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ABSTRACT

in this paper we are proposing the use of Artificial Neural Networks
(ANN's) as an operator aid in the dynamic security assessment of
power systemns. The basic role of ANN's in this study is to provide
assessment of the system's sacurity based on training examples from
off-line analysis.

The ANN's in this study are trained either by 1) randomly distributed
data which facilitats the utilization ot both real measurements and off-
line simulations; or by 2) data obtained by the interval halving
method for more accurate results around the boundaries. The training
algorithm is based on the Rack-Error Propagation method which
provides a high degree of accuracy.
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INTRODUCTION

The security assessment problem results from the continually
changing topologies of power systems [1]. In this paper, artificial
neural networks (ANN's) are proposed for on-line security assessment
as an operator aid. Specificaliy, here we are concerned with security
relative to dynamic stability. The basic concept is to use off-line data
to explore the region of system security in a space of critical
operating variabies. These variables then serve as inputs to an ANN
which is trained with this offdine data to yield the proper rasponse;
"secure” or “insecura”. The trained ANN could then be used on-line,
Le. it could be fed with ths on-line values of the input variables and
yield a warning to the system opsrator if the system is in the insecure
region. An important feature of ANN's that is fundamental to this
approach is that they can interpolate among the training cases to give
an appropriate fesponse for cases described by neighboring
inputs [2,3].

in dynamic stability anaiysis, it is appropriate to examine the
eigenvalues of a linearized version of the system mode! zbout the
assumed operating point. Hence, {0 examine many operating points,
the nonlinear model must be linearized and analyzed for each point.
A model representing the complete system that concerns a typical
operator is much too large for an on-line linearization and eigenvalue
analysis, sven whan dynamic equivalents are usad [4-6]. Hence, on-
line aid must probably bs built using off-line analysis.

in addition to the above mentioned difficulties, the on-line dynamic
security assessment is hard to achieve for a number of reasons such
as: {1} To be complete, the number of cases which must be
examined is very laige; (2) The systemn is never actually operating at
the states that were examined so the operator must interpolate
among cases; (3) The opsrator must have a way of cataloging and
retrieving the appropriale cases for the current system state, and this
must be done quickiy!

ANN's, when adequately trained, can alleviate the above mentioned
difficuities. They can provide on-line assessment to the system
security faster than any known technique. Previous work in steady
state security [3] and dynamic security [2] show the potentials of
ANN's as an operator aid.

In this paper, the ANN approach for dynamic security problem is
further investigated. More specifically, the following areas are
presented:

1. Back-Error Propagation algorithm is used in ANN training. This
algorithm provides a high degree of accuracy during testing.

2. The ANN's are trained either by a) randomly distributed data to
facilitate the mix of real system measurements with off-line
simulations; or by b) data generated by an interval halving
method to enhance the accuracy of the ANN at the boundaries
of the security regions.

ARTIFICIAL NEURAL NETWORK CLASSIFIERS

Artificial Neural Networks (ANN's) ioosely resemble the architecture
and algorithmic performance of their biological counterparts.
Generally, an ANN can be defined as a highly connected array of
elementary processors called neurons. A popular model for
classification ANN's is the layered one shown in Figure 1 [7-13]. The
top layer receives the input vector that stimulates the network. Each
element of this vector is weighted by the input to hidden
interconnects to form at the middle (or hidden) layer a weighted sum.
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Figure 1. Structure of a Thres-Layered ANN

This sum is altered by a nonlinearity (6.g. sigmoid) to establish the
state of each hidden neuron. The states of hiciden neurons propagate
to the output layer to decide the states of the cutput neurons just as
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the input neurons do to the hidden neurons. Layered ANN's can be
trained by iteratively inputting training data [7,8,14,15]. The
performance of the referenced iterative techniques is dictated by the
structure of the classification partition boundaries: the more
complicated the boundaries, the more hidden neurons are required.
In some instances, a second hidden layer is needed. A highly
regarded tutorial on other aspects of classification ANN's is given
in [15]

BACK ERRPR PROPAGATION ALGORITHM

Back error propagation learning requires a set of input and output
(target) pairs. Basically, an output vector can be produced by
presenting an input pattern to the network. According to the
difference between the produced output and the target vector, the
network's weights are adjusted to reduce the output error.

The ANN used in this paper consists of input, hidden, and output
layers. Four neurons, including a bias neuron, are assigned to the
input layer. Ten neurons are used in the hidden layer, and one neuron
in the output layer. For convenience, we number the bias neuron with
0, the input neurons with 1 to 3, hidden neurons with 4 to 13, and the
output neuron with 14.

Define,

. the weight between neuron i and j
o, : the output state of neuron i
t . the target state of output neuron

Unless the neuron k is one of the input neurons, the state of the
neuron k is:

O = f( 2wy 0)
where f(x) =1 /(1+ e'x), and Z is over all the neurons in the adjacent
layer.

The error at the output neuron can be defined as (8]

E = (1/2)t-0,°

= (/2151 1390 + wo )2

here k = 14 since the output neuron is number 14, Wok is the bias of
the k th output neuron.

The gradient descent algorithm adapts the weights according to the
gradient of error, i.e,

i
Specifically, we define the error signal as

aw., « - aE/Owii) = - ( aE/aoj)( a°j/awij)

§.=-3Ef80.
] /ol

With some manipulation, we can get the following back error
propagation adaptation ruie:

A wij =¢d j ()i
where ¢ is an adaptation gain,

6. =({-0})0 (1-0), forj = 14
j =t-o)o(i-o) 1

=0 (1-0, ) :
oj( ol)z w.

K%k Wi forj# 14

In order to increase the speed of convergence, we utilize a
momentum terma which augments the learning rule to

A wij n+1) =¢ "j°i +a A wij (n)
where n denotes the iteration index. The momentum gain affects the

past weight changes on the current direction of movement in the
weight space.

DATA SELECTION BY INTERVAL HALVING

The ANN's in this study are trained sither by randomly chosen data or
by data generated by interval halving. The internal halving method
results in training data closar to the boundary of the security region.

Assurmne that a set of 1000 randomiy chose data is available for
training the ANN. With the interval halving method, we can generate
another set of 1000 data points that are closer to the boundary of the
security region.

The interval halving procedure can be explained as foilows: Assume
we have a secure point A and an insecure point B in the classification
space. Let C be the mid point between A and B. The system
equations are queried to determined the security status at point C. i
C is insecure, then we can delete point B from our data base. This is
because points B and C have the same security status, and point C is
assumed to be closer to the boundary than point B. (This is always
true if the security region is convex). A second iteration of the interval
halving procedure will find a mid point D between A and C. if the
systemn equations indicate that point D is insecure, then A can be
deleted, and so on. In our study, we used oniy two such interval
halving iterations.

it is worth mentioning that the interval halving method requires the
system model. Whenever uncertain arises during the interval halving
procedure, the system equations are queried.

TEST SYSTEM AND ALGORITHM

The test system used in this study is shown in Fig.2. it is composed of
9 buses, 11 transmission lines, and 3 generators. The complete data
is given in [2]. The multimachine state space model for stability
analysis used in this study is derived in [5,6].
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The ANN techniqus for power systsm dynamic security assessment
developed in this paper involves the foilowing general steps {2]:

Step 1: Identify a Ust of Contingencies: Specify a sst of
contingancies which have impact on the power system stability; such
as the loss of a transmission line, a generating unit, a load, or a
combination of thess.

Step 2: Generate offine Training Data: For each of the contingencies
listed in step 1, the stability of the power system is checked and the
training data is generated. In this study the fraining data set is one of
two types a) randomly sslected; or b) interval halving data.

Step 3: Train the ANN: The network is trained with one of the data
sets generated in step 2.

Step 4: Test the ANN: Once the training is complete, the ANN's
classification ability is checked using operating points which are not
necessarily part of the training set.

TEST RESULTS

Several contingencies were svaluated during the course of this study.
However, for brevity, only one case is reported here. The security
problem reported here is related to the real and reactive power
generated by machine aumber 3 (P3 and G3), in addition to the
apparent power of machine number 2 (S2). The security region in this
case is three dimensiona! with the above mentioned variables as the
axes.

The ANN is composed of three input neurons {(and for each of P3, Q3
and S2) and one output neuron. it also contains 10 hidden neurons.

The ANN is trained either by using the randomly distributed data or
by the data generated by intervai halving. The back error propagation
method is used in both cases to train the network. Samples of the test
resuits are given in Figure 3. Figure 3a represents the test results
when the ANN is trained by the randomly chosen data, and Figure 3b
is for the case of interval halving. In both casss, the security contour is
generated for S2 = 0.8 pu. In Figure 3a, the dashed line shows the
security contour generated by the ANN during the test. The salid line,
which ig¢ added for comparison, represenis the “actual® security
contour. This "actual® contour is obtained by simulating the power
systern modsl.
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Figure 3a. Security Contour Obtained Using
Randomn Data for S2=0.8 p.u.
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Figure 3b. Security Contour Obtained Using
Interval Halving Data for S2=0.8 p.u.

Figure 3b shows the case when the ANN is trained by the interval
halving method. The dotted line is for the security contour obtained
by the ANN, and the solid line is for the "actual® contour.

From the above study, it is shown that both methods provide good
classification of the security regime. Moreover, Figure 3b shows fewer
misclassifications as compared to Figure 3a.

Another test case is shown in Figure 4. In this case the reactive power
Q3 is kept constant at 0.3 pu. The three curves show how the ANN
interpolates among the training data points. The dashed line shows
the case when the ANN is trained by the random data, the dotted line
shows the case of the interval halving, and the solid line shows the
"actual” boundary. The figure, again, shows that the ANN is capable
of providing adequate interpolation in both cases. The case of interval
halving shows a better interpolation as compared to the case of
randomn data.
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Figure 4. Network's Generalization

Figure 5 shows the "learning error* versus the number of iteraticns.
The learning error is defined here as the cumulative error after each
iteration of the back error propagation method. i is seen in this curve



that the iearning error initially decreases rapidly as the number of
iterations increases. After about 600 iterations it starts to level off.
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Figure 5. Network's Learning Curve

Figure 6 shows the “testing error® versus the number of iteration in the
learning stage (the number of iteration used to train the ANN). The
testing error in percent corresponds to the number of
misclassifications with respect to the total number of tested data
points. The figure shows two curves: the solid line is for the ANN
trained by using the interval halving data and the dashed line is for
the ANN trained by the random data. The figure shows a very small
amount of misclassification in both cases. Again, the interval halving
method provides a lower error rate that is leveled off for any ANN
trained by more than about 400 iterations.
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Figure 6. Network's Performance Curves

CONCLUSIONS

We have demonstrated that the Astificial Neural Network is able to
properly interpolate among training data sets to recognize security
contours. The importance of this result is that, once trained, the
network represents the complex mathematical relationships of the
power system which otherwise must be explicitly simulated.

The ANN is trained by sither randomly selected data or by data
generated by the interval halving method. The training algorithm is
based on the back srror propagation technigus.

All the resuits show a very low misclassification rate.
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