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Abstract In a more general setting, the  Lth order GSE 
allows the function t o  be represented by L sample 
sets: {{gi(nT,)} 10 5 i L - 1}, where every 

T h e  generalized salnpling expansion (GSE), h i -  gi(t) is the output of a linear system, h;(t), given 
tially formulated by Papoulis, generalizes a broad f ( t )  is the common input: 
class of extensions generated from the Shannon 
sampling theorem. A significant contribution of 
this expansion is that  the merit of these differ- 
en t  extensions can be compared under a common 
framework. In this paper, we will present two 
extensions of this generalization. First, an ex- 
tension which considers processing of the sam- 
ples generated under the framework of the GSE. 
The  second extension is a multidimensional (M- 
D) extension of the GSE. The  M-D extension 
of the GSE not only retains all of the merits 
of its I-D counterpart but also results in fasci- 
nating geometric analyses which do  not occur in 
its 1-D counterpart. This analysis is useful in 
a number of areas. Namely, the minimum sam- 
pling density of M-D bandlimited functions, the 
multiband sampling theorem and, while combia- 
ing with the first extension, the multidensity dig- 
ital signal processing which is also arr M-D ex- 
tension of the multirate digital signal processing. 

1. Introduction 

T h e  generalized sampling expansion (GSE), 
initially formulated by Papoulis [1,2], eloquently 
generalizes a broad class of extensions generated 
from the Shannon sampling theorem [lo]. T w o  
well known extensions that  fall under this gener- 
alization is the ordinate-slope sampling1 [11,12] 
and the interlaced sampling2 [4,11]. Given a 20- 
bandlimited function f ( t )  (the spectrum F(u)  = 
0 for lvl 2 a), the Shannon sampling theorem al- 
lows the function to be represented by its samples 
{f(nT,,)) where T, = 1/20, the Nyquist interval. 

'or sample-dcrivative sampling. 
'or bunched sampling. 

The  sampling period, T,, is L times that  of 
T.. Clearly, the overall sampling period remains 
equal to the Nyquist interval. Both the o r d i n a t e  
slope sampling and the interlaced sampling are 
the L = 2 cases of the GSE. T h e  two linear sys- 
tems for the ordinate-slope sampling are: Ho(u) 
is an  allpass filter and Hi(u)  = j2rrv. For in- 
terlaced sampling, Ho(v) remains an allpass fil- 
ter while Hl(v)  is changed t o  exp( j2sav)  where 
O < a < T , .  

T h e  GSE starts  with a partitioningof the spec- 
trum F(v).  In the  Lth order GSE, F ( o )  is parti- 
tioned into L equal portions as shown in figure 1. 
In particular, we let A be the region ( - 0 , - a t c )  
where c = 2a/L. The ordering of the  L partitions 
is as follows: 

Fk(v) is just the k'* partition o f F ( u )  shifted over 
t o  A. ~.~ 

Let &(t) be the  sampling impules correspond- 
ing to the sample set (gi(nT,)]: 

Then for v E A: 

L-l 

c i ( u )  = Hi(" + jc)Pk(v) i = 0 t o  L - 1 
k = 0  

(3) 
Equation (3) can be written into a matrix form: 



With the knowledge of every partition, pk(u),  in 
A, the signal can be restored by shifting every 
partition t o  it's original position. Shifting in the 
u domain corresponds lo modulation in t domain. 
In particular, 

The square brackets encloses tlie modulation pro- 
cess required of shifting the-partitions back to 
their original positions. Let E be the carrier vec- 
Lor: 

2 = ( 1 ejZzel 2 2 1 2 ~ :  . . . ej2x(L-l)cl )T 

(6) 
(the subscript T denotes transposition). With 
the carrier vector, (5) can be written into the 
following form: 

By substituting (5) into (7), we obtain 

The product E T ~ - ' 6  in (8) generates the ex- 
pression of the interpolation formula for restoring 
f (i). In particular, let 

where 

By solving (9), we obtain the L interpolation ker- 
nels: 

(10) 

and the interpolation formula follows: 

Equations (9) to (11) are the core equations for 
the GSE, Restoring f (t) from the L sample sets 
assumes the invertihility of the matrix E. 

A significant contribution of the GSE is that 
the merit of different sampling extensions can be 
compared under a common framework. By uti- 
lizing.the GSE, Cheung and Marks [3] demon- 
strated that there is a class of innocent-appealing 
yet ill-posed sampling theorems. 

After L sample sets are obtained and if & is 
invertible, we can restore f(t) .  We may, however, 
want to process these samples in order for some 
other desirable outputs, say fp(t). For example 
we desire fp(t) lo be a lowpass version o f f  (i). 

Let the processing be represented by a filter 
HP(+ 

F p ( ~ )  = Hp(u) F(Y)  

Using the same partitioning notation, we obtain 

where F,,L(v) is the kt* of Fp(u) sliifted over to 
A, or, in matrix form, 

In this setting, & is a diagonal matrix. Without 
bothering n-it11 details, (9) is modified to become 

Here, 

The  procedure to obtain tbe interpolation kernels 
and the interpolation formula for obtaining fpf,t) 
is outlined in (10) and (11). 

The diagonal LCp e 4 y  represents various pop- 
ular signaling processing methodologies. For low- 
pass filtering, only the elements in tlie center 
portion are nonzeros. For highpass Altering, el- 
ements a t  the central portion are zeroed. And 
for Hilbert transformatian 141, the upper and the 
lower half of the entries are reversed in polarity. 

In general, LCp need not be diagonal. In 
this setting, partitions of F(u) are weighted and 
mixed together. If 4 is invertible, the scrambled 
signal fp(t) can be descrambled to obtain f(1). 

2. Multidimensional 
Extension 

In the same spirit of its 1-D counterpart, the 
multidimensional (M-D) extension of GSE is for- 
mulated to consider samoline. M-D bandlimited . - 
functions with the same general setting. Before 
we proceed to details, we will briefly present a 
summary of the M-D sampling theorem. 

Mult idimensional  Sarnpling T h e o r e m  

The M-D sampling theorem, initially pre- 
sented by Peterson and Middleton [5 ] ,  can be 
summarized as follows. Let f (?) be a N-D ( N  > 
1) &bandlimited function ( F ( q  = 0 for v' $Z 5). 
The function is said lowpass bandlimited if B is 

1.1 Digi ta l  S izna l  Processing a N-D hypersphere centered a t  the origin. 



Let f ( q  be a N-D lowpass bandlimited func- 
tion and V be the sampling matrix. Then Sam- 
pling f (3 produces the following impulses: 

where 

and 6(i) is the N-D Dirac delta function. Given 
D = 1//J4 the sampling density and the repli- 
cation matrix, where y = [YT]-', the spectrum 
of j(i) is a periodic replications of F ( 4 :  

Let C denotes a period of the replications 
p ( 4 .  For convenience, C is referred as a "cell". 
Restoration of f(i) from j(i) is via interpolation: 

The inlerpolation kernel is evaluated by 

where C, is a cell containing only the zeroth order 
replication. 

2.1 Mult idimensional  GSE 

In identical to its I-D counterpart, the M-D 
GSE allows f(i) to be represented by L sample 
sets {{gi(Li i ) )  1 i = 0 to L - 1) where gi(i) is 
the output of a linear system, h i (q ,  given f(i) 
the input. The matrix is the sampling ma- 
trix of these L sample sets. Here, we let Cfd be 
the corresponding replication matrix and Cd be a 
replication period, which will be referred as "sub- 
cell" for convenience. 

Again, the M-D GSE starts with partitioning 
the spectrum F(v). In analogous to the 1-D 
GSE, the spectrum is partitioned into L iden- 
tical partitions. An example of the partitioning 
is shown in figure 2. The larger square is a cell 
C and the smaller square is a subcell, which is 
denoted by Cd. Let Cdo be the reference subcell. 
A method of locating Cd. is outlined in (61. Then 

where Pt(C) is the Ph partition of .F(f i  shifted 
over to Cdo, pnd it is an integer Ltuplet which 

represents the integer t .  The procedure to for- 
mulate the M-D GSE is identical to that of the 
I-D. Without going into details, restoring f(i) 
from the L sample sets is via N-D interpolation: 

The interpolation kernels is evaluated from 

1 v,(i,i)d2a."id~ i = 0 to L-I yi(q = - 
D JEC'. - .. 

(16) 
The expression of the interpolation kernels, 
Y,(<qSs, are solved from the same matrix equa- 
tion in (9). The vector l? in this AT-D setting 
is: 

The multidimensional extension of GSE not 
only retains all the merits in its 1-D setting 
but also results in fascinating geometric analy- 
ses which do not present in its 1-D counterpart. 
These new results can immediately be applied to 
a number of areas. 

2.2 Sampl ing  Densi ty  Reduc t i on  

Under the condition that the spectral replica- 
tions p(F) contain gaps (i.e. regions where p(F) 
is identically zero), the samples are shown to be 
linearly dependent 17,131. By definition, a subset 
of samples can be deleted and restored by those 
remaining. 

Due to the more complicated geometry of M- 
D bandlimited functions, gaps exits even when 
the function is sampled at  the Nyquist den- 
sity 1131. Usingour running example again. Sam- 
pling the 2-0 circularly bandlimited function at  
the Nyquist density corresponding to a hexago- 
nal replication geometry: Clearly, the gaps exist 
among the replications. 

By utilizing the M-D GSE, samples can be 
deleted periodically or decimated as long as gaps 
exists among the spectral replications p(F) [6,7]. 
Since the deletion is periodic, the overall sam- 
pling density is reduced. The geometric analy- 
ses in the A4-D GSE shows that if q subcells are 
subsumed within the gaps of a cell, the up to q 
sample sets can be excluded from being used to 
restore f(i). With reference to figure 2, we have 
four subcells subsumed with the gaps, th6refore 
up to four sample sets can be excluded. 

In particular, let M be the index set corre- 
sponding to the q sample sets being excluded. 
The matrix equation in (9) is reduced to have a 
dimension of L - q: 



and the resulting interpolation lormula t o  r a t o r e  
j( i) in (15) is also reduced: 

Hence, as long as there are q subcells subsumed 
within the  gaps of a cell, up  to q sample sets 
can be excluded in the  restoration of f(i). T h e  
overall sampling density is reduced by a factor 
of q/L?. Of course. the existence of solution is 
dependent on the inwrtibilily of a. Of all the 
(I) combinations, we can show tha t  there exists 
a t  least one combination which has well-posed 
solution 161. 

In general, the smaller the subcells, the higher 
the q's and L's. We found that  the ultimate re- 
duction ratio yields the minimum density which 
is equal to the support o l  F(r;). This result cer- 
tainly is valid lor the I-D case. 

2.3 Multibnncl Snrnpl ing Ti leorern  

T h e  result in the 1h.t section can be applied 
directly (o sample bandpass or in general multi- 
band [El functions, both in 1-D and M-D. This 
is because this claw of lunctions contains gaps 
in their spectrum and therefore in their spectral 
replications as well. 
By applying the result t o  multiband functions, 

we can sample a bandpass or multiband function 
directly a t  or srbitrariiy close Lo the minimum 
density. IVe, however, expect that  the pawdness 
of this class of sampling theorems adverse with 
the degree of sampling jitters. 

2.4 Mul t idens i ty  Dig i t a l  S ignn l  P rocess ing  

T h e  sampling deletion notation discussed in 
the last section fits the description of q/L sam- 
pling rate conversion in the scenario of the multi- 
rate digital signal proceaing (MR-DSP) (91. T h e  
hlD-GSE may be utilized lor this particular pur- 
pose. 

By extending the MR-DSP to higher dimen- 
sion, we may refer this extension as multiden- 
sity digital signal processing (MD-DSP), the 
hf-D GSE can also be used t o  form the b a ~  
of analysis for this particular extension. With 
reference t o  the formulation of the MR-DSP, 
the M I L  sampling density (rate) conversion can 
be implemented via two stages: a M'Qrder 
decimation cascaded by a L 1 h r d e r  interpola- 
tion. For the M ' h r d e r  decimation. the samples 
{!(En')) first of sll is subdivided into M groups: 
{{fr(Ldn')) Ir = 0 t o  M - 1) where 

- 

=In this rr q'" ordu sampling reduction 

where z, is a N-tuplet representing the integer 
r. Only one sample set is retained and the other 
M - 1 sets is discarded. For the L1"order inter- 
polation, only one sample set is nonzero and we 
need to generate the  other L - l sample sets. T h e  
discrete interpolation is usually implemented by 
a lowpass filter. 

By utilizing the M-D GSE into MD-DSP, we 
obtain an alternate approach. T h e  dimerence in 
using the  two approaches is tha t  the  MR-DSP 
approach always provides uniform sampling ge- 
ometries after decimation or interpolation, while 
the M-D GSE in general yields recurrent peri- 
odic sampling geometries [6,7.14]. Never the la ,  
the hl-D GSE approach provides geometric in- 
sights in the analysis as well as freedom t o  choose 
the sample sets he  excluded in decimation or be 
resbred in interpolation. Both the methodol* 
g i n  of decimation as well as the  formulation of 
interpolation is presented in sections 2.2 and 2.3. 

By coupling the DSP lormulation presented in 
section 1.1, the hi-D GSE can be furtherly b e  
used to design interpolation and decimation fil-  
lers used in the scenario of the MD-DSP. 

3. Conclusion 

In this paper, we consider the M-D extension 
of the  CSE. T h e  resulting geometric analyses al- 
low us to apply the M-D extension t o  a number of 
application areas. Specifically. we can apply this 
extension t o  sampling density reduction, band- 
pass or multiband sampling theorems. T h e  M-D 
GSE can also be applied to extend the  multirate 
digital signal processing to higher dimensions. 
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Figure 1 The parrttioniug ol tlw baseband of n I -D  20- 
bandlimited luncrion in the generalized sampling expansion. 

Figure 2 An example of a partitioning of a 2-13 cell in the 
multidimensional generalircd sampling expansion. 
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