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Imaging sampling below the Nyquist density without aliasing
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For multidimensional band-limited functions, the Nyquist density is defined as that density corresponding to
maximally packed spectral replications. Because of the shape of the support of the spectrum, however, sampling
multidimensional functions at Nyquist densities can leave gaps among these replications. In this paper we show
that, when such gaps exist, the image samples can periodically be deleted or decimated without information loss.
The result is an overall lower sampling density. Recovery of the decimated samples by the remaining samples is a

linear interpolation process. The interpolation kernels can generally be obtained in closed form. The interpola-

tion noise level resulting from noisy data is related to the decimation geometry. The greater the clustering of the
decimated samples, the higher the interpolation noise level is.

INTRODUCTION

For a band-limited function of any dimension, the Nyquist
density is defined as the periodic sampling density that
results in the most densely packed replications of the func-
tion's spectrum.' Thus, for one-dimensional (1-D) func-
tions band limited in the low-pass sense, the Nyquist density
(or rate) is equal to the extent of the support of the func-
tion's spectrum. The samples' spectrum is maximally
packed at this rate and there are no gaps among the spectral
replications. Because of the more complicated geometry of
the spectrum's support, this is not generally true for func-
tions of higher dimension. The extent of the support is
measured not only by the area but also by the shape. Con-
sider, for example, a two-dimensional (2-D) circularly band-
limited function. The Nyquist density is the density corre-
sponding to a hexagonal replication pattern (Fig. 1).2 Clear-
ly, gaps exists among the replications. We will show that, if
gaps exists among the replications, then the samples are
linearly dependent. If the samples are linearly dependent,
the function is said to be oversampled. Hence a multi-
dimensional band-limited function can be oversampled
when it is sampled at its Nyquist density.

Marks' showed that, if gaps exist among the spectral repli-
cations, a subset of samples can be deleted and restored by a
linear combination of those remaining. In this paper we
extend this result to deletion of an infinite number of sam-
ples. Specifically, given a sample set whose spectrum con-
tains gaps, we show that samples can periodicallly be deleted
or decimated. The sampling density, equal to the original
uniform density minus the deletion density, is therefore
reduced. If the original sample set is obtained by sampling
the function at its Nyquist density, decimation will reduce
the density to below that of Nyquist. The deleted samples
can be restored by a linear interpolation of those samples
remaining. The required interpolation kornols can be eval-
uated in closed form. The noise sensitivity of this process is
also investigated.

PRELIMINARY DESCRIPTIONS

Before we proceed to the contribution of this paper, a brief
review of the multidimensional sampling theorem and relat-
ed work is in order.

Multidimensional Sampling Theorem
The multidimensional sampling theorem, initially presented
by Petersen and Middleton,3 is a direct extension of the
Shannon sampling theorem.4 Let fx(t)lt = (t, t2, * * *, tN)71
be an N-dimensional signal (the subscript T denotes trans-
position). The Fourier transform of x(t) is

X(v) = x(t)exp(-j27rP Tt)dt, (1)

where

V = (, V2' * , VN)T

and

J dt = dt dt 2... It dtN-

If X(v) is zero outside a support region, A, contained within
a hypersphere of finite radius, we say that x(t) is A band
limited. The inverse Fourier transformation follows as

x(t) = J X(v)exp(j27rvTt)dv. (2)

When x(t) is sampled with a regular sampling geometry,
the spectrum of the sampled signal replicates periodically.
Let IvjI1 < n • N} be the N sampling vectors, and let k, be an
offset vector. These N + 1 vectors constitute the sampling
geometry for sampling x(t). In particular, the sampling
geometry is denoted by the matrix-vector pair [V, kj]. Let
x(t) be the signal containing the sample impulses,
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as V when the matrix of integers, M, has a determinant
magnitude of 1.

With no loss of generality, we let k, be the zero vector.
The replicated spectrum of the samples follows straightfor-
wardly from the Poisson sum formula:

2(vD E X(v -Un), (4)
n

where U is the periodicity matrix,

U = [U1IUI . .IUNI,

and D is the sampling density,

D=IUI= 1

(a)

(samples per area), (5)

t2

. .

1-

v1

.

(b)

Fig. 1. (a) Hexagonal sampling lattice corresponding to the Ny-
quist-density sampling of a circularly band-limited function, (b)
resulting spectral replications.

x(t) = E x(t + Vk8)(t - Vn)
n

= E3 x[V(n + k8)J(t - Vn),
n

(3)

where

V = [VIV2.I. IVN]

is the sampling matrix, n = (n,, n2, . . , nN)T is a vector of
integers, (t) is an N-dimensional Dirac delta function, and

n n n2 nN

The sampling matrix VM gives the same sampling geometry
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Fig. 2. (a) Example of a sampling lattice and (b) its corresponding
spectral replications. Each dashed-line parallelogram is a cell .
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VI) height 1/D that passes only the zeroth-order spectrum [the2 term corresponding to n = 0 in Eq. (4)]. The resulting
cardinal series is

A i x(t) = > x(Vn)f(t - Vn), (7)

/ A / n

B , . / x where the interpolation kernel is obtained by

/ D / f(t) = D J exp(-j27rvTt)dv (8)

and !B is any region enclosing only the zeroth-order spec-
trum. For example, .B could be over @ or the support A
(Fig. 4).

For all 1-D low-pass band-limited functions, gaps cease to
exist when the function is sampled at the Nyquist rate.

(a) This, however, is not generally true in higher dimensions.
In our running example, because of the circular shape of the

V2 support, gaps still exist when the function is sampled at the
Nyquist density. In the following subsection we discuss the
relationship between sample interdependency and gaps in
the samples' spectrum.

Sample Interdependency
C If gaps exist among the spectral replications, then the sam-

ples (x(Vn)J are linearly dependent. This relationship can_-- - - 1-
easily be demonstrated in cases of 1-D band-limited signals.

A , Let x(t) be a 1-D signal whose spectrum, X(v), is identically
B , zero only for vi > X. To sample x(t) at above the Nyquist

rate corresponds to a sampling frequency of 2S > 2X. The
samples' spectrum X(v) is periodic replication of X(v) with
period 2S,

(b) X(v) = 2S > X(v - 2nS).
Fig. 3. Two different cells corresponding to the same periodicity n=-@

matrix. In this example, the puzzle pieces A, B, C, and D are simply Since 8> X, there exists a periodic disjoint region, , where
rearranged. Sc ,teeeit eldcdsotrgoO hr

X(v) is identically zero (Fig. 5):

(v) -O, ve .

and we have adopted the notation lul to denote the determi-
nant of the matrix U. The N column vectors of U, referred
to as the replication vectors, are obtained from

UT = V'1. (6)

Clearly, we require that V be full rank or, equivalently, that
the N sampling vectors be linearly independent.

An example of a 2-D sampling geometry is shown in Fig. 2. 
A period of the samples' spectrum, k(v), denoted @, is a
geometric body measured not only by the extent (or area)
but also by the shape. For a given sampling matrix V, the
area of the corresponding @ is always equal to the sampling
density D, although, as illustrated in Fig. 3, there is more
than one possible shape. A parallelepiped is an obvious
shape choice because of its ease of construction. Each peri-
odicity vector, u,,, is one of the legs. We will refer to a
spectral period as a cell. Different methods for constructing
@ from U were discussed by Dubois.5 The area of a cell is
clearly equal to lul, which, from Eq. (5), is equal to the
sampling density D.

If there is no aliasing in 2(v), we can recover the original Fig. 4. Region of integration, B, of the interpolation kernel in Eq.

signal, x(t), by passing x(t) through an ideal low-pass filter of (8).
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X(V)

4 V

>3 x(Vm)h(t - Vm) = - >3 x(Vn)h(t - Vn). (11)
me Ft n 4At

By evaluating Eq. (11) at the M locations of the deleted
samples, we obtain a system of M equations:

>3 x(Vm)h[V(l - m)] = - >3 x(Vn)h[V(l - m)],
meAM not

l . (12)
This system of equations can be put into a matrix form:

HAXAt = -HRXR,

V1
-S 7A. I A 2S

Fig. 5. Example of a spectral replication caused by the oversam-
pling of a function.

Let H(v) be the impulse response of some bandpass filter
whose magnitude is nonzero over only. Then

(9)

or, for every t,

E W 2)h(t 2S)-°-(0

Since h(t) is nowhere identically zero over a nonzero inter-
val, we can view Eq. (10) as a linear combination of the
samples with nonzero coefficients. Clearly, the samples are
linearly interdependent. The linear dependence among
samples ceases when x(t) is sampled at the Nyquist rate (S =
X). At this rate, the gap region vanishes, and therefore h(t)
is identically zero for every t.

As shown in Fig. 1, gaps can exist among the spectral
replications in higher dimensions. Hence the samples are
linearly dependent even if the signal is sampled at the Ny-
quist density. A signal is oversampled if the samples are
linearly dependent. Thus multidimensional band-limited
signals may be oversampled even if they are sampled at
Nyquist densities. Exceptions are cases in which the sup-
port is a cell (i.e., A = ).

Sample Deletion and Restoration
Given a sample set that is linearly dependent, one can reduce
dependency by deleting some samples. Indeed, Marks
showed that if a signal is oversampled, a finite subset of
samples can be deleted and restored as a linear combination
of those remaining.

Let A denote the set of indices of the M deleted samples
located at the points Vmlm A. We can thus rewrite Eq.
(10) as follows:

(13)

where x,, is an M-dimensional vector whose entries are the
deleted samples, XR is a vector whose entries are the remain-
ing samples, and HE is a square matrix of dimension M.
One can show that Hnt is always invertible. 6 The deleted
samples can thus be restored by a linear combination of the
remaining samples:

XJ = -H7,, 1 HRR. (14)

The quality of restoration of the deleted samples depends
on the condition of HAt, which, in turn depends on three
factors: (1) the distance among the deleted samples, (2) the
uniformity of the deletion geometry,7 8 and (3) the total
number of the deleted samples. Ching9 performed an exten-
sive empirical examination of the effect of these three fac-
tors on the quality of sample restoration.

SAMPLING DECIMATION (PERIODIC
DELETION)

In this section we present a second deletion scheme wherein
samples are periodically deleted or decimated. Since the
samples are deleted periodically, the overall sampling densi-
ty is reduced. We will show that, as long as gaps exist among
the spectral replications, samples can be thus decimated.

Decimation Lattice
Using the notation of sampling geometry, we denote the
decimation geometry by [Vd, kd]. The vector kd is an integer
vector that determines the offset of the decimation lattice
from the origin. In particular, the decimation matrix, Vd, is
an integer-weighted combination of the sampling vectors.
The decimation matrix can therefore be written as

Vd = VM

= [Vd1VdI ... IVdNI (15)

where the vd1's are the N decimation vectors and M is an N X
N nonsingular matrix of integers. The location of the de-
leted samples is the set of lattice points Vdn + Vkd =

IV(Mn + kd)1.
With reference to Eq. (5), the decimation density is equal

to

Dd= 1 _D
- F~ji

(16)

where D is the sampling density. The decimation ratio, rd,
defined as the fraction of the samples deleted, is the ratio of
Dd to D:

l - l -
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t2 L = IMI. (18)
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Let Lj be the length of the jth side of the parallelepiped-
shaped decimation period. Then

N

L = fi Li.
j=1

To produce a structure analogous to the polyphase structure
in multirate digital signal processing, 10 we divide the sample
set {x(Vn)1 into L subgroups:

xi(Vdn) = x(Vdn + Vkj), i = 0 toL - 1,

0 * o * 0 0 0

(a)

where ki is an integer vector (which is also a mixed-radix
representation of the integer i). The radix of the jth ele-
ment of kg is Lj. The original sample set is a union of the L
sample subgroups,

L-1
Jx(Vn)j = U jxi(Vdn - Vki)l.

i=o

Let Xi(v) be the spectrum of the ith sample subgroup; then,
from Eq. (19),

L-1

2(P) = >3 Xj(v)exp(j2'rvTVkj).
i=o

(21)

If one of the L subgroups can be deleted, then the deletion is
periodic, and the sampling density is reduced by a factor of
1/L.

The periodicity matrix corresponding to Vd is

UdT= Vd 1. (22)

For convenience, we will refer to the cells corresponding to
Ud as subcells. Naturally, the area of a subcell, denoted @d,

is 1L that of the cell 6. In our running example, square
subcells are shown in Fig. 6(b) by dashed lines. Since IMI =
4, the area of the cell 6' is 4 times that of the subcell Cad.

(b)

Fig. 6. (a) Example of a decimation geometry imposed upon the
samples in Fig. 2, (b) corresponding subcell pattern (dashed-line
squares).

rd = 1 (17)

As an example, the lattice defined in Fig. 2 is redrawn in Fig.
6. The open circles form the deletion lattice with

M =[2 0]

and

kd = (1, ) T.

A parallelepiped constructed by the N decimation vectors
forms a decimation period. Let L be the number of samples
enclosed within a decimation period. A decimation period,
corresponding to our running example, is outlined in a
dashed-line parallelogram in Fig. 6(a), in which the period
contains L = 4 points. Obviously,

First-Order Decimation and Restoration
If a subcell is totally subsumed in a gap of the samples'
spectrum, then one of L subgroups can be deleted by using
the decimation geometry [Vd, ka], where a is the index of the
deleted subgroup. The deleted samples can be restored
with the knowledge of those samples remaining. We can
prove this as follows.

Let Ixa(Vdn)1 be the deleted subgroup:

xa(Vdn) = X(Vdn + Vka). (23)

The spectrum of this subgroup is denoted Xa(V). The set of
the indices of the decimated samples is thus

.X = {mIm = Mn + kj, (24)

where n is an arbitrary vector of integers. We rewrite Eq.
(21) as

Z(v) = >3 X(v)exp(j2rvTVki) + X(v)exp(-j27rP TVka).
i da

(25)

(19)

)2

(20)
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If there exists a subcell, denoted &d, subsumed within a gap,
then

g(V)- = v0PE & d (26)

Then, with reference to Eq. (25),

= =- >3 X(v)exp[(j2irvTV(ki - ka)], PE & d
Ada

(27)

The spectrum of the deleted subgroup is a linear combina-
tion of the other L - 1 subgroups. From the theory of the
Fourier-series expansion, the decimated samples can be re-
stored with the knowledge of a period of Xa(v) regardless of
where the period is located. Hence, with the knowledge of
Xa(v) in &d, the decimated samples can be recovered by

Xa(VdM) = I X,,(v)exp(i27rvTVdm)dv. (28)

By substituting Eq. (27) into Eq. (28), we obtain the interpo-
lation formula to recover the decimated samples: Fig. 7. Spectral replications corresponding to the rectangular sam-

pling at the minimum density of a circularly band-limited function.

Xa(VdM) = > 3 xi(Vdn)fd[Vd(m - n) - V(k1 - k)]
ia n

(29)

where

fd(t) = - | exp(-j27rvTt)dv (30)

is the interpolation kernel.
In summary, if there exists a subcell subsumed in a gap, a

subgroup of samples can be decimated. The decimated
samples can be restored by those remaining.

Examples
Here we give three examples of first-order decimation for 2-
D cases of circular spectral support. A monochromatic co-
herent or incoherent image of an object of finite extent
obtained through an optical imaging system with a circular
pupil, for example, has such spectral support." In our ex-
ample, the circle's diameter is set to 1.

Rectangular Sampling
If the sampling geometry is limited to a rectangular lattice,
the minimum sampling density corresponds to a sampling
matrix of

V=[l o].
L 12

The samples' spectrum is a rectangular array of circles
packed as shown in Fig. 7.

Example 1. By setting

[3 

we obtain a decimation geometry that produces a decima-
tion ratio of 1/9. The ka = 0 case is shown in Fig. 8, in which
the dashed line outlines a decimation period. From Eq. (6),

t

5 0 i 4

* 0 5 4

* 0 0 4

* 0 0 4

* 0 :0 4

2

0

I S

------------ I
0 i

i

I
0 1

iI

I 0 :
------------- II

Fig. 8. Decimation geometry for example 1.
is outlined by a dashed-line square.

* i
* 0

* i

* 0

* 5

O 0

A decimation period

Ud = [1/3 -1/9]

As shown in Fig. 9, this periodicity matrix produces a subcell
in the shape of a distorted hexagon. This distorted hexago-
nal subcell is totally subsumed in the gaps among the spec-
tral replications when it is centered at (1/2, 1/2). The inter-
polation kernel to restore the decimated samples is derived,
by using Eq. (30), as

fd(tll t2 ) = 1 hinc + t , 6 )expU27r(ti + t2)],

(31)

K. F. Cheung and R. J. Marks II
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Fig. 9. Example 1: a subcell is
region.

Fig. 10. Hexagonal support of the
function.

totally embedded within a gap

sin rx
sinc(x) =

7rx

The phase term in Eq. (31) shifts the hexagonal hinc
function into the gap region, as is shown in Fig. 9. We found

d~ the work of Rajan'2 useful in this computation.
Example 2. A 1:8 deletion ratio for the same set of sam-

ples can be obtained by choosing

M=[2 -2].

The ka = O case is shown in Fig. 11. The subcell correspond-
ing to the periodicity matrix is

0 0 0 

0 0 0 4

0

0

0

0 0

40 0

O 0
-- - --- - - - - - - - - - - - - ---~~~~~~~~~

0 0 0 4

* 0 0 0

X d

I 0

I 0Ih

I 0

09

0

e-t
0

0

I 0 0 0

Fig. 11. Decimation geometry for example 2. A decimation period
is outlined by a dashed-line rectangle.V\i

Fourier transform of a hinc

where hinc(tj, t2) is the inverse transform of the unit-ampli-
tude hexagon shown in Fig. 10:

hinc(tj, t2) = 4 sinc 2 t sinc 2t 2 + 1
C3 I 3 27t 2

X [sinc -1 (t1 - t2 )sin 7r(4t + t2)

- sinc 1 t1 sin 7rCUI }

where

A'd

Fig. 12. Example 2: a subcell is totally embedded within a gap
region.

l s

t l J

z l ^
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U [1/8 1/16]

as is shown in Fig. 12. The diamond-shaped subcell is
shown to be subsumed in the gap when it is centered at (1/2,
1/2), and we compute the interpolation function in the form

fd(tl, t2) = sinc( 4 2)sinc( tl4+ 2)expU2r(t, + t)].

(32)

Effects of Truncating. To illustrate the effects of trunca-
tion for both examples 1 and 2, we use the signal x(tj, t) =
jinc(tl, t2):

U. 1 U=[1/8 1/161d8 o Va/16_

Within a parallelogram cell, we can fit 64 similarly shaped
subcells, one of which is subsumed in a gap (Fig. 17). The
corresponding interpolation kernel is

fd(tl, t2) = sinc - sinc 8 16 /

X exp[i (-3 + 163 t + C t)] (36)

..nc~tj, t2) 2J,[2r(t, 2 + t2
2 )1/2

jinc(t,2 t2) =
t 2

(33)

where J,(x) is the Bessel function of the first kind of order
1.13 The jinc function is also known as the sombero func-
tion.'4 The spectrum of this signal is the circle 47r rect[(u, 2

+ u22) 1 2/2]. The value of the sample at the origin, x(0) = 1,
was estimated by using windows of various extents. Specifi-
cally, the estimations of the decimated samples are

xd(VdM) = E Xi(Vdn)fd[Vd(m - n) - V(k -kd)],
i5-d nfM

(34)

where

M M M

nesf nl=-M n2 =-M nN=-M

and M is the number of layers used in the estimation. The
window extents for the continuation of example 1 of a total
of M = 3 layers are shown in Fig. 13, where M = 1 corre-
sponds to 4 decimation periods, M = 2 corresponds to 16
decimation periods, and M = 3 corresponds to 36 decimation
periods. The estimate, (0) is shown versus M in Fig. 14.
When only known data are used in the first layer, the sample
at the origin is estimated at 0.96. Using M = 2 layers im-
proves the estimate to 1.01, a result within 1% of that de-
sired. For example 2, the estimate x(O) is shown versus M in
Fig. 15. Good steady-state convergence occurs at M > 4
layers.

Sampling Below the Nyquist Density: First-Order
Decimation of Hexagonal Sampling
We have seen that a circularly band-limited function is sam-
pled at the Nyquist density by using a hexagonal sampling
geometry. For a unit-diameter circle, the sampling matrix
corresponding to this hexagonal sampling geometry is

2lV2

I

F

II

(35)

The sampling density is D = 0.866. The repetition pattern
of the sample's spectrum is shown in Fig. 1.

If the samples can be decimated from this sample set, the
function will be sampled below the Nyquist density.

Example 3. Given the hexagonal sampling geometry, we
can achieve a 1:64 deletion ratio by adopting a decimation
matrix of Vd = 8V (Fig. 16). Thus we obtain

F

-q - p - - p -p -p~~~~~~~~~~~~~~~~~~~~~

I::ee : *

I..
l * s
0 * 0

I .
0 K

L

I

I

V

M=2

M = 3
Fig. 13. Three-layer window corresponding to example 1.

1.2

1.0 _ _ _ _

0.8 

0.6 _

0.4 

0 .2 _ _ _ _ _ _ _ _ _ _ _ _ _

1 2 3 4 5 6 7 8 9 10

Layers
Fig. 14. Plot of the estimate (O) versus the number of layers for
example 1.
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1.0 -
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0.6 -
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0.2

1

Fig. 15. P
example 2.

2 3 4 5 6 7 8 9 10

Layers
lot of the estimate x(O) versus the number of layers for

t2

ti

Fig. 16. Decimation geometry specified in example 3.

The overall sampling density in this example is reduced
below the Nyquist density.

Starting from the rectangular sampling geometry, exam-
ples 1 and 2 reduce the density to 0.8889 and 0.8750, respec-
tively. The hexagonal sampling geometry yields the Ny-
quist density of 0.866, and example 3 reduces the density to
0.8525, which is 0.135 below that of Nyquist.

Second-Order Decimation and Restoration
We now extend the result of first-order decimation to second
order. If a subcell is small enough that two identically

oriented nonoverlapping subcells are totally enclosed within
a gap of a single spectral period, then two sample subgroups
can be deleted and restored by the remaining L - 2 sample
subgroups. The result is that the sampling density is re-
duced by a factor of 2/L. We present this extension by
showing that, in example 3, one more subcell can be accom-
modated within another gap. Therefore an additional sam-
ple subgroup can be deleted in example 3 with no loss of
information.

Example 4. Continuing with example 3, we can easily
position a second subcell located at (1, 1/2), as shown in Fig.
18. We denote this cell &d,2 and the first one &d,1. Both
cells are totally subsumed in the gap. Since X(v) is identi-

F2

Fig. 17. Example 3: a subcell is totally embedded in a gap region.

d(V, 

vi

Fig. 18. Example 4: two subcells are totally embedded in two gap
regions.
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cally zero in these two cells, we can obtain two homogeneous
equations from Eq. (21):

L-1

Z vgi(i)exp(-27rVkj) = 0, v ' d l,

i=O

L-1

E X.(v)exp(-2rVkj) = 0, v E d,2 . (37)
i=O

Let the two nonidentical sample subgroups Itxk(Vdn)lk =
kj, k21 be deleted. The set of the locations of the deleted
samples is therefore

Jtt = t1 U 2, (38)

where

.l = mlm = Mn + k, 2 = mlm = Mn + k2 .

In this case, two samples are deleted per decimation period.
The interpolation kernels to restore these two sample sub-
groups can be derived from Eqs. (37).

Both Eqs. (37), however, are not defined over the same
domain. Nevertheless, the kernels can be solved with the
addition of some extra steps. By recognizing that the two
cells &dj and &d,2 are similarly oriented, we can view &d,2 as a
translation of &d,l by a vector d. We then rewrite Eqs. (37)
as

Z exp(-2rv T Vkj)Xj(v) = G(v), v kdl,
i=1,2

Z exp[j27r(v + d)TVki]ji(v + d) = G(v + d),

i=1,2

6 &dj, (39)

where

and

G(v + d) = - Y Xj(v)exp[j27r(P + d)TVkjI.
js 1,2

The vector G can also be written as

G = -HrXr,

(42)

where Xr is the vector whose entries are the spectra of the
remaining sample subgroups and Hr is the matrix whose
entries are the weights of the remaining sample subgroups as
specified in Eqs. (40) and (42). If the matrix Hd is nonsingu-
lar, then the spectra of the two deleted sample subgroups can
be obtained:

Xd = HHrXr (43)

or

i(p) = - E Hjj(P)Xj(v),
j1,2

i = 1, 2,

where the Hi,j(v)'s are computed from the matrix product
-Hd-Hr. In particular, let

Hij(v) = Ci,j(d)exp[-j2rTV(kj -ki)],

where

C1,j(d) = sin[7rdT(kj - k 2)] exp[-j7rdTV(kj - kj)],

and let

H 2,j = C2 ,j(d)exp[-j2rv T V(kj - k2)],

where

C2,j(d) - sin[rdTV(kj - k)] exp[-jrdTV(kj - k2)I.

G()= - Y Sj(v)exp(-j2rvTVkj).
j1,2

The two Ci,j(d)'s are constant for a given d and kj. The
(40) samples of the two deleted subgroups can be obtained by the

following interpolation formula:

Every subgrou's spectrum is periodic with the periodicity
matrix, Ud; i.e., !j(v) = !j(V + Udp) for any integer vector p.
Hence, if d is an integer-weighted sum of the two periodicity
vectors Ud, and Ud2 (the two column vectors of Ud in example
3), then Xj(V + d) = Xj(V). The two equations above can be
combined into a matrix equation:

HdXd = G, v E &dl, (41)

where

Hd - exp(j2irvTVkl)

[exp[-j2 7rVT(V + d)kl]

Xd = k,() 1
[ k2(')J

G G()]

exp(j2rv TVk2)
exp[-j2irvT(V + d)k21 ,

Xi(Vdm) = - E Xj(Vdn)hi~j[Vd(m - n) - V(kj -ki)],
j961,2 n

i=1, 2, (44)

where

hjjt) = D Cij(d) Jexp(2rVTt)dv

is the interpolation kernel.
Unfortunately, d in this example is not an integer-weight-

ed sum of the two periodicity vectors. We found that

d = (,6 7 \5) T 
2 .38Ud + 2 . 2 4 Ud,-

In order to apply the results above, we need to add some
additional steps. First, we divide the cells d,1 into four
partitions: d,l,k, k = 1, 2, 3, 4. Likewise for the cells &d,2,

we have &d,2,k, k = 1, 2,3,4. We partition both cells in a way
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such that for everyvi &d,lk there exists a corresponding V2
6 &d,2,k such that

v2 = v + dk, k = 1, 2, 3,4.

Normally, the number of partitions for an N-dimensional
signal is 2N. Each vector dk is an integer-weighted sum of
the two periodicity vectors:

dk = Udpk, k = 1, 2,3, 4,

where pi is an integer vector for every i. The four pi vectors
are measured to be

pi = (3, 3 )T, 2 = (2, 3 )T, P3 = (3, 2 )T, p4 = (2, 2)T.

We illustrate all these measurements in Fig. 19. Since we
can view &d,2,k as a translation of &d,l,k by the vector dk, and
also X(v) = X(v + dk), we can solve Eq. (41) over the four
regions &d,l,k and obtain four solutions. The restoration
formula for the two deleted subgroups is then a combination
of the union of the four solutions.

Recall the procedure starting at Eq. (43). By substituting
each vector dk into Eq. (41), we obtain four matrix equations,
each corresponding to a partition &d,l,k:

HdXdk = Gk, V E d,l,k, k = 1, 2, 3,4. (45)

Since
4

Xd = U Xdi

it follows that, if every matrix Hdk is invertible, then
4

Xd i U HdkoGk

The interpolation kernels can then be obtained:

14
hi, 1 t) =- 2' Ci~j(dk)hk(t), i = 1, 2,

Dd~dk=ij
(46)

where

hk(t) = |J exp(j27rvTt)dv. (47)

Now we evaluate Eq. (47) at each partition &d,l,k- Since
all the partitions are similar parallelograms but are different
in scale and location, Eq. (47) can be evaluated over a paral-
lelogram region, say, a subcell. We then evaluate hk(t) for
every k by applying the corresponding scaling and shifting
operations. Specifically, we first evaluate Eq. (47) over a
subcell Od with its lower left-hand corner located at the
origin. The solution of this integration is denoted as a
general solution k(ti, t2), which is found to be

C \ I C4t2k(tj, t2)= - sinc t sincIt +
128 8/ \16 16/

X expljr 3t+ + (48)
LX16 16

We consider the scaling operation first. The scaling be-
tween each partition Cd,l,k and OdO is represented by a scal-
ing matrix, denoted Sk. Since each partition is in the same
orientation as the subcell, Sk is a diagonal matrix:

Sk = S °] k = 1, 2, 3, 4,

where Ski and Sk2 are the scaling factors in the direction of Ud
and ud2, respectively. By incorporating the shifting vector,
we obtain the relationship

&d,l,k(V) = 6 dO(Skv + rk), k = 1, 2, 3, 4,

where rk is the displacement vectors of &d,l,k in relation to
CdO. By applying Rajan's result,12 we obtain

hk(t) = sklsk2k(Skt)exp(j 2 rrkTt), (49)

where k(t) is the function expressed in Eq. (48). The mea-
surements of Sk and rk for each partition are listed in Table
1. Finally, we substitute the corresponding values listed in
the table into Eq. (49); the result is then substituted into Eq.
(46). We obtain the following interpolation kernels for re-
storing the two deleted sample subgroups:

hij(t) = D ECi jsksk(SkTt)exp(j27rrkTt).
Ddk=1

(50)

Fig. 19. Example 4: an illustration of the partitioning of each of
the two subcells into four partitions.

In this example we obtain a sampling density of 0.8389, the
lowest so far in all the examples.

A sufficient condition for the existence of the solution to
restore the deleted samples is that all matrices, Hdk in Eq.
(45), are nonsingular. One can show, for example, that a
solution exists for the case of k, = (0, o)T and k2 = (1, )T. If
k2 is changed to (1, 0 )T, the condition is violated, and there-
fore no solution exists for this decimation geometry. In
contrast to the first-order decimation, second-order decima-
tion does not guarantee that solutions exist for all possible
decimation geometries.
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Table 1. Weights and Displacements Corresponding
to the Four Partitions of the Subcell in Example 4

k SkI Sk2 rkl rk2

1 1o3 - 16 16 - 93 7 7 - 8
24 16 10

2 8 - 44 16 - 94 173 - 16 7 - 8
C3 C3 163 10

3 5C3 - 8 103 - 16 8 - t 44 - 3

C3 C 8C3 8 C
4 8 - 44 1o4 - 16 1 4 - 3

,3 C3 2 83

Multiple-Order Decimation and Restoration
The interpolation kernels in Eq. (46) have a general form of

fi,j(t) = > aj ,,kfk(t).
k=l

(51)

By comparing this with Eq. (46), we obtain

ai jk = Cij(dk)

and

fk(t) = D skiSk2 k(Sk t)exp(j 27rrkt).

In this form, the kernels are determined by the functions
Cij(d), which are obtained by inverting the matrix Hd in Eq.
(41). The values of the Sk's and rk's can be determined
immediately after these factors are known.

With this approach, we consider extending the decimation
to higher orders. By the same reasoning, if a subcell is small
enough that q > 2 identically oriented subcells without over-
lap are totally enclosed within gaps of a single spectral peri-
od, the q of L sample subgroups can be deleted and restored
by the L - q remaining sample subgroups. Specifically, let
udIi = 1, . . , N} be the N periodicity vectors, and let &d,j, i

= 1, ... , q, be the q subcells enclosed within the gap regions.
If we choose &d,l to be the reference subcell, the locations of
the other q - 1 subcells are identified by the following
displacement notations:

&d,j = fvIv E led,l @ dl, j = 2, . q. ,

where @ denotes offset by. After the location of every sub-
cell is identified, the next step is consideration of the parti-
tioning of the subcells. In general, each subcell introduces
an extra partitioning boundary in every udi direction. For q
subcells in a N-dimensional space, then, the total number of
partitions is qN. After the partitioning, we have, for every
partition &d,l,k in &d,l, a corresponding partition dj,k in
every jth subcell such that

ed,j,k = vlv 6 I&d,l,k @ d3,k,}

j2,..., q, k 1, qN

where dj,k is the displacement vector of the kth partition in
the jth subcell relative to the kth partition in the reference
subcell &d,l,k,

d,k = Udpjk,

and Pj,k is an integer vector. Also, the dimension of the &d,1,k
is obtained through the scaling of the reference subcell, &d,l-
The scaling factor in every Ud, direction of the kth partition
is denoted Sk,i, i = 1, . . , N. The displacement vectors, djk,
and the scaling factors, Sk, can be obtained geometrically.

Let . be the set of the indices of the q decimated sample
subgroups. In a form similar to Eq. (41), we obtain, in every
partition,

HdkXd = G, v E &d,l,k,

where the matrix Hd,k has the entries exp[-j27r( +
dj,k)TVk]i 6 JR}. Also, we let

k(t) = J|d,l exp(J27rvTt)dv.

The interpolation kernels follow:
qN

f6,1(t) = E aj,j,kfk(t), i E AK, i E ,
k=k

(52)

where ai~jak is obtained from the inversion of the matrix Hd,k,
and

fk(t) = K (fi Sk,n)k(SkTt)exP(j27rrkTt).

The vector rk is the displacement vector of &d,l,k relative to
&dj. The cardinal series is then

xi(VdM) = - E Xj(Vdn)hi~,Vd(m - n) - V(kj -ki)],
n

i E6 . (53)

Again, a sufficient condition for the existence of a solution is
that all qN matrices, Hd,k, be nonsingular. As is evident
from the derivation, complexity increases with the order of
decimation and the dimension of the function.

EFFECTS OF DATA NOISE

We now consider the effects of data noise on the recovery of
the decimated samples. The data noise is modeled as dis-
crete white noise.' The discrete-white-noise model was
used previously to represent the effect of quantization er-
ror15 and the effect of sampling position jitter.16 We can
show that the interpolation noise level (INL) is the data
noise level multiplied by an amplification ratio, which is
referred to as the noise-level amplification ratio (NLAR).

Interpolation Noise Level of First-Order Decimation
Let t(Vn)In At), the data noise, be a zero-mean stationary
discrete white process,

Et(Vn)t(Vm)j = Pb[n -m,

where E denotes expectation, = E[4 2(t)] is the data noise
level, and [-] is the Kronecker delta (note the square brack-
ets). Let the interpolation noise be q(t). With reference to
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Eq. (29), the interpolation noise at the decimation lattice
points is

n(Vdn) = (Vdm + Vki)fd[Vd(n - m) - (ki -k]

iod m

n eA. (54)

Again, we let the offset vector ka = 0. Since the data noise is
stationary and the deletion is periodic, the restoration noise
statistics will be the same at every point. Thus it suffices to
examine the restoration noise at the origin only. Since

n(0) = E (Vdm + Vki)fd(-Vdm - Vkj) (55)
i'dO m

and

Ejt(Vdm + Vk,)t*(Vdn + Vks)1

= 2[n - n + M-1(k, -k)]],

then squaring both sides of Eq. (55) and expectation gives
the expression for the INL:

2= ZZ [n - [m + M (kr -k)]]
roOsOO m n

X fd(Vdm - Vkr)fd*(Vd - Vks)

[ fd(Vdm - Vkr)I2]. (56)

The sum inside the large brackets can be evaluated by Parse-
val's theorem. For every r from 0 to L - 1,

E Ifd(Vdm - Vkr) = Dd |. IFd(V)12dv, (57)
M ed

where Fd(v) is the Fourier spectrum of the kernel fd(t).
With reference to Eq. (30),

IFd('V)I = {IDd P E @d

otherwise

By substituting the value into Eq. (57) and also because the
area of &d is equal to Dd, we obtain

Ifd(Vdm - Vkr)12 = 1,

and the interpolation noise level in Eq. (56) is obtained:

12= (L - 1)2. (58)

The ratio 72 /2, defined as the NLAR, is equal to L - 1.
Clearly, this ratio is the same regardless of the sampling
geometry and the decimation geometry. The NLAR's for
examples 1-3 of the first-order sample decimation are there-
fore 8, 7, and 63, respectively.

Interpolation Noise Level of Multiple-Order Decimation
For multiple-order decimation, the INL's for different deci-
mation subgroups are different. Briefly stated, the NLAR
for the ith subgroup is

j Eaijk 12 Skn'
j¢tX k=1 n=1

i AK. (59)

For first-order decimation, the coefficients ai,j,kI and Skni
are equal to 1, and therefore Eq. (59) is reduced to Eq. (58).
For the multiple-order case, the first set of coefficients is
generally different for different i's and thus for the NLAR's.
For our example 4, the NLAR's for the two subgroups, k, =
(0, O)T and k2 = (1, )T, are identical and equal to 36.3012.

Normally, the magnitudes of the ajk's are higher, and
hence the NLAR's are higher, in cases in which the deleted
subgroups are more densely clustered.7 8 Such an effect of
the NLAR versus the varying degrees of clustering was dem-
onstrated by Yen8 and Marks and Radbel.17-19 We there-
fore need an algorithm to search for the combination of
decimated subgroups for which the NLAR's are the lowest
and most uniform of all possible combinations. The NLAR
will generally be lower for higher-order decimation because
the number of terms in Eq. (59) decreases with the order of
decimation. Such an effect can be seen from the different
NLAR's in examples 3 and 4.

CONCLUSION

In this paper we have demonstrated a technique to sample
directly certain multidimensional bandlimited functions be-
low the Nyquist density. The technique is implemented by
sample decimation and can be applied directly to band-
limited functions of arbitrary dimension and arbitrary sup-
port using arbitrary nonaliasing sampling geometries. The
decimated samples are restored by discrete interpolation.
The interpolation kernels in many cases can be obtained in
closed form. The INL caused by interpolation from noisy
data was also analyzed. The magnitude of the INL de-
creases with the order of decimation and the uniformity of
the decimation lattice.
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