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Abstract -We consider a class of neural networks whose performance 
can be analyzed and geometrically visualized in a signal space environ- 
ment. Alternating projection neural networks (APNN’s) perform by alter- 
natively projecting between two or more constraint sets. Criteria for 
desired and unique convergence are easily established. The network can he 
configured as either a content addressable memory or classifier. Conver- 
gence of the APNN can be improved by the use of sigmoid-type nonlinear- 
ities and/or increasing the number of neurons in a hidden layer. 

I. INTRODUCTION 

I N THIS PAPER, we depart from the performance 
analysis techniques normally applied to neural net- 

works. Instead, a signal space approach is used to gain new 
insights via ease of analysis and geometrical interpretation. 
Building on a foundation laid elsewhere [l]-[3], we demon- 
strate that alternating projection neural network’s 
(APNN’s) formulated from such a viewpoint can be con- 
figured in layered form as a classifier or homogeneously as 
a content addressable memory [4]. 

The neurons in the homogeneous APNN can be clamped 
to a preassigned value and provide the network stimulus or 
can float in accordance to the stimulus of other neurons. 
The status of a neuron as clamped or floating may change 
from application to application. The APNN in this form 
acts as a content addressable memory. After being trained 
with a number of library vectors, the APNN can recon- 
struct any one library vector by clamping an arbitrary 
subset of the neurons to values equal to the elements of 
that vector. If the cardinality of the subset is sufficiently 
large, the states of the remaining floating neurons will 
converge to the unknown vector elements. 

The neurons in the input layer of the layered APNN 
provide the network’s stimulus. Use of neurons in the 
hidden layer increase storage capacity, convergence rate 
and classification diversity. When used as a classifier, the 
states of the output neurons provide the classification 
index. 

APNN’s have the following attributes: 

(a) As their name suggests, APNN’s perform by alter- 
natingly projecting between two or more constraint 
sets. This is in contrast, for example, to the more 
conventional technique of formulation of an energy 
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metric for the neural networks, establishing a lower 
energy bound and showing that the energy reduces 
each iteration [5]-Ill]. The accuracy of the steady- 
state solution of APNN’s can be easily assured for 
both synchronous and asynchronous operation. 

(b) Many homogeneous neural networks [9], [12]-[15] 
do not scale well, i.e., the storage capacity less than 
doubles when the number of neurons is doubled 
[16], [17]. We show that, in layered form, the num- 
ber of stored patterns in an APNN is roughly equal 
to the number of input and hidden neurons. 

(c) The layered APNN differs from a backpropagation 
neural network [18], [19] in that each item of train- 
ing data is stored in an exact form, i.e., in the 
absence of computational inexactness, the classifi- 
cation performance of the network on the training 
data will be perfect. This type of behavior is useful 
in applications, such as “memory-based reasoning” 
[20], where large and accurate databases are needed. 
These types of applications are not well suited to 
conventional parallel architectures, since increasing 
the number of processors also increase the compu- 
tational time. 

The outline of this paper is as follows. After a brief 
review of convex set projection theory and establishment 
of the dynamics of the APNN, we present proofs of 
convergence for both synchronous and dispersionless asyn- 
chronous operation. Sufficient criteria for proper conver- 
gence are established. The convergence dynamics of the 
APNN are explored and illustrated geometrically. Effects 
of noncompliance with required convergence criteria and 
learning are also geometrically interpreted. 

II. AN OVERVIEW OF POCS 

The technique of projection onto convex sets (POCS) 
[21], [22] has traditionally been applied to signal restora- 
tion. In this section, we give a brief overview of POCS. A 
more in depth treatment is in the book by Stark [22]. 

A set of vectors, %‘, is said to be convex if, for all vectors 
x’and yin V, 

(l- a).?+ a?E v, O<cy<l. 

Geometrically, this is interpreted as requiring the line 
segment connecting x’ and y’ be totally subsumed in V. 
Examples include subspaces (planes), boxes, balls and 
linear varieties (translated subspaces). 

As illustrated in Fig. 1, the projection of an arbitrary 
vector, g’, onto a convex set results in the unique vector in 
V closest to g’ in the mean square sense. Consider, then, 1 
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sk(A4) = i,, where 

Fig. 1. The two-dimensional shaded region is a convex set, Q. For an 
arbitrary vector g, the projection onto the convex set, Q, is that point 
in Q closest to g. 

Fig. 2. Illustration of POCS (projection onto convex sets). Alternating 
projections between the (convex) line segment, 4, and the shaded 
convex set, ‘&2, asymptotically approaches a point common to their 
intersection. 

convex sets with common (convex) intersection 9?: 

VlnV2n ... n%CI=V+O. 

As is illustrated in Fig. 2, the fundamental result of POCS 
is that. repeated sequential projection onto these sets 
asymptotically approaches a point in %‘. The design of the 
APNN is based on POCS. The network iterates between 
convex sets the single point intersection of which is a 
desired steady-state solution. 

III. THE ALTERNATING PROJECTION 

NEURAL NETWORK 

In this section, we established the notation for the 
APNN. Nonlinear modifications to the network made to 
impose certain performance attributes are considered later. 

Consider a set of N continuous level linearly indepen- 
dent library vectors (or patterns) of length L > N: {<I 
0 G n < N }. We form the library matrix 

and for reasons soon to be made clear, choose the neural 
network interconnect matrix [l]-[3], [23], [24] 

T = F(FTF)-‘FT 0) 

where the superscript T denotes transposition. The inter- 
connect value between neurons p and k is tpk. Since T is 
symmetric, tpk = t,,. We divide the L neurons into two 
sets: one in which the states are known and the remainder 
in which the states are unknown. This partion may change 
from application to application. Let So be the state of 
the k th neuron at time M. If the k th neuron falls into the 
known category, its state is clamped to the known value 
(i.e., .sk(M) = I, where lis some library vector). We first 
consider the case where the remaining floating neurons are 
equal to the sum of the inputs into the node. That is, 

L 

i, = C t,,s,. (2) 
p=l 

If all neurons change state simultaneously (ile., sp = 
sp( M - 1)) then the net is said to operate synchronously. 
If only one neuron changes state at a time, the network is 
operating asynchronously. 

Let P be the number of clamped neurons. We will prove 
that the neural states converge strongly to ,the library 
vector corresponding to the P clamped neurons if the first 
P rows of F (denoted Fp) form a matrix of full column 
rank. That is, no column of Fp can be expressed as a linear 
combination of those remaining. By strong convergence,’ 
we mean 

lim I]?(M)-J]]=O 
M-rm 

where ]]x’]]’ = ZTX’. Proof of this proposition is in Section 
IV. Techniques to improve the network’s convergence rate 
are in Section IV. 

Lastly, note that subsumed in the criterion that Fp be 
full rank is the condition that the number of library 
vectors not exceed the number of clamped neural states 
(P > N). Techniques to bypass this restriction by using 
hidden neurons are discussed in Section VII. 

Example 
A total of N = 4 library vectors of length L = 25 were 

produced by a_uniform random number generator. A plot 
of the vector fr is shown in Fig. 3(a). The interconnect 
matrix in (1) was formed. The last P = 15 elements of fl 
were used as the clamped values of the APNN. Shown in 
Fig. 3(b)-(d) are the states of the floating neurons for 
M = 2, 5 and 20 synchronous iterations. Clearly, Z(20) = fl 
and the remainder of the library vector has been 
resurrected. 

Partition Notation 
In the homogeneous form of the APNN, the partition of 

clamped and floating neurons can change from application to 
application. For a given application, however, we can as- 
sume without loss of generality that neurons 1 through P 
are clamped and the remaining neurons are floating. We 
adopt the vector partitioning notation 

;P 

;= r [ 1 iQ 

where Tp is the P-tuple of the first P elements of jand yQ 
is a vector of the remaining Q = L - P. We can thus write, 
for example, 

Fp= [?@=I-lc]. 

‘The convergence proofs to be referenced later prove strong conver- 
gence in an infinite dimensional Hilbert space. In a discrete finite 
dimensional space, h_owever, both strong and weak [21], [22] convergence 
implythatZ(M)+f as M+w. 
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Fig. 3. Illustration of_homogeneous APNN results. Four libzary vectors of length L = 25 were stochastically generated. (a) 
Values of the vector fi. The states of the final 15 values of fi were used as the clamped neural values in an APNN. (b)-(d) 
The_states of the first ten floating neurons, after M = 2. 5. and 20 synchronous iterations, respectively. The first ten elements 
of fi have been clearly reconstructed in (d). 

Using this partition notation, we can define the neural 
clamping operator by 

“P 
f 

q7= =& i 1 
Thus the first P elements of i are clamped to p. The 
remaining Q nodes “float.” 

Partition notation for the interconnect matrix will also 
prove useful. Define 

T= 
T2 TI [+1 T3 T4 

where T2 is a P by P and T4 a Q by Q matrix. The 
subscripts are motivated by quadrant location. Some prop- 
erties of T and T4 are discussed in Appendix A. 

IV. STEADY-STATE CONVERGENCE PROOFS 

In this section, we provide convergence of the APNN’s 
for synchronous operation. If stability is assumed, conver- 
gence occurs when the time delay between each neuron 
pair is fixed yet varies from pair to pair. Each proof 
requires that Fp be full rank. The behavior of the network 
when Fp is not full rank also addressed. 

Synchronous Operation 

For synchronous operation, the network iteration in (2) 
can be written as 

i+(M)=Ti’(M). 

The known (or clamped) neural states are then imposed to 
generate the updated state vector 

?@4+1) =++(M). 

Thus the iterative state equation can be written as 
Z(M+l)=qT?((M) (3) 

Fig. 4. m-e linear variety, n, and the subspace T intersect at the library 
vector, f. By altematly projecting between the subspace and linear 
variety, the neural network is seen to converge to a point common to 
both. 

As is illustrated in Fig. 4, this operation can easily be 
visualized in an L-dimensional signal space. The T matrix 
orthogonally projects any vector onto a N-dimensional 
subspace, T, formed by the closure of the library vectors 
[25]. (Kohonen [26] has suggested a single projection onto 
T as an associative memory algorithm.) The clamping 
operator, q, orthogonally projects onto the Q-dimensional 
linear variety, 77, formed by the yt of all L tuplets with 
their first P elements equal to f ‘. According to POCS, 
alternating orthogonal projection between these two con- 
vex sets strongly converges to a point common to both. 
(When the I = 2 convex sets are linear varieties as they are 
here, the algorithm is equivalent to Von Neumann’s alter- 
nating projection theorem [27], [28].) .Clearly, the library 
vector fis common to both T and 9. The requirement that 
Fp has full column rank assures that fis the only point of 
intersection [l] and our proof is complete. Note that the 
network will properly converge for any initialization of the 
floating neuron states. 
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Convergence Solution 

For a given partition with P clamped neurons, (3) can 
be written in partitioned form as 

The states of the P clamped neurons are not affected by 
their input sum. Thus there is no contribution to the 
iteration by Tl and T2. We can equivalently write (4) as 

zQ(M+l) = [T,IT,I & [ 1 
or 

@(M+l)= T,p+T4ZQ(A4). 

We show in Appendix A, that if Fp is full rank, then the 
spectral radius (magnitude of the maximum eigenvalue) of 
T4 is strictly less than one. It follows that the steady-state 
solution of the difference equation in (5) is 

where, since Fp is full rank, we have made use of our 
previous observation that 

?Q( co) = IQ. 

That is, the steady-state solution is the extrapolation of the 
library vector 

r TP i f= &+ . L 1 
Equation (6) could be used in lieu of the APNN if the 

status of each neuron as clamped or floating remained the 
same from application to application. If the partition 
changes, however, so does T3 and T4. Even if the partition 
remains static, (6) is not amenable to learning sequentially 
presented library vectors. We show in Section VI that the 
interconnect matrix in (1) is. 

Clock Skew 

If we assume that the APNN reaches a stable solution, 
then nondispersive clock skew does not affect the steady- 
state result [29], [30]. Let rkp denote the time delay be- 
tween floating neurons k and p and let ykp denote the 
time delay between the pth clamped neuron and the kth 
floating neuron. Then, using our partition convention, the 
skewed iteration in (2) becomes 

s&) = 5 tkpfpPP{t-Ykp}+ ‘i tkpSp{t-7kp}, 
p=l p=Pil 

P<k<L 

where p { * } denotes the unit step and we have used brack- 
ets to denote continuous rather than discrete time. Such a 
relationship arises, for example, when the time delay among 
neurons is proportional to their physical separation. Let- 

Fig. 5. Illustration of the case where the subspace T and linear variety, 
n. intersect alone the linear vtietv Y. In such underdetermined cases, 
t&e APNN will Iteratively conve; e to that point on Y closest to the 
initialization. For example, as Ii s own, for an initialization of 3(O), 
convergence is to Z(w). 

ting t + 60 and assuming a stable solution 
P L 

or, in matrix-vector form 

gives 

P<k<L 

?Q(oo} =T,~+T,?Q{m}. 

Since T4 is not singular if Fp is of full column rank 
(Theorem 1 in Appendix A), we conclude that the solution 
to this equation is unique and, from (6), is given by 
?Q{co} =fQ. 

Results of Non‘compliance with Conversion Criteria 

(a) The Underdetermined .Case: 
If Fp is not of full column rank, the intersection of the 

linear varieties n and T results in a linear variety, Y, of 
positive dimension. (Visualize, for example, two planes 
intersecting in three space). The neural network, in this 
case, will converge to that point in Y closest to the initial 
state vector, s’(0) [31]. Equivalently, Z( cc) is the orthogonal 
projection of ;(O) onto Y. This result is geometrically 
illustrated in Fig. 5. 

(b) Improper Clamping: 
Consider the case where the P clamped neurons are not 

the first P elements of any library vector. The networks 
will respond in one of two ways: 

(a) If the initialization is a linear combination of the 
columns of F,+ then ZQ(co) will be the same linear 
combination of the columns of FQ. 

(b) Otherwise, the linear variety 77 formed by the ini- 
tialization does not intersect the subspace T. As 
illustrated in Fig. 6, the networks will converge to 
that point on the linear variety closest to the sub- 
space [32], [33]. 

When T and n do intersect, the sum of the inputs for 
the clamped neurons approaches the clamped values. This 
is not the case for non-intersection. (In Fig. 6, for example, 
using the input sums as the states for the clamped nodes 
results in ii rather than $((M).) A large deviation between 
the clamped values and the input sum in steady state at 



850 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 6, JUNE 1989 

Fig. 6. Two nonintersecting lines are shown in three space. The sub- 
space T is in the (s~,s~) plane and the linear variety, n, is on the 
(si, ss) plane. Alternating orthogonal projections between the two lines 
iteratively converge to a limit cycle between the two points on each line 
closest to the other, i.e., Z and 3(w). 

I ‘k ,/Sk= ik 
/ 

/ 

ik 

/ / / .I 
Fig. 7. A saturation nonlinearity. The state of the k th neuron, sk, is 

determined by the sum of the inputs to that neuron, i,. 

the clamped neurons thus implies that the network has not 
been trained with a corresponding library vector. 

Neural Saturation as a Convex Constraint 

One technique for improving the convergence of the 
APNN imposes additional convex constraints in the itera- 
tion process. Consider, for example, placing a dynamic 
range constraint on each floating node: 

i 

ak3 ik<ak 
/ 

Sk = iky ak 6 ik < pk 
P k, ik>pk. 

That is, each node operates linearly between the lower and 
upper threshold. If the input sum exceeds the upper 
threshold, Pk, the neural state become pk. A similar substi- 
tution for the lower threshold (Ye, is made when appropri- 
ate. The resulting nonlinearity shown in Fig. 7 is similar in 
form to sigmoid nonlinearities used in other neural net- 
works [12], [19]. 

Neural thresholds can either be predetermined or pro- 
grammed. If, for example, the library vectors correspond 
to pixel grey levels, predetermined threshold values can be 
placed at zero and one. Alternately, the neural thresholds 
can be programmed during learning. If the k th element of 
a new vector lies between (Ye and Pk, then no change is 

Fig. 8. A geometrical illustration of the effect of the nonlinear neural 
saturation shown in Fig. 4. In addition to alternately projecting be- 
tween the subspace, T, and the linear variety, 1, projection is also onto 
a (convex) box the dimensions of which are determined by the neural 
saturation parameters. Proper convergence will occur if convergence is 
assured without the box (i.e., 4 is full rank) and the box contains the 
library element to be restored. 

required. If this is not the case, either (Ye and Pk are 
equated to the new value. After training is completed, we 
have 

ak = l<5:Nfn(k) 
. . 

and 

Upper and lower thresholding of the elements of a 
vector at preset values can be viewed as the projection of 
the vector onto a box the sizes of which are specified by 
the threshold values. As illustrated in Fig. 8, the conver- 
gence of the net can be improved by this procedure. 
Convergence follows immediately from POCS for I = 3 
convex sets. 

Convergence can also be improved by relaxation of the 
projection operations [l], [4], [21]. 

V. TRAINING 

Direct use of the equation for the interconnect matrix in 
(1) is generally unacceptable because of the required prior 
computation of the inverse of a matrix, which, due to the 
library matrix structure, may be singular or ill conditioned. 
Furthermore, we desire a technique whereby training data 
can be incrementally learned in a neural network structure 
one library vector at a time. Such a procedure for teaching 
the neural networks new library vectors is developed in 
this section. 

Assume we have an interconnect matrix, T, and wish to 
update the interconnects corresponding to a$ew library 
vector, f. As illustrated in Fig. 9, Tf projects f onto T and 

Z= (I- T)f 

is orthogonal to T. The Z vector can easily be computed by 
one synch_ronous iteration of the net after imposing states 
equal to f on the neurons. 

We wish to extend the dimension of the subspace T by 
one in the direction of Z’. Since Z/]]Zl] is the unit vector 
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Fig. 9. A geometrical illustration of learning in an APNN. The sub- 
space, T, shown as a line on the (si, ss) plane, is to be augmented to 
include the new library vector? 7, which also lies in the (sr, s2) plane. 
The error vector, 7, is determmed by the old network’s interconnects. 
The interconnects are updated with this error vector in a Gram-Schmidt 
procedure. In this illustration, the updated networks intercomrects will 
then project onto the augmented (sit s2) planar subspace. 

orthogonal to T, the updated interconnect matrix 

ZZT 
T+=T+- 

ZTZ 

now projects any L-tuple onto the new subspace formed 
by the closure of T and 2 or, equivalently, T and f7 The 
procedure is initiated with all interconnects set to zero. It 
is similar to that of Gram-Schmidt orthonormalization. 

Clearly, if (I - T)f= 5, the new library vector is al- 
ready in the subspace T and no updating is required. In 
practice, computational accuracy will rarely allow an exact 
equality here. The result is that the dimension of the 
subspace would be increased in a random manner dictated 
by computational or other noise. Thus in order to assure 
the networks is learning something useful, it is thus advis- 
able to compare the error norm ZTZ to some appropriate 
threshold prior to updating [35]. Note that, as training 
progresses, the error norm corresponding to any arbitrary 
vector g decreases monotonically. Thus if a training vector 
is not used to update the interconnect due a small error 
norm then, after all training is complete, the error norm 
due to same training vector will not have increased. It thus 
need not be tested again. (A somewhat different procedure 
is used in the layered APNN. See Section VII.) Training 
using such censoring can result in slightly varying T 
subspaces for different orderings of the library vector. 
Compounded, this variation can result in a serious degra- 
tion for large N. 

VI. LAYERED APNN’s 
The networks thus far considered are homogeneous in 

the sense that any neuron can be clamped or floating. If 
the partition is such that the same set of neurons always 
provides the network stimulus and the remainder respond, 
then the networks can be simplified. Clamped neurons, for 
example, ignore the states of the other neurons. The corre- 
sponding interconnects can then be deleted from the neu- 
ral network architecture. When the neurons are so parti- 
tioned, we will refer the APNN as layered. 

In this section, we explore various aspects of the layered 
APNN and in particular, the use of a so-called hidden 
layer of neurons to increase the storage capacity of the 
network. An alternate architecture for a homogeneous 
APNN that require only Q neurons has been reported [l]. 

Hidden Layers 

In its generic form, the APNN and, indeed, any linear 
classifier, cannot perform a simple two bit parity check 
[18], [19], [36]. With the addition of a hidden layer, how- 
ever, the APNN, can nonlinearly generalize to perform 
such operations. 

Although neural networks will not likely be used for 
performing parity checks, their use in explaining the role 
of hidden neurons is quite instructive. The library matrix 
for two-bit parity is 

0 0 1 1 
F=O 10 1. [ 1 0 1 1 0 

The APNN cannot be used to faithfully execute this opera- 
tion since 

F=O 
P [ 

0 11 
0 1 0 1 1 

is not full column rank. Our approach is to augment Fp 
with two more rows such that the resulting matrix is full 
rank. Clearly, this can’t be accomplished by synthesizing 
new rows as linear combinations of the first two rows. The 
column rank would not increase. Most any nonlinear com- 
bination of the first two rows, however, will in general 
increase the matrix rank. Such a procedure is potentially 
applicable to nearly any linear classifier [36]-[41] and, in 
addition to the layered perceptron, is used in @-classifiers 
[37] and potential function classifiers [39]. Possible nonlin- 
ear operations include multiplication, logic operations and 
running a weighted sum of the clamped neural states 
through a memoryless nonlinearity such as a sigmoid. This 
latter alteration is commonly used in neural architectures. 

To illustrate with the parity check example, a new 
hidden neural state is set equal to the exponentiation of 
the sum of the first two rows. A second hidden neuron will 
be assigned a value equal to the cosine of the sum of the 
first two neural states multiplied by 77/2. (The choice of 
nonlinearities here is arbitrary.) The augmented library 
matrix is 

001 1 
010 1 

F+= 1 e e e2 . 

! 1 

(8) 
1 0 0 -1 
011 0 

In either the training or look-up mode, the states of the 
hidden neurons are clamped indirectly as a result of 
clamping the input neurons. 

The playback architecture for this neural network is 
shown in Fig. 10. The interconnect values for the dashed 
lines are unity. Clamping the two input neurons then 
indirectly clamps the hidden neurons using these intercon- 
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layer: 

- input 

- hidden 

- output 

Fig. 10. Illustration of a layered APNN for performing an XNOR. When 
the states of the input layer are clamped, the hidden layer units are, as 
a result, also clamped. The transmittance of the dashed line intercon- 
nects, m this example, are all unity. The remainder are from the 
projection matrix values using F, in (8) as the library matrix. Numeri- 
cally, r3s = - tlJ = - t2s = - t4s = 0.2471, and tss = 0.5753. In ten syn- 
chronous iterations, clamping the inputs to either (0,O) or (1,l) results 
in an output of 0.00 whereas clamping either to (0,l) or (1,0) results in 
0.996. 

nects and the neural nonlinearity. The remaining intercon- 
nects are from the projection matrix formed from F,. 

In layered APNN’s, sigmoidal saturation nonlinearities 
can be imposed at each neuron as was done in the homo- 
geneous case. 

Geometrical Interpretation 

In lower dimensions, the effects of hidden neurons can 
be nicely illustrated geometrically. Consider the library 
matrix 

F= 
l/2 1 [ 1 1 l/2 . 

Clearly Fp = [l/2 l] is not full rank. Let the neurons in 
the hidden layer be determined by the nonlinearity x2 
where x denotes the elements in the first row of F. Then 

F+= [f;‘lfT’] 
l/2 1 

= l/4 1 [ I . 1 l/2 

The corresponding geometry is shown in Fig. 11 for x 
the input neuron, y the output and h the hidden neuron. 
The augmented library vectors are shown and a portion of 
the generated subspace is shown lightly shaded. The sur- 
face of h = x2 resembles a cylindrical lens in three dimen- 
sions. Note that the linear variety corresponding to x = l/2 
intersects the cylindrical lens and subspace only at fl’. 
Similarly, the x = 1 plane intersects the lens and subspace 
at $. Thus in both cases, clamping the input correspond- 
ing to the first element of one of the two library vectors 
uniquely determines the library vector. 

Y 

0 

’ x 

Fig. 11. A geometrical illustration of the use of an x2 nonlinearity to 
determine the states of hidden neurons. The library vector 2 is the 
only point in the subspace, quadratic surface and the linear variety 
x =1/2. For 2, the linear variety corresponding to the clamped 
neuron is x = 1. 

Convergence Improvement 

Use of additional neurons in the hidden layer will im- 
prove the convergence rate of the APNN. Specifically, the 
spectral radius of the T4 matrix is decreased as additional 
neurons are added. The dominant time constant control- 
ling convergence is thus decreased. A proof is in Appen- 
dix B. 

Training 

If learning in a layered APNN is performed by the 
previously described Gram-Schmidt procedure, then the 
network requires intensive interconnection during the 
learning process since the error, c, at every node is deter- 
mined by the imposed states of the new library vector at 
every node. During the recall or playback process, how- 
ever, the interconnects that provide inputs to the input and 
hidden layers are not used since these layers are clamped. 

When teaching a layered APNN, the error of only the 
output neurons should be used to determine whether 
the interconnects need to be updated. Since the error is not 
being checked at every neuron after one pass through the 
data, library vectors which were not used to update the 
interconnects should be rechecked. 

Capacity 

Under the assumption that nonlinearities are chosen 
such that the augmented Fp matrix is of full rank, the 
number of vectors which can be stored in the layered 
APNN is equal to the sum of the number of neurons in the 
input and hidden layers. Note, then, that interconnects 
between the input and output neurons are not needed if 
there are a sufficiently large number of neurons in the 
hidden layer to meet a given capacity requirement. 
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Fig. 13. The generalization of the parity check APNN networks formed 
by thresholding the function in Fig. 12 at 3/4. Different hidden layer 
nonlinearities result in different generalizations. 

Fig. 12. Response of the elementary parity check APNN using an 
exponential and trignometric nonlinearity in the hidden layer. Note 
that, at the comers, the function is equal to the XNOR of the coordi- 
nates. 

VII. GENERALIZATION 

We are assured that the APNN will converge to the 
desired result if a portion of a training vector is used to 
stimulate the network. What, however, will be the response 
if an initialization is used that is not in the training set or, 
in other words, how does the network generalize from the 
training set? 

To illustrate generalization, we return to the parity prob- 
lem. Let s,(M) denote the state of the output neuron at 
the Mth (synchronous) iteration. If si and s1 denote the 
input clamped value, then 

s5 (kf + 1) = h,s, + t25s2 + t35s3 + t45s4 + l55S5 (M > 

0. Since t15 = t,, = -0.2471, (11) is strictly a function of 
si + s2. The generalization is therefore dictated by our 
choice of nonlinearities. 

Greater flexibility in classification can be achieved by 
training the nonlinearities [18], [19] or increasing the num- 
ber and diversity of hidden layer neurons. We give two 
examples of the latter approach in which the input and 
output neurons are not connected. That is, the hidden 
layer states act as the clamped neurons that provide the 
stimulus for the floating output neurons. We continue with 
the parity example, except redefine our library matrix with 
- 1 denoting a logic 0: 

-1 -1 1 1 
-1 1 -1 1 . ----------------- 
-1 1 1 -1 1 

where One advantage of this convention is the obvious choice of 

s3=exp(s,+s2) 

and 

s4=cos;(s1+s2). (10) 

To reach steady state, we let M tend to infinity and solve 
for s,(cc): 

s5w = & 
[ 

t15sl + t2,s2 + t3, exp (sl + s2) 
55 

+t45cos;(s1+s2) . 1 01) 
A plot of s5(cc) versus (sl, s2) is shown in Fig. 12. 

The plot clearly goes through 1 and 0 according to the 
parity of the corner coordinates. The layered APNN’s thus 
seem to generalize by interpolation. Thresholding Fig. 12 
at 3/4 results in the generalization perspective plot shown 
in Fig. 13. 

Note that the equipotential contours in Fig. 12 are .a11 
parallel to line s1 + s2 = 0. This is because the nonlineari- 
ties in (9) and (10) are both a function of s1 + s2 and 
therefore have the same equipotential contours as s1 + s2 = 

zero as an output threshold [42]. 

Spoke Interconnects 

For the parity problem, 4 hidden neurons were used. 
Each used a nonlinearity of exp( - z). The input-to-hidden 
interconnect pairs were chosen to be the coordinates from 
a unit radius circle equally divided into 4 pie slices. The 
classification generalization shown in Fig. 14 was obtained 
by thresholding the output at zero and is nearly least mean 
square. Similar partitions occur using more than 4 spokes. 
More classification diversity for more complex partitioning 
requires more spokes. 

Stochastic Interconnects 

The interconnects between the input and hidden neu- 
rons was chosen stochastically [43] from a distribution 
uniform on (- l/2,1/2). The nonlinearity was exp (- z). 
Generalizations are shown in Fig. 15 for 10 and 50 hidden 
neurons. The generalization here also seems to approach a 
least mean square partition. 

VIII. NOTES 

(a) Nonlinearities can also be used to increase the 
capacity of the homogeneous APNN. Envision, for 
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Fig. 14. Generalization of the parity check APNN using 4 hidden 
neurons and the nonlinearity exp ( - Z) for each hidden neuron. 

(L-1) 

(4 

(L-1) 

(b) 

Fig. 15. Generalization of the parity check APNN usin 10 (a) and 50 
(b) hidden neurons and stochastic interconnects from t e mput to the % 
hidden layer. 

example, associating with each neuron a single hid- 
den neuron whose state is related in some fixed 
nonlinear manner. Clamping P neurons then clamps 
an additional P hidden neurons and the network’s 
capacity is essentially doubled. 

(b) There clearly exists a great amount of freedom in 
the choice of the nonlinearities in the hidden layer. 
Their effect on the network performance is cur- 
rently not well understood. One can envision, how- 
ever, choosing nonlinearities to enhance some 
network attribute such as interconnect reduction, 

classification region shaping (generalization) or 
convergence acceleration. 

(c) There is a possibility that for a given set of hidden 
neuron nonlinearities, augmentation of the Fp ma- 
trix coincidentally will not result in a matrix of full 
column rank. Proper convergence is then not as- 
sured. Similarly, augmentation may result in a 
poorly conditioned matrix. In this case, conver- 
gence will be quite slow. One obvious practical 
solution to these problems is to pad the hidden 
layer with additional neurons. As we have noted, 
the convergence rate will also improve. 

(d) Recently, optical architectures have been proposed 
for implementing the APNN [44]. Iteration is per- 
formed at light speed. The APNN has also been 
implemented using stochastic processing [45]. 

APPENDIX A 
SOME PROPERTIES OF T AND T4 

Properties of the T matrix 

The following properties of the projection matrix can be 
straightforwardly established: 

a) T is symmetric and idempotent: from (1) T = T2 
= TT. 

b) Since T is a projection matrix, its eigenvalues are 
zero or one. 

c) Diagonal elements of T lie between zero and one 
inclusive. 

d) tr (T) = N = number of eigenvalues equal to one. 

Definitions (A is a k-by-k matrix): 

# (A) = number of eigenvalues of A equal to one 

v(A) = nullity of A 

rank(A) = k - v(A). 

Lemma 1: Let B denote any real j by k matrix. Then 
the nonzero eigenvalues of BBT are the same as those of 
BTB. 

Proof: For any real matrix B, there exists orthogonal 
matrices QL and QR such that 

B = Q,VQR. 

Also, V can be partitioned2 as 

v= D O [+I 0 0 
where D is a diagonal matrix with no zeros on the diago- 
nal. Thus 

and 

BTB = QRVTVQ, 

BBT= QLVVTQ,. 

*Dimensionally, the matrix partitions in Appendix A are not the same 
as those in the Partition Notation portion of Section III. 
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Here 

is a k by k matrix and 

is a j by j matrix with the same nonzero eigenvalues. 
Lemma 2: All eigenvalues, { h,] 1 Q i d Q }, of T4 are 

real and lie in the interval [O,l]. 
Proof: Let Q denote an orthogonal matrix with the 

property that 

QTQT= [ ;j-;] 

where I is the N by N identity matrix. We partition Q as 

where Q2 has dimension N by P. The matrix T4 can then 
be written as 

T4 = Q:Q, . 

Let S, = Q,‘Q,. Then T4 and S, are symmetric matrices 
and T4 + S, = I. Clearly 

hi+Pi=l 

where Xi and Xi are the eigenvalues of T4 and S,, respec- 
tively. Because T4 and S, are positive semidefinite matri- 
ces, 

Ai>0 and pi>O. 

The proof follows immediately from these last two equa- 
tions. 

Lemma 3: rank( F2) = rank( Q2). 
Proof: Consider the matrix G = QF. We write G as 

G= [-z]=QF=Q[;] (Al) 

where G, denotes the first N rows of G and we have used 
the identity 

Thus 

[+I * ’ G=G 0 0 
or, equivalently 

G,=O. (A4 

We will show that, as a consequence, G, is nonsingular. 
Clearly, 

detGTG=detFTQTQF 
+o 

det GTG = det GZG, 

= (det G,)2 

zo 
and G, is not singular. 

From (Al), Fp can be written as 

Fp = Q,TG,. 

Thus 

rank(Fp) =rank(QF) =rank(Q,) 

and our proof is complete. 
Theorem I: v(Fp) =#(T4) = v(I-T,). Thus if Fp is 

full rank, then the eigenvalues of T4 are strictly less than 
one. 

Proof: 

v(Q2QF) = N-rank(Q,Qc) = N-rank(Q,). 

From Lemma 3, 

v(Q2Qr) = N-rank(I;,) =v(Fp). 

Since QIQT+ Q,Q$ = I, and Q,QT and Q,Q,’ are sym- 
metric, we conclude from Lemmas 1 and 2 that: 

#(T,) = #(QIQT) = dQ2QT) = dFp) 
and our proof is completed. 

APPENDIX B 
ADDING NEURONS TO THE HIDDEN LAYER IMPROVES 

THE CONVERGENCE RATE 

Partition the augmented library matrix as 

FP 

F,= E;, 

II 

(W 

Eh 

where FH contains the state of the hidden layers. Then 

F:F+ = F;Fp + F;FQ + F$FH 

=B+F;FH 

GA w 

where 

B = FpTFp + FQTFp. 

Manipulation of (B2) gives 
B-’ - A-l TZ B-lF&A -l. w 

The augmented interconnect matrix corresponding to (Bl) 
is 

T, = F, (F:F+)-IF;. 

Let T4+ denote the lower right Q by Q partition of T+. 
Then 

T’=I; A-‘r;T 
4 Q Q. 

The spectral radius of T: dictates the convergence rate of 
the APNN with hidden neurons. Without hidden neurons, 
convergence is dictated by the spectral radius of [4] 

where det denotes the matrix determinant. Thus from (A2) T = F 
4 Q B-‘FT Q. 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 6, JUNE 1989 856 

Thus 

T,-T; =FQ(B-‘-A-‘)F$ 

= FQ( B-lF;FHA -‘) F; WI 

where, in the second step, we have used (B3). 
The right-hand side of (B4) is clearly positive semi-defi- 

nite. Thus for any vector I, 

ZTT4x’ > ZTT,+X’. 

Equality holds if the hidden neurons do not increase the 
rank of Fp. The spectral radius of T4f is then clearly 
smaller than that of T4. 
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