
SECOND SYMPOSIUM ON EXPERT SYSTEMS APPLlCATlON 
TO POWER SYSTEMS, JULY 17-20,1989, SEATTLE, USA 

Dynamic Security Assessment of Power Systems Using Back Error Propagation Artificial Neural Networks 

M. A. ECSharbwI, R. J. Marks, M. E. Aggoune, D. C. Park, M. J. Damborg, L E. Atlas 

Department of Electrical Engineering 
University of Washington 

Seattle, WA 98195 

ABSTRACT 

In this paper we are proposing the use of Artificial Neural Networks 
(ANN'S) as an operator aid in the dynamic security assessment of 
power systems. The basic role of ANN's in this study is to provide 
assessment of the system's security based on training examples from 
off-line analysis. 

The ANN'S in this study are trained either by 1) randomly distributed 
data which facilitate the utilization of both real measurements and off- 
line simulations; or by 2) data obtained by the interval halving 
method for more accurate results around the boundaries. The training 
algorithm is based on the Back-Error Ropagation method which 
provides a high degree of accuracy. 
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ANN'S, when adequately trained, can alleviate the above mentioned 
difficulties. They can prwids on-line assessment to the system 
security faster than any known technique. Rwious work in steady 
state security [3] and dynamic security [2] show the potentials of 
ANN'S as an operator aid. 

In this paper, the ANN approach for dynamic security problem is 
further investigated. More specifically, the following areas are 
presented: 

1. Back-Error Propagation algorithm is used in ANN training. This 
algorithm provides a high degree of accuracy during testing. 

2. The ANN'S are trained either by a) randomly distributed data to 
facilitate the mix of real system measurements with off-line 
simulations; or by b) data generated by an interval halving 
method to enhance the accuracy of the ANN at the boundaries 
of the security regions. 

INTRODUCTION 
ARTIFICIAL NEURAL NETWORK CLASSIFIERS 

The security assessment problem results from the continually 
changing topologies of power systems [I] .  in this paper, artificial 
neural networks (ANN'S) are proposed for on-line security assessment 
as an operator aid. Specifically, here we are concerned with security 
relative to dynamic stability. The basic concept is to use off-line data 
to explore the region of system security in a space of critical 
operating variables. These variables then serve as inputs to an ANN 
which is trained with this off-line data to yield the proper response: 
'Secure' or 'insecure'. The hainsd ANN could then be used on-line, 
i.e. it could be fed with the on-line values of the input variables and 
yield a warning to the system operator if the system is in the insecure 
region. An important feature of ANN'S that is fundamental to this 
approach is that they can interpolate among the training cases to give 
an appropriate response for cases described by neighboring 
inputs [2,3]. 

In dynamic stability analysis, it is appropriate to examine the 
eigenvalues of e linearized version of the system m d e l  about the 
assumed operating point. Hence, to examine many operating points. 
the nonlinear model must !m linearized and analyzed for each p in t .  
A model representing the complete system that concerns a typical 
operator is much too large for an on-line linearization and eigenvalue 
analysis, even when dynamic equivalents are used (4-61. Hence, on- 
line aid must probably be built using off-line analysis. 

In addition to the abovs mentioned difficulties, the on-line dynamic 
security assessment is hard to achieve for a number of reasons such 
as: (1) To be complete, the numbsr of cases which must be 

Artificial Neural Networks (ANN's) loosely resemble the architecture 
and algorithmic performance of their biological counterparts. 
Generally, an ANN can be defined as a highly connected array of 
elementary processors called neurons. A popular model for 
ciassification ANN'S is the layered one shown in Figure 1 [7-131. The 
top layer receives the input vector that stimulates the network. Each 
element of this vector is weighted by the input to hidden 
interconnects to form at the middle (or hidden) layer a weighted sum. 

Input 

Weighting Fmetor 

Woighli13g Fmctor 

examined is very large; (2) The system is never actually operating at output 

the states that were examined so the operator must interpolate Figure 1. Structure of a Three-layered ANN 
among cases; (3) The operator must have a way of cataloging and 
retri&ing the appropriate cases for the current syst~m state, and this This sum is altered by a n~nlinearity (0.9. sigmoid) to establish the 
must be done quickiy! state of each hidden neuron. The states of hidden neurons propagate 

to the output layer to decide the states of the output neurons just as 
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In order to increase the speed of convergence, we utilize a 
the input neurons do to the hidden neurons. Layered ANN'S can be momentum terma which augmenb the learning rule to 
trained by iteratively inputting training data p,8,14,15]. The 
performance of the referenwd tterativs techniques is dictated by the A W .  (n+l) =cb.o.+a A w..(n) 
structure of the classification partition boundaries: the more lj I t  9 
complicated the boundaries, the more hidden neurons are rquired. where n denotes the iteration index. The momentum gain affects the 

In some instances, a second hidden layer is needed. A highly past weight changes on the current direction of mwement in the 

regarded tutorial on other aspects of classification ANN'S is given 'pace. 

in [15] 

DATA SELECION BY INTERVAL HALVING 
BACK ERRPR PROPAGATION ALGORITHM 

Back error propagation learning requires a set of input and output 
(target) pairs. Basically, an output vector can be produced by 
presenting an input pattern to the network. According to the 
difference between the produced output and the target vector, the 
network's weights are adjusted to reduce the output error. 

The ANN used in this paper consists of input, hidden, and output 
layers. Four neurons, including a bias neuron, are assigned to the 
input layer. Ten neurons are used in the hidden layer, and one neuron 
in the output layer. For convenience, we number the bias neuron with 
0, the input neurons with 1 to 3, hidden neurons with 4 to 13, and the 
output neuron with 14. 

Define, 

W.. 
II 

: the weight between neuron i and j 

0. 
I 

: the output state of neuron i 

t : the target state of output neuron 

Unless the neuron k is one of the input neurons, the state of the 
neuron k is: 

where f(x) = 1 / (1 + e-X), and C is wer all the neurons in the adjacent 
layer. 

The error at the output neuron can be defined as [a] 

= - '( Xir4,13 Wij Oi + w ~ ) )  
2 

here k = 14 sin- the output neuron is number 14, wDk is the bias of 
the k th output neuron. 

The gradient descent algorithm adapts the weights according to the 
gradient of error. i.e, 

A w.. a - ( a E/s wij) = - ( a E/a o.)( a o./a w..) 
11 1 1 'I 

Specifically, we define the error signal as 

With some manipulation, we can get the following back error 
propagation adaptation rule: 

Aw..=rd 0 
11 i i 

where c is an adaptation gain, 

The ANN's in this study are trained either by randomly chosen data or 
by data generatd by intewal halving. The internal halving method 
results in training data closer to the boundary of the security region. 

Assume that a set of 1000 randomly chose data is available for 
training the ANN. W~th the interval halving method, we can generate 
another set of 1000 data points that are closer to the boundary of the 
security region. 

The interval halving procedure can be explained as follows: Assume 
we have a secure point A and an insecure point B in the classification 
space. Let C be the mid point between A and 8. The system 
equations are queried to determined the security status at point C. If 
C is insecure, then ws can delete point B from our data base. This is 
because paints & and C have the same security status, and point C is 
assumed to be closer to the boundary than point B. (This is always 
true if the security region is convex). A second iteration of the interval 
halving procedure will find a mid point D between A and C. If the 
system equations indicate that point D is insecure, then A can be 
deleted, and so on. In our study, we used oniy two such interval 
halving iterations. 

It is worth mentioning that the interval halving method requires the 
system model. Whenever uncertain arises during the interval halving 
procedure, the system equations are queried. 

TEST SYSTEM AND ALGORSTHIW 

The test system used in this study is shown in Fig.2 I! is composed of 
9 buses, 11 transmission lines, and 3 generators. The complete data 
is given in (21. The multimachine state space model for stability 
analysis used in this study is derived in [5,6]. 
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Figure 2 Test Sysern 



The ANN technique far power systsm dynamic srcurity assbssment 
developed in this paper Imrolves the following general steps [2]: 

Step 1: Identify a Ust of Contingencies: Specify a set of 
contingencies which have impact on the power system stabilii such 
as the loss of a transmission line, a generating unit, a load, or a 
combination of these. 

Step 2 Generate off-line Training Data: For each of the contingencies 
listed in step 1, the stability of the powor system is checked and the 
training data is generatad. In this study the training data set is one of 
two types a) randomly selected; or b) interval halving data. u 0.0 

Step 3: Train the ANN: The nawork is trained with one of the data a- 
sets generated in step 2. 

45' 
- - -  

Step 4: Test the ANN: Once the training is complete, the ANN'S 
classification ability is checked using operating points which are not 
neaessarily part of the training set. _I , , , , , . 1 -1.0 
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TEST RESULTS 

Several contingencies were evaluated during the course of this study. 
However, for brevity, only one case is reported here. The security 
problem reported here is related to the real and reactbe p e r  
generated by machine number 3 (P3 and Q3), In addition to the 
apparent power of machine number 2 (S2). The security region in this 
case is three dimensional with the above mentioned variables as the 
axes. 

The ANN is composed of three input neurons (and for each of P3. Q3 
and S2) and one output neuron. It also contains 10 hidden neurons. 

The ANN is trained either by using me randomly distributed data or 
by the data generated by interval halving. The back error propagation 
method is used in both cases to train the network. Samples of the test 
results are given in Figure 3. Figure 3a represents the test resub 
when the ANN is trained by the randomly chosen data, and Figure 3b 
is for the case of interval halving. In both cases, the security cantour is 
generated for 52 = 0.8 pu. In Figure 3, the dashed line shows the 
searrity contour generated by the ANN during the test. The solid line, 
which is added for comparison, represents the 'actual' security 
contour. This 'actual' contour is obtained by simulating tha power 
system model. 

Rgure 3a. Security Contour Obtained Using 
Random Data for S 2 ~ 0 . 8  p.u. 

Figure 3b. Security Contour Obtained Using 
Interval Halving Data for S2a0.8 p.u. 

Figure 3b show8 the ease when the ANN is trained by the interval 
halving method. The dotted line is for the security contour obtained 
by the ANN, and the solid line is for the 'actual' contour. 

From the above study, it is shown that both methods provide good 
classification of the security regime. Moreover, Figure 3b shows fewer 
misdassifications as compared to Figure 3a. 

Another test case is shown in Figure 4. In this case the reactive power 
Q3 is kept constant at 0.3 pu. The three curves show how the ANN 
interpolates among the training data points. The dashed line shows 
the case when the ANN is trained by the random data, the dotted line 
shows the case of the interval halving, and the solid line shows the 
'actual' boundary. The figure, again, shows that the ANN is capable 
of providing adequate interpolation in both caws. The case of interval 
halving shows a better interpolation as compared to the case of 
random data. 

Figure 4. Network's Generalization 

Figure 5 shows the learning errof versus the number of iterations. 
The learning error is defined here as the cumulative error after each 
iteration of the back error propagation method. It is seen in this curve 



that the learning error initially decreases rapidly as the number of The ANN is trained by either randomly selected data or by data 
iterations increases. After about 600 iterations it starts to level off. generated by the interval halving method. The training algorithm is 

based on the back error propagation technique. 

Figure 5. Network's Learning Curve 

Figure 6 shows the 'testing error' versus the number of iteration in the 
learning stage (the number of iteration usad to train the ANN). The 
testing error in percent corresponds to the number of 
misclassifications with respect to the total number of tested data 
points. The figure shows two curves: the solid line is for the ANN 
trained by using the interval halving data and the dashed line is for 
the ANN trained by the random data. The figure shows a very small 
amount of misclassification in both cases. Again, the interval halving 
method provides a lower error rate that is leveled off for any ANN 
trained by more than about 400 iterations. 

Figure 6. Network's Performance Cuwes 

We have demonstrated that the Artificial Neural Network is able to 
properly interpolate among training data sets to recognize security 
contours. The importance of this result is that, once trained, the 
network represents the complex matherrlatical relationships of the 
power system which otherwise must be explicitly simulated. 

All the results show a very low misclassification rate. 
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