 x 32.

Neurons corresponding to the unknown values,
in this case in the proximity of the girl’s eyes,
float. The net begins to update the neural values
until, as shown, convergence to the desired
image is achieved.

The APNN also has interpolatory associative
memory properties as is illustrated in Fig. 2. As
shown in the top row of images, a composite
initialization is made of the hair of one girl and
the nose and mouth of a second. Both images

have been stored in the neural network. The
APNN interpolated eyes as shown in the lower
right figure. Specifically, we have found the clos-
est image in the library vector subspace to the
linear variety formed by all images equal to the
clamped values in the initialization. The same
neural network used in the example in Fig. 1.
was used here.

In this paper, we present significant APNN
properties beyond those reported previously
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Fig. 2. Interpolatory associative memory property illustration. In the top row of images. initialization is made of the hair of a girl
and the nose and mouth of a second. Top left to lower right sequence: original image, clamped image, iteration 0, iteration 1,
iteration 2, iteration 5, iteration 8, iteration 10.

[5,4]. We show, for example, that the APNN
can be viewed as a gradient descent algorithm.
The convergence rate of the network is shown to
worsen as the percentage of floating neurons
and/or number of library vectors increase. For a
bipolar library, convergence is shown to always
occur after finite number of iterations. A bound
for this iteration number is established. We also
propose improved techniques for both training
and iteration. Finally, the performance of the
APNN is examined in the presence of various

types of inexactitudes. We show that, in general,
the noise sensitivity decreases as the percentage
of clamped neurons increases.

2. Preliminaries

2.1. Synchronous operation

Let s(M) denote the vector of the neuron
states at time M. For synchronous operation
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without use of thresholds [4], the iterative state
equation for the APNN can be written as:

S(M +1)=nIs(M). (1)

The matrix 7 contains the interconnect values
among the neurons and is equal to the projection
matrix that projects onto the subspace spanned
by the library vectors. In shorthand form, =
F(E'F) 'E" where E=[filfil - -+ |/y] is the
library matrix. The clamping operator, 7, resets
all clamped neurons to their prcassigne-d clam-
ped states. For a specified partition of clamped
and floating neurons we can assume, with no loss
of generality, that neurons 1 through P are clam-
ped. Let f” be a vector of length P contains
these clamped values. Then the iteration in (1)
can be written as

[-‘5"(§+ 1)] - [% %J L'Lﬁf)J s

where §9(M) denotes the vector of the last
Q = L — P neuron states. The status of a neuron
as clamped or floating can change from applica-
tion to application. The states of P clamped
neurons are not affected by their input sum.
Thus, there is no contribution to the iteration by
T, and T,. We can therefore equivalently write

(2) as
FoM +1)=TI,f" + T5%M) . (3)
If F, is full rank, then the norm of T, is strictly

less than one [4,5]. It follows that the steady
state solution of (3) 18

§e=)=(-T,) 'T,f =72, (4)

i.e. the steady state solution is the extrapolation
of the library vector.

7=[%a]-

2.2. Relation to the energy minimization ANN

As is the case with many other neural net-
works, the APNN can be viewed as a reduction
of an energy metric operation. This is in contrast
to the geometrical interpretation previously pre-
sented [4].

Let i be in the column space of F and i=T5.
We define the energy function as

E=|lni il =1IF"- 17, (5)

g : by
where " is a vector of the first P components of
i. Because i = T1i,

P -
!

P

kS (6)

where T, = f,,(f'rf)_lfr and F, is a matrix of
the first P rows of F. Thus

E=|f"-L:ill*.
From (6), it follows that
V=20 - 2137 =3 =)
=2F(F'F) 'E"(i —ni) = 2(i - Ini).

Using the gradient descent method for the ener-
gy minimization, we have

i(M+1)=i(M)- BVE
= (1-2B)i(M) +2BIni(M).

Premultiplying n both sides and using s(M) =
ni(M), we obtain

S(M + 1) = onT5(M) + (1 - 0)§(M) ,

where 6 = 2. If 8 = 1, then the gradient descent
method is exactly the same as the APNN oper-
ation. For 6# 1, we have a relaxed version of
the APNN [4].
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3. APNN properties
3.1. Convergence

3.1.1. The effects of the percentage of clamped
neuron and library size on the convergence rate

The convergence rate of the APNN is linear
with a time constant on the order of the norm
(i.c. maximum eigenvalue or spectral radius) of

T, [5]. In this section, we discuss the effect on
convergence of the number of library vectors, N,
and the number of clamping neutons, P.

As the percentage of clamped neurons de-
creases, the norm of T, increases and conver-
gence slows. This is proveft in Appendix A and
illustrated in Fig. 3. The same neural network 18
used as in Fig. 1. In Fig. 3, however, fewer
neurons are clamped in the initialization. A total

Fig. 3. Image reconstruction using the same net used in Fig.

I. Here. the percentage of clamped neurons is reduced to 75%. Top

left to lower right sequence: original image, clamped image, iteration 0, iteration 2, iteration 20, iteration 40, iteration 60,
iteration 80, iteration 101. Clearly, more iterations are required.
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of 750 synchronous iterations were needed to
generate the result at the bottom right of Fig. 3.
Only 19 iterations were required for the bottom
right image in Fig. 1.

Similarly, increasing the number of library
vectors increases the norm of T, and therefore
slows convergence. A proof is in Appendix A.
To illustrate, the neural network used for the
example in Fig. I was trained with additional
images for the total of 160 stored images. As is

shown in Fig. 4, a total of 208 iterations were
required to generate the image in the bottom
right hand corner as opposed to 19 iterations in
Hig: ol

3.1.2. Convergence for bipolar library

Assume that our library is bipolar, i.e. all
library elements are 1. In this case, we can
perfouan a sign () operation of the neural state
after a finite number of iterations. Clearly, if the

Fig. 4. Image reconstruction sequence when the number of the library images is 160. Top left to lower right sequence: original
image, clamped image, iteration 1, iteration 5, iteration 21, iteration 20, iteration 50, iteration 150, iteration 208. Comparing to
Fig. 1, convergence is slowed as more images are stored in the net.
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sign of cach vector in the series
S (M) s (M) s
is the same. then

5,(=) = sign[s,{M)] .

This means that convergence can be achieved
after u finite number of iterations. Consider,
then, the following lemma.

Lemma 1. If ||§9(M)— 59 - ]| <1-[| L]
then {9 =sign{s¥(M - 1)].

We can also establish a bound for the required
number of iterations.

Lemma 2, ff
_In(Q)
Y= Tw(inh

then ¢ =sign[§%M — 1)].

Proofs of Lemma 1| and 2 are in Appendix A.
From Lemma 2. we¢ have a condition for onc-
step convergence in the sense that

£2 =sign[s9(1)] (7)
when
| <1.

If there is a single output neuron (¢ =1) then
the sufficient condition is || 7,]| < 1. This condi-
tion is satisfied if £, is of full column rank.

3.2 Relaxation methods

Both the projection and clamping operations
can be relaxed to alter the network without
affecting its steady state solution [6]. For the
interconnects, we choose an appropriate value of
a nonstationary rclaxation parameter 6(AM) at
time M and redefine the interconnect matrix as

TMYy=6(M)T +[1—8(M))].
If this opcration is stable, then
§) = - T 'T.f".

This stcady statc solution is our desired resuit.
We now consider and contrast a number of
other relaxation methods,

3.2.1. Constant relaxation parameter

Consider the case where @(M) is constant in
time (i.c. stationary). Let an eigenvalue of 7% be
A"

A'=8rA+(1-9).

We have shown [4, 5] that good stationary relax-
ation choices are

te(f — 1.
- WUC L) ®)
U[(! - i4) ]
where tr( -} denotes the matrix trace, and
0= : ©)
- l - (A'|11;|x + ‘An‘lin)"lll2 ) .
where A_,, and A, denote the maximum and

minimum eigenvalues of T,. These relaxation
parameters correspond to the usc of ¢, and £,
norms respectively. The performance of (%) is
better than (8}. but the operation of (9) needs
the calculation of the maximum and minimum
eigenvalue of 7.

3.2.2. Stark’s relaxation method
We define the error for the nonstationary re-
laxation parameter as

e(M) = {[nS(M) + 0(M)n(T — DI(M)
— 5=

Ideal rclaxation minimizes (M) at each step,
but requires knowledge of the steady state solu-
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tion. Stark [7] proposes the suboptimal solution

| ZS(M) ~ nIs(M)||*
|InZS(MY = SOOI

B(M)=1+

3.2.3. Relaxation by per-step minimized method
We proposc a different relaxation parameter
at time M that minimizes the error

(M) = |[aT5(M) — S(M)|)” . (10)

Define  #@(M)=nTs(M—1) and w{M) =
n20(M). The recurrence relation of §(M) is
(M) = 6(M)mTS(M — 1)
+[1 = B(M)]s(M — 1)
= 9(M)iF(M)
+[1 - 6(M)s(M —1). (an

Using (11), Eq. (10) is
e(M) = ||6(M)[2E(M) — W(M) - S(M — 1)]
— [EM) - SM = D]* (12)

From the minimization of (12), the optimal value
of 8(M) is

87¢
li€ll*”’
where €=26(M)— w(M)~-§(M—1) and 5=

w(M) — &#(M). Using (11), the recurrent rela-
tionship of #{(M) is

oMY=1+

(M + 1) = Ii(M — 1)
= O(M)W(M) + [1 — §(M)]a(M) .

We can now state the following relaxation pro-
cedure:

1. Initialize (M =0)

{a} Choose §2(0)
(b) Calculate f(1)=nT5(0) .

2.8t M=M+1
(a) Calculate 6{M)
(M) = nTa(M)
€=2u(M)— w(M)

-§UM-1)
&= W(M) ~ d(M)
oMy =1+ ﬁ%
€]l

(b} Update # and § using the rclaxation
operator

SMY=0(M)a(M)
+[1—6(M))5(M - 1)
d(M + 1) = 8(Myw(M)
+{1 - a(aD)a(M) .
{c) Go to step 2.

Proof of convergence is in Appendix B.

Figure 5 shows the convergence rates for these
relaxation methods for two different cases.
Stark’s method and the per-stcp minimization
outperform the cases of €, £, and no relaxation.

3.3. Training

The equation for the interconnecct matrix in.
(1) is unacceptable because of the required prior
computation of the inverse of a matrix, which,
due to the library matrix structure, may be singu-
lar or ill-conditioned. Furthermore, we desire a
technique whereby training data can be in-
crementally learned in a neural network struct-
ure onc library vector at a time.

3.3.1. Gram-Schmidt with norm operation
Assume we have an interconnect matrix, T,
and wish to update the intercoennects correspond-
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Fig. 5. Convergence for various relaxation methods. The eigenvalues are 1.7245. 0.6036, 0.5538 and 0.3586 for the top figure and
0.8182, 0.7751, 0.6984 and 0.4244 for the lower. (a) no telaxation; (b} £, norm: (¢) ¢, norm: (d) Stark’s method. (¢) per-step

minimization method.
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ing to a new library vector, f. The updated
interconnect matrix is [4, 5]
=T
. . €€
T =T+ ==
€ €
where € =(/— T)f This is similar to Gram-
Schmidt orthogonalization.

3.3.2. Gram-Schmidt without norm operation
Algorithm and basic properties. The normal
Gram-Schmidt  process is  mathcmatically
straightforward, but requires evaluation of the
error norm, | €||° = é"€. Also, since the process
involves division, sensitivity to this operation can
be high when the error norm is small.

In this section, we propose the iterative learn-
ing algorithm using the error outer product
rather than the norm. We assume that the norms
of all library vectors arc bounded by B. Let
T.(i) be the interconncct matrix after the ith for
the nth library vector. The training algorithm is
as follows:

Algorithm

1. Choose a convergence factor 8 in the inter-
val (1, 4] and the iteration number, [ (see

(13)).
2. Choose a library vector f, and set T,(0) =
Ir!—l(f)! (II(O) = Q)‘

3. Calculate
g{':f:’r _In—](i_ l)fn
i—1
L =TG-+ Er aer

4. If i < I, then go to step 3. Otherwise go to
step 2.

Let the procedure end after A iterations. The
resulting interconnect matrix is symmetric and
positive semidefinite. Also, || Ty(/){|=<1. The
proofs of these characteristics are in Appendix
C.

Let T,=T,(). We evaluate ||f-T,fl’
when fis in the column space of F. If

A sufficient condition for || f, - T f.|| <& is

In(B/3)
In(8)

The proof is in Appendix C.

1372 (13)

Operation characteristics of the algorithm. We
will here evaluate an upper hound for the non-
zero eigenvalues of T . As shown in Appendix
C'J

|7, -Tll<¢&,

where

=20 |

B.'fz k" A_.r

and A is the smallest nonzero eigenvalue of F'F

If £ <0.25, then the nonzere eigenvalues of I_
satisfy the following condition:

|- VI=8E _
T

0<1- A= E<E+E

Also from (13), £ will be

I
I

N
§=3VI;‘
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Figure 6 illustrates convergence as a function of
the number of iterations, f.

4, Noise characteristics

In this section, we examine the sensitivity of
the APNN to computational inexactness and
data noise.

4.1, Noise modeling

Figure 7 is a block diagram of the APNN itera-
tion in (3) corrupted with additive noise [8]. The
vectors A, and #A, denote the input (data source)
and output (detector) noise respectively, and 7,
is the feedback noise vector. These vectors are
added appropriately to the vector components
(neuron states). The matrices N, and N, denote
the system noise which is associated with the
interconnecets. They may represent the inexact-
ness of analog multiplication or, for digital im-
plementation, round-off error [9]. We assume
that each neural noise process consists of ele-
ments with identical and independent distribu-
tions (iid) in the spatial domain, and, temporal-
ly, are either white or static. For system noise,
we assume that the noise is spatially iid with
tcmporally white noise. All noise vectors and
matrices are assumed to be zero mean and statis-
tically independent.
Let

Ny 4

P R T

Mo m

Ny

Fig. 7. The block diagram of the APNN operation with
additive noise. The matrices N, and N, indicate the inter-
conncct noisc.

Ty(M)y= T, + Ny(M)
and
T,(My=1T,+ N (M)
Then the relationship between the noisy FM)
and §¢(M — 1) will be
FUM) = T(M —1)§(M - 1)
+ Ty(M - DIF" + A M~ D)
+H(M=1).

The solution of the above equations is

§UM) = 2 A KT (M-1-k)f"
E{ A (k)M ~1- k)

+ A,u(k)i"s(M —1-k)

p?(M~1—k) (14)

where

DT (M—2)
T M-k ; k>0-

ﬁ,w(k) = i4 (M -

For notational convenience, we define
Ty(k) = T,(M ~ k),
T,(k)=T,(M—k),

k) =AM~k -1),
and

A ky=r (M—k—1).
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Equation (14) becomes

M-1

§9M) = 2 AUk Lk + 1)f"

+ S ARTK + k)

k=0
Mo
+ 2 Ak)ALk)
k=1
where

{ i k=0
A(k):{L(l)L(Z)- LTk k>0

Therefore the noisy steady state result is
() _ - - -
SY()=F + P+ R+ iy,

where

F= > AR Tk + DFF

ko-u

Fo= S ARk + 1)A,(K)

k=1

Fo= 2 Alk)i (k).

k=1

The cxpectation of §9(x) is
E[Eg(w)] = E[}|] + E[,] + E[F,] + E[4,]

=2 I =u-1,) ' =7.

Thus, §9() is an unbiased estimate of our de-
sircd steady state result.

4.2. Second order analysis

The second order statistics of the noise are an
indicator of the uncertainty of the final result.
The covariance of §9(x) is

Cov[§¥()] = E|(F, + F, + 73 + i)
X(F +F,+ 7+ 'ﬁd)T] _qu*Q.I.

=C+C+HE+C, (15)
where

C = EFF -1

¢ = E[FEF;-I »

and
C,=Eliil}
= dtd b

The subscripts refer to respectively, system,
input, feedback and detector noise.

Let the variance of each of the clements of N,
and N, be o? and o] respectivcly. We can show
that, if

o LI

0

then we guarantee the convergence of §9(x).
The covariance of the system noise, C,, can be
shown to be

C =N+l f 1 vd -2
(16)

wherc
Vy=1-oit|({-TH7'].

By assumption, C, = o1 for the both static and
time varying case. The other covariances of the
static and time varying cases, however, are dif-
ferent. We will consider each casc scparately.

1. Static

Effects of static input noise are itlustrated in
Fig. 8 for various noisc levels. The floating neu-
rons, in cach case, have better resolution than
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Fig. 8. Image reconstruction with static gaussian noise for 25% floating neurons. Here, and in the figure to follow noise is
measured as the ratio’s of the standard deviation to the full dynamic range of the gray level. The top row has 1% noise (iterations
0. 4. 10). The middle row has 5% noise (iterations 0, 5, 11). The bottom row has 10% noise (iterations 0, 5, 10).

the clamped neurons. Improvement of the clam-
ped neuron values can be achieved by a projec-
tion onto the column space of F.

We can show that. if the feedback and input
noise are static, i.e. E[dq#A]=o;l and
Elfii|]= o1, then

toloiu{(I-T) lyI-I)™' (17)

and

C=0/(lI-1,)'T,
S0 | B 73 5 4]

FPod} v(I-T3)7". (18)

We will use this result later in establishing recon-
struction probability bounds.
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2. Time varying

The effects of time varying input noise is
illustrated in Fig. 9. In the time varying case,
from the assumption of a white noise process,
Eln,(k)i()]=o15,, and E[s (k)i ()] =
ur?,-j(‘}L ;- Expressions for C, and C, follow as

C=agil~1,)"

(_ o “—_-'_([ + I;) :

=

4

Fol{ostr[(I+T,) 'T,]

+ Pod}y(I-I3)". (20)

We now have all of the information required to
evaluate (15) for both the static and white noise

Cascs.

Fig. 9. Image reconstruction with white noise for 25% unclamped neurons. The top row has 1% noise (iterations 0, 5, 12). The
middle row has 5% noise (iterations 0, 3, 7). The bottom row has 10% noise (iterations 0, 2, 5).
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4.3. Probability of error for bipolar library

In this section, we will discuss the probability
of crror for correct reconstruction of a bipolar
library vector. The bipolar response is obtained
from noisy output by a sign (- ) operation.

§2 =sign[§9(=)] .

The probability of error is
N
=2 0,1 p].
aol

where (2, is the priori probability of the library
vector # and p. is the probability that our
classification is correct. We cannot, however,
cvaluate p, easily. We can, though, compute the
union bound [10] for p, . For Gaussian noisc, a
probability of error bound for the nth library

Probability error vs. Number of claniping Neurons

vector can be written as

P, =1-p.

Z YLXP[ (l—l)f(ZC;)I

(-1 Y "m

where ¢, is the [th diagonal element of
covariance matrix C.

4.3.1 Computer simulation

We demonstrate  the probability of crror
bounds for the 5 randomly generated bipolar
library of dimension I =30. The average value
of the diagonal elements of T is }. Figure 10a
shows the probability of crrors corresponding to
C,. C and C, vs. oy, o] and o vespectively
when o, and a, are 5. From Fig. 10a, the crror
bound decreascs with the decrease of o, @, and
ur. Figure 10b shows the probability of crrors

100 _,
10t
102 s
103
104
10

10-6

Bound of Error Probabitity

107

10-%

10+

10-10
5

Number of Clamped Neurons

Fig. 11. The error probability a5 a function of the clamped neurons for the APNN. The error probabilities from C,, €, and C,
deerease with an increase in the percentage of clamped neurons, The values of o, o, and o, are §, o, and o, 4, . The scule on right
side is for . '
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corresponding to €, C,, C;and €, vs. os and o)
when o, o, and o, are ;. The probabilities of
error from C,, C, and C, saturate with the de-
creases of o3 and o,, but that from C_decrcases
as shown in Fig. 10b. Figure 11 shows that the
probability of error from C,, C; and C, decrease
as the percentage of clamped neurons increases.

5. Conclusion

We have analyzed a number of characteristics
of the homogeneous alternating projection neur-
al network. The net’s convergence becomes fas-
ter when the percentage of the clamping neurons
increases and the number of the library vectors is
decreased. For the bipolar library APNN, con-
vergence can be achicved after a finite number of
iterations. We proposed a per-stcp minimization
method for the rclaxation and showed its
superiority to £, and £, relaxation. We modified
the training Gram-Schmidt method, so that no
division or norm operation were required. The
noise sensitivity of the APNN was analyzed. The
noise performance improves as the percent of
the clamped neurons increases.

Appendices

A. Proofs of theorems in convergence
A.l. The convergence rate and N and P

Lemma A.l. Let T, be the interconnect matrix
between the last O neurons and let T! be the
interconnect matrix between the last Q — 1 neu-
rons. Then || T3 <||L.

Proof. Lct

=[]
_Q £ )

F
o

where F' =|

& &
(F'F)'=G'G.

T _ T
FoE, =F, \Fy +g.v+|gm1 -
For every X,

'GFLF,G"¥ = #'GFy, \F, \G'%

50

—T

\GF,,_\E

Therefore

UL = 11Ep- GTGEG |l =11 E,GGEG
=zl a

Lemma A.2. Let T, be the interconnect matrix
between the floating neurons of the library

{fﬂ,ﬁ‘-- fﬂTl} Then ||T,|| < ||T4H

Proof. By the learning algorithm

ée"
I+ =T+ —5.
€]l
50
=0T
e e
Ti=7F,+ —=,
B bt ey

where 9 is the last Q valucs of €. Alse
[ -QI

=1 + - T g
FTii=7"T% =x I.x.
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Thercfore If f,=~1, then —2<5,(M—1)<0. Thercfore
1Tl =<liz]] D signfs,(M — 1)] = —1
A.2. Proof of Lemma | and our proof is complete. O

U il be
From (3), §%(M) will be A.3. Proof of Lemmua 2

M = -, .
FMy= S T4, 7 (21) From (21) and (22), f% - §%M — 1) will be
] - -p
and fO=sUM-1y=TYu-T,)"'T.7
co o " =1y fe 23
je= 3 ringr. (22) Ll @)
Th e so the norm of the crror will be
us

1FC =9 =Dl <l -11 79
=T 740
= vo. Assuming

I, <"

koM ' k-t ' Here, |

because
we have

"Q(M) 20 M- 1) :I::fzjf.’* . o , s
y s NF9-5%M-1D)j<0 " VD=1

Therefore .
and our proof is complete. [

fO=SUM=-1) =~ T,)[5%M)

- M -1)].
It follows that B. Proof of algorithm convergence
”}?Q _ §Q(M - 1) We take
= - L)' {5%M) - 5%M — 1] G(M + 1) - (M)
< |(L~Z)7 " 159M) - 52%p - 1) = [6(MYW(M + 1) + (1 — 8(M))i(M)]
= {6(M)d(M)

M) UM )
1— ||, ' + (1~ 8(M))F(M - 1)]

Therefore |f —s (M ~1)| <1 for P+1=i< L, = OM[((M + 1) ~ d(M))
If f,=1, then 0<5,(M — 1)< 2. Therefore — (M) = §(M - V)] + [d(M) — §(M - 1)],

=

sign[s,(M - 1)]=1, where
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WM + 1) — @(M) = nTa(M) — nI5(M — 1)
= nT|d(M) - §(M ~1)]
M+ 1) —-s5(M)= [G(M)(nT— D+
la(M) - $4M - D).

Let %(M)=d%M)—s%M-1).
llé@(31) — s(M - 1)[| = [{£]|. then

Because  of

i + D17 = |lZan)|°
—20(M)E(M)' (I — T,)¥(M)
+8(M)Y (I - THHM)|

and

MY (I - THEM)
(I — T)E(M)|?

B(M) =

From the above two equations,

| x(M + DI
[k
CEMY U - THIHM)

=1- 3 - 5 .
£ - THRM)|

(24)

Consider the spectral decomposition matrix E;.
Let

_ e’
Bk

then clearly,
> k=1.
i-1
Also
(M) (L - T)HEM)

I

-1 2 Eaon] -1 2 £

=S (- A MY EF(M)

= Z (1~ MIEZMI
- 3 0=kl
and
I~ T)s0 I = - T 3 EZN
= llg (1 A)EZD|

= ZI (1= AV kA EM)IF

Therefore (24) will be

‘

[Z} (1 - )\‘.)k{r
ﬁ‘,(l—,\,.)zk,. |

(M + DI

B =l -
fecan)|”

From Cauchy’s incquality,
2 (1= A)%,
LI S

[21 (1- ,ul.);ci]2

Ia=A)H -
ST -0 -4)

Therefore (24) is bounded

b+ D _ o A)-(1- ;\f.)JE
B A G G
(Amax_ n“n)‘lllz
= <1

T— (A, T Anin)/2

min

We thus conclude that
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tim (174 =0.

Because (M) lics in a compact set, HM)Y—0.
Therefore §9(M) will be

§9e) = T,§%=) + T, F"
Qr
-60(7“—’) =(-1,) IIJJ?P

and our proof is complete. [

C. Proof of training procedure

C. 1. Basic lemmas

Lemma C.1. We assume that T,(0) is symmetric,
positive semidefinite and || T,(0)] <1.

let

i

then

L. 0=y . =1.

2 &l =<lle-ll-

Proof,
=f,~ TGV,
:ﬁ,_l",,(i—])f"—_ﬁii;lz:i
AP
-[i-Bget]en
Therefore,
=Bl =y, Iy -

Now, we will establish the bounds for .

Define

&=f, - TOf, =1I- T,/ .

Thus
, _ - T,00F,
o B‘..
S0
7112
I=sy,= Hé‘y =1

Therefore, 0=y, =1. Since
€=(1-y e |
then
||E:'|| =(1- J"a—l)”é—l” = ||€a—|“ 4
C.2. Proof that ||T (Nl <1
Lemma C.2. If || T,(i — 1)|| < 1. then || T, ()] <
1.

Proof, For cvery X,

e()=3"F—3F"T (Hi= ‘T[I— T (f’)]i
ol oy BLEEL
x [i I(i—1) FE ]x.
Let $(i)=1—T7 (i —1). Then
L 2T [FaS() %)
=x5's :
e(i)=x S(i)x - Fisr.

Let (£]5)=x"'S(i)¥. Then {(x|y} satisfies the
inner product condition because | T, (i — 1)j| = 1.

e LGIDT
=025 7

[{ L))
1-y,) 2=
s GAT
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From Lemma (C.1)} and Schwarz’s inequality,
e(i)=0. Thus

X =fT (DF
and our proof is complete O

Lemma C.3. || T,({)|| <1 for all n and i.

Proof. Since follows  that
IZ, ) = 1.

From Lemma (C.2), clearly || T,({)|| <1 for all
i

It |Z,(D]| <1, then ||, (®)]| <1 because
T (=1, (0), and our proof is complete. [

=

T()=0, it

C.3. Proof of error bound
Lemma C.4, Let & =f — T,(i}f,, then

., B?
||gf = ot
B
Proof.

lel® =77 [I—L.(t)]f

2 B
S A LA
B
Lemma C.5. For every library vector f,
2 2 B
£ —Z. 1,
=57
Proof.

|f, - T, 7 P <frll-L,17,
=fild- Ty +{T,()- T}/,
=fill—L(Df, - FilT. - T(DI,

. . B
TH-T.(Of ==,
fAl=T,.(NHf, 3

#h

and our proof is complete. O

Lemma C.6. If f is the linear combination of the
columns of F,

— Ii\‘l —
= Z ("P:I'f;l k)
n—1
then

If-1 mzlcl

mnol

Proof,
1f=T. /il = -T)HAl
12 e, - T

n= 1

= 3 el - T

From Lemma (C.5),

N
s 2 e,

B
B n=1 ’

and our proof is complete.

C.4. Eigenvalues of T,

Theorem C.1. Let A be the nonzero eigenvalue

of T, then A, satisfies the following inequality:
1-v1-4
O=s1-4A, = 1Zv1-4¢ ,
2
where £ is
B [N
£= 37 [~

and A is the smallest nonzero eigenvalues of F'F.

Proof. For every f, there is ¢ such that

Fe=T,f=2 c.f,. (25)
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We now apply singular value decomposition. F Because T, is symmetric, A, satisfies
can be written as
A, —ALSE.
E=P.D:0Q. (26)
If ¢£<0.25, then, because rank(T,)=rank(F),

From (25) and (26), the nonzero eigenvalue of T will be

o T -1pT i /1 -

C=_Q_FQF EFIW)C' %ﬁg,\ugl . D

The norm of & will be

léll = 11D 'PIT, A D. Noise analysis

10TDZ P I ||f|| Il Al D. 1. General lemmas
= ) . Al - = .
mETE T - \/’\_f Wc assume that all elements of N are identi-
] L ] cally independent white noise. Also, D is sym-
Using Schwarz’s inequality, mefric and positive semidefinite. All matrices are
N elements of RY"¢.
D e, | < VN||E] . Some properties are listed below:
=l
- Ty 2
Therefore 1. E[NAN'|=o" tr(A)].
T
N ~ . 2. E[(B+N)A(B+N)']
2 le, =y IA- = BAB" + o tr(A)] .
n—1 F
3. E[A(K)DAT(K)} is symmetric and
Now, we evaluate positive semidefinite.
L.~ I2)71 = I~ TOT I 4. 1f DT, = T,D, then E[A(K)DA'(K)]T,=
By LE[A(k)DA (k)).
= |- L)Ee .
5. 1f
From Lemma (C.6), >
2 t{E[4(K)AT(K)]}
. B N k=
T, — TOfll = e 2 el s converges, then
a=1
0 2. E|A(k)DA'(K)]
Iz, - T/ Lok
ey = . converges.
1 £ &
Therefore the norm of T, — T~ will be Lemma D.1. If
» _ 1T IL°
||Iw_Il2v||£§' U4< ,Q4

We will now evaluate the bound of the A . and DT, =T,D, then
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o 3 Elak)DAT0)] = ¥ i@t~ T2 D]

k=10

and
ly=1-oiul(I-T3) ")

Proof.

1. We wish to establish the convergence of

of S Elagpa’ )|
E[A(k)AT (k)|
= TIE[A(k— 1A (k- 1)]
+ o ti{ E[AGk — A" (k ~ DI} .
Let ¢(k) = tr{ E[A(K)A'(K)]}, then
c(k) = aQc(k — 1)
+tr{TE[Ak — DAk - 1)]}
< olQclk = 1)+ || L)) ek — 1)
= c(k = DI L.)* + o3Q]

- w(E[AGYA (O]}

k=0

. 0
=2 e(ky<- - ‘
k=1 1- ||I4|| - UiQ
Therefore,

2 tr{E[A(K)DA"(K)]}

k-0

CONVEIgEes.

2. Evaluation of

S E[A(ORAT(0)]

= S E[T.(1)AK - DDAk ~ 1)
k=1

Ty +D

5.

Oh et al.

[
1

TiE[A(k)DA; (k)]

Eod
Ik

0

+oiul S EAwDAIWN1+ D,

where
Ayk)
_ {,_' k=1
B I4(2)I;(3) T I4(k) k=1
2ives

> E[A,(k)DA (k)]

k=1t

- [Q + o, tr{ i E[Ao(k)%-(k)]}i]

k=1

U-I". (27)

Because the mnoise process is the same all
time, we obtain

tr{ki;j E A(k)m"'(k)]}

=yul{-T3) 'D]. O

Lemma D.2. ff

2 tr{ E[A(K) AT(K)])

ko0

converges and DT, =T, D, then

E E[A(k)DA"(k)]
(=T 'D+oitf—TH ' DIyI-T)) '

Proof. The proof follows straightforwardly from
(27). O

Lemma D.3.

2 2 E[AKDAT(D)]

k=0 f=0



Homogeneous afternating projection nevral networks 43

ST DU~ T =G+ 3 E[AGk- DLK)GTT(H)A"
+Gi II"[(I—__4)_ Q(_!_IA.) ]7(!_14) (k_])]
(28) .
- 2 E[A(KT,GT,A' (k)]
Proof. koo )
. =G+ olu(G) 2 E[AA(K)].
g % E[A()DAT(D]

The proof follows from Lemma (D2). [0

-

B> E[A(K)DA'(k + 5)]

+ 2 > E[A(I + HDAY() D.2. The second order statistics of the APNN
o D.2.1. Calculation of C,
- 2, E[A(k)DA(k)|

7 - % 3 (ELART(k + DT

= 2 X ElAG)DTAT(K)] 4+ DA - 5T, FF 17T
+E Z E[A(TLDAT(D)] = E ELAG)LJ'F" T A'D)
-3 FAKDAT) Z E}'LI*’C LI

K

= 2 E[A(K)D( - T,)"'4" (k)]

=
I
II

+ 2 E[A(K) — T,)'DAT(k)] et

LY

G=(-T) 'Lf7"ria-1,)".

= .
B }:‘“ E[A(K)RA (k)] . Then from Lemma D3, we have

Let G=(—-T,) DU-T,) . then - {Q— E": 2‘: [If:[_‘fpf”zflﬂ]}
DU-Ty'+(U-TI,) ' ~-D=G-TGT,. Lo .
+otr(G) + o u(FF v - 1)
S i ELA(DAT( i ELAK) GAT (k)] acE R ARSI
e ) -I)"

- Z E[A(K)T,GT,A"(k)
k=0 (A0 LGT.A (K] From which (16) immediatcly follows.
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D.2.2. Static noise

=3 S E[AR) T,k + i (k)i (LT
k=0 =0
(1+1)T"(1)]
o2 S S ELAK)L,(k + DATO)]
k=0 I=0
= 0] 'S S ELAGK)LITAT D)
k=0 {=0
+ Polol 2 E[A(K)A"(K)].
k=0
Let
Gelf~T) LTd-1) (-1} I,
because
LIl- 10

and by Lemma (D3), we obtain (18)

= 3 S E[ARK)i, (k)T () A(D)]

k=0 [=0

=a} 2 2 E[A(KA"()].

k=0 {=0

Using Lemma D3 results in (17).

D.2.3. Time varying noise

= i i [A(K)T5(k + 1)ri (k)i ()T

k=0 [=0

(1 +1)A'(D)]

= g? 2 E[AK)T(k +1)T3(k +1)A" (k)]

k=0

=0} s E[A(K)T,TA" (k)]

k=10
+ Polal 2 E[A(K)A"(K)].
k=0
T.IT)=1T,- T, and using Lemma D2, we ob-

tain (20)

= > X E[AK) (k)T (DATD)]

k=0 =0

Using Lemma D2 yields (19).
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