
NEURAL
INFORMATION

PROCESSING
SYSTEMS

DENVER, CO 1987

EDITOR:
DANA Z. ANDERSON
UNIVERSITY OF
COLORADO

AMERICAN INSTITUTE OF PHYSICS NEW YORK 1988



534

The Perfo:wance of Convex Set Projection Based Neura~ Networks

Robe r t J . Marks I I, Les E. Atlas, Seho Oh and James A. Rit cey

Interactive Syste~ Des ign Lab , FT-10
Univer s ity of Washington , Seattle, We 98195 .

We c cns xc e r a c las s of neural neewor ks whose pe r f ormance can be
ana l yzed and geomet r i ca l l y visualized i n a signal space
envi ronment. Alte r na ting projection neural netwo rks (APNN's)
perform by alternate ly pro j ecting be tween two or more cons traint
sees. Cr i te r ia f or desired and un ique co nvergence a re eas ily
escablished. The necwor k can be conf igured i n e ither a homogeneous
or laye r ed f orm . The number of patte rns that c an be s to r ed in the
ne twork is on the orde r of t he number of i nput and hidden neurons.
I f t he ou t pu t ne uro ns can t ake on only one of two s tates, then the
t ra ined l ayered APNN can be easily conf igured to converge in one
i t erat i on . Mo re generally , convergenc e i s at. an exponent i a l zat. e .
Convergence can be imp roved by t he use of sigmoid t ype
nonl inearities, network r e Laxac i.on and/or increasing the numbe r of
ne uro ns in ehe hidden laye r . The manner i n which t he neewo rk
responds t o d a t a fo r whi ch i e was not. specifically t rained (i.e.
how i t generali zes) c an be directly evaluated analyt ically .

1. INTM OUC':ION

I n t h is pap e r , we depare from ehe pe r fo rmance analysis
t echniqu e s norma lly ap plied t o neura l neewor ks . I ns t e ad , a s ignal
space app r oach i s us ed t o gain new i ns ight s v i a ease of analysis
and geomet rical i neeroretat i on . Buildi ng on a f oundation laid
elsewhe re"- J

, we demO~straee that alte rnae ing projecting neur a l
neewo r k's (APNN 's) formula ted from s uch a v iewpoint c an be
co nfigured i n l ayered fo rm or homogeneously .

Si gni fic i ant l y , APNN's have advantages ove r other neural
network arch i tectures . For examp le,
(a) APNN 's pe r form by a l ternaeingly proj ect ing between two or mor e

cons traint see s. Criteria can be established f or proper
iteraeive conve r genc e f o r both synchronous and asynchronous
ope r at ion . This i s in cont r as t t o t he more convent i onal
t echnique of formulation of an energy metric f or the ne ur al
networks, establ ishing a lower ener gy bound and s howing that
t he energy reduces each iteration407. Such proc edur e s generally
do not address t he accu racy of t he f inal solut i on. I n or de r t o
assure t hat s uch networks a r r ive at the desired gl oball y
minimum energy , c omput at ionaly lengthly procedures s uch a s
simulated annealing are usedS

•
10. For s yn chrono us ne t works ,

s t e ady state oscill ation can occur between two s tates of the
same energyll

(b ) Homogeneous neura l networks such as Hop f i e l d ' s cont ent
addressable memo r y 4, 12- 14 do not s cale wel l , i.e . the capacity
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of Hopfield 's neural networks less than doubles when the numbe r
of neur ons i s doubled l S.l' . Also, the capacity of previously
proposed layered neural networks l 7 , l l is not well understood .
The capacity of the layered APNN ' s, on the other hand, i s
roughly equal to the number of input and hi dden neurons l 9 •

(c ) The speed of backward e rro r propagation learning l7-ll can be
painfully slow . Layered APNN's, on the other hand, can be
trained on only one pass through the t r aini ng data'. I f t he
network memory does not saturate, new data can easily be
l earned without repeating previous data . Neithe r i s the
e ffectivenes s of recall of previous data diminished . Unlike
l ayered back propagation neural networks, t he APNN recalls by
iteration . Unde r cert a i n i mportant applications, however , the
APNN will recall in one iteration.

(d ) The manner in whi ch l aye r ed APNN' s generalizes t o da ta fo r
which it was not trai ned can be analyzed straight f orwardly.

The outline of t h is paper is as f ollows . After establishing the
dynamics of the APNN i n t he next sec t ion, suff i cient crit e r i a f or
proper convergence are given. The convergence dynami cs of the APNN
are explored . Wise use of nonlinearit.ies, e . g . t he s igmoida l t.ype
nonlinearit.ies 2 , improve the ne t.wo r k I e pe rfo rmance . Es t ablis hi ng a
hidden l aye r of neurons whose st.ates are a nonlinear funct ion of
the input neurons' stat.es is shown to increase t he ne twork 's
capacit.y and t.he ne twork' s conve rgence r ate as wel l . The manne r in
which the networks r e spcnd t o dat a out side of the training set Ls
als o addressed .

2. 'rHE AL'rElUlATING PRO.JECTION NEURAL NETWORK

I n thi s sect. ion , we established the nota t ion f or the APNN "
Nonline ar modii i c iat ions t o the network made t o i mpos e ce rta in
perfo rmance at. tributes a re cons ide r ed l at er .

Cons ider a set of N c ontinuous l evel l~nearly independent
lib r a ry vec t ors (or patt. er~s ) ~f l engtt:. L > N: { i n I O~nSN} . We f orm
t he libr ary mat r i x !. - {£1 I : , . I ..• I f N• J and t.he neural network

. int erconnec t. matri x· I - !. (!.. !. )- 1 !.. where t he s uperscript r
denot.es trans posit.ion . We divide t.he L neurons i nto two sets: one
in which the s t at e :s are known and t he r emainder in which t he s t at e s
are unknown . Thi s partiti on may change f rom application to
applicat.i on. Let s~ (M) be the stat e of the k~ II node at time M. If
t he k- II node fal ls i nto the known catego~, its state is cl amped to
the known value (i. e. s ~ (M) - t ~ where f. is s ome library vector) .
The states of the r emaining f l oating neurons are equal t o the s um
of t.he inputs i nt o the node. That is, s~ (M) - i~ 1 whe r e

L
i~ 1: t;)~ s. ( 1)

- 1

• The int erconnect matrix i s bett er trained iterat.ively'. To i nc l ude
a new librarY vecto r f , t he i nterconnect.s are updated as
~ ....'fl...; .... ej

T+ ( E E ) I ( e " E ) where E - (1 - 1) : .
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If all neurons change :st.at.e :simultaneously (Le . :s ~ . s~ (M- l » , then
the net i:s :sa i d to operate synchr onous l y. I f only one neuron changes
stat.e at a time, the ne t work is operating asynchronously .

Let ~ be the number of clamped neurons. We have proven1 that t he
neural states converge s t r ongl y t o the ext r apo lat ed library vector
if the first ~ r ows of r (denoted!2) form a matrix of full column
r ank . That i s , no co lumn of !2 can be expressed as a l inear
c ombi nat i on of . t hos e remaininj' 2 3y s t r ong convergenc el:l , we mean

lim II; (M) - l \I - 0 where \I x II • 1:i .
M -OO

Last ly, note t ha t subsumed i n the c r i te r ion that !2 be f ul l
rank is the condit ion that the numbe r of library vectors not exceed
t he number of known neural st.ates (P ~ N) . Techniques to bypa:s :s t h i :s
re:st riction by u:sing hi dde n neurons are discu:ssed i n :section 5.

E' a r t ition Not ation: Without Loee of generality, we will aea ume
t hat neu rons 1 through P are c l amped and the r~~ining neuron:s are
float ing . We adopt t he vecto r part.i tioning notation

~ (1? 1.1. - - -

""'.l. ~

T -

t he interconnect matri x wi l l also p rove

Thus , the f ir :s t E' elements
node:s "float " .

E'artition notation f or
useful. Def i ne

h
.,; . . ~ ~.were .I.? .l.:S t he !?-tup l e of t he f.l.r:st E' element :s of .1. and .l.(l .l.S a

ves~o r '1.f t he r~maining Q - L-E' . We can thu:s write, f or example, r:. ­
[ f~ I f~ I ... I f~ 1 . Using this pa r t i t ion not.at ion , we can def ine
the neura l c l amping operato r by: .,; (~1

!p . - .."
.l.(l

of 1 a r e clamped to t P
• The r emaini ng Q

where 12 i s a E' by E' an d 1
4

a Q by Q mat r i x .

3. STEADY STATZ CONVERGENCE PROOFS

For purposes of l ater reference , we addre:s:s conve rgenc e of t he
network f or syncneoncue ope rat.ion . ,,-,ynchronou:s opera t ion is
addre:s:sed i n r efe rence 2. For proper convergence, both c a :ses
r equire t ha t. r:. be f u l l r ank . For synchronous operation , the
net wor k i t e r ation i n (1 ) followed by clamp i ng can be written a:s :

~ ~

s (M+ l ) - n 1 s CM)
"-' i s i llu:st rated i n1 - 3 , this operat ion
in an L dimen:siona l signal space.

(2 )
can easil y be vi:sua l ized

b The referenced co nve rgence proofs prove s trong c onverge nc e in an
infinite dimen:sional Hilber t. spac e . In a discret.e f inite
dimensional space , bot.h str ong and weak convergen ce imply
uniform convergence 1 9

•
2 0

, i. e . ; (Ml-t as ~.
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For a given partition with P clamped neuron~, (2 ) c an be
wr i t t e n in p a rtitioned f o rm a~

( 3 )

The ~c ate~ o f t he P clamped neuron~ a re noc affe cce d by their inpuc
~um . Thu~ , t here i~ no concribucion to t he iceracion by 1

1
and 1

2
,

We can equi va lent l y write (3 ) a~

(4 )

We show in thac if L Ls fu ll r a nk, then t he .spectral r adiu.s
(magnitude of the maximum eigenvalue ) of T Ls .striccly le~~ than
one " 5

• It follow~ that t he .ste ady scate ~ol~tion of (4) i~ :

(5 )

whe r e, since L i~ full rank, we ha ve made use of ou r claim that

( 6 )

4 . CONVERGENCE DYNAMJ:CS

In thi~ .section, we explore different convergence dynamics o f
the APNN when ~ is full c o lumn rank . If the l ibrary mat r i x
d i s p l a ys certain ort.hogonality chaxacze e i.s c Lcs , o r if there i~ a
~ ingle ou t put (f loa t i ng) neuron, conv erge n ce can be ach i eved i n a
~ingle iteracion . More g e nerally. conve rgence i~ at a n exponent i al
r a t e . Two c e c hnique.s are pre~ented to i mprove con ve rge nc e. The
f i r s t i~ standard r elaxacion. Us e o f no nline ar c onvex cons traint at
each ne uron i~ discu~~ ed el~ewhere2 .: g.

t.wo import ant case~ where
i n one iteration. Bot h

Convergence i.s in one

(7 )

~ign of e ach element of

70 . -+0
1I- -.~~ ()

whe r e the veccor operation ~ take~ the
t he vector on which it operate.s .

One ~ Convercence: The re a r e a t lea~t

t he APNN c c nvexe e s other than uniformly
r e qu i r e that the out. p ut, be bipolar (± l) .
step in the .sense that

CASE 1: If there i~ a ~ ingle output neuron, then, fr om (4 ) , (5 ) and
(6) , ~o (1) (1 - t:.!. l"O . Since the eigenva l ue of the ( ~calar )
matrix, 1

4
- t:. l. lie~ between zero and one l g , we conclude that 1 ­

tLl.> O. Thus, if to is re~trict.ed to ±l, (7) follow~ immedi ately. A
t e c h n i que to extend t his r esult to an arbitrary n umber of out p u t
neurons in a layere d network is discus~ed in ~ection 7 .

CASE 2: For c ert.ain library matrice~ , t.he APNN c a n also display one
.step c onvergence . We .showed that if the colurr~s of r are orthogonal
and the columns of L are a Lao orthogonal, then one ~ynchronous

i te ration re~ult~ in floating ~tates proportional t o the ~teady
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sta t e values 1 9
• Specifically, for the floating neurons ,

li t' 11
2

70~ (1)" - f (8)

lit 11
2

An important special case of (8 ) is when the elements of rare
all ±l and orthogonal. If each element were c hos e n by a 50-50 coin
flip, for example, we would expect (in the statistical sense) that
t h i s would be the case .

E= one nt i a l Converaence: More generally, the convergence rate of
t he AFNN is exponential and is a function of t he eigenst:ucture of
T

4
. Let (Pr I 1 s r ~ Q I denote the eigenvectors of T

4
and (I.. r I the

- .... ..... - -+
c o r r es pond i ng eigenvalues. Define ~ .. ( Pl IP2 1• •• lpo] and the
diaaonal matrix Al such that diag AI" (I.. , 1..2 • • • 1..",] r . Then we can

- ""- -+ 'T"""; - .. ! ...
write 14"~ ~l ~'. De f i ne x(M)-~·S (M ) . S-tnc e ~!.."l, i;.~ follows .frc:.~

t he ...d iffere;;ce equa t-t0n i ll (4)p t ha t X (M+ l ) -~' ll ~ ~' S (M) + fl~t

"'~l x (M ) ~ g where g .. z:1
3

7. . The solution to this difference
equatJ..on .l.S

( 9)

Si nc e the spect ra l radius of 1
4

is less t han one1 9
, ~: ~ a as M ~

ee , Our steady state result is thus xk (...) .. (1 - I..k ) • gk' Equation
(9) can t he r e f o r e be written as xk (M) .. ( 1 - I..kl'! · 1] Xk (...i . The
eauivalent of a " time constant" in this exponential c onvergence is
l!t.n (l/ll..k \ ). The speed of convergence is thus dictated by the
spectral radius of 1

4
, As we have shownl 9 l a t e r, adding neurons in

a hidden layer i n an AFNN c an significiantly r ed u c e this spectral
r ad i us and thus imp rove t he convergence rate.

Relaxation : Both the p r o j e c t i on and clamping operations c a n be
re laxed to alter the network.' s convergence without affecting its
steady state2 0

- 2 1 • For t he interconnects , we choose an appropriate
value of the r e l axa t i on parameter a i n the interval (0 ,2 ) and
r ede f i ne t he i nt erc onne c t matrix a s 18

al + 11 all or
equivalently ,

8 {al t ,n - l ) +l
t.r\m - a t'llI n;lO 1lI

To see t he effec t of s uch relaxat ion on conve rge nce , we need
simply examine the r e s ulting e igenvalues. I f 1.

4
has eigenvalues

11.:,)' then 1~ has e igenvalues 1..: : 1 + a ( A :, - 1). A wise choice of a
r ed uc e s the spectral r ad i us of 1

4
with respect to that of 14, and

thus decreases t he tL~e constant of the network's convergence.
Any of the operators projecting onto convex sets can be r e l a xed

without affecting steady state convergence1 9. 1 Q . The s e include the
~ operato r 2 and the sigmoid-type neural operator t ha t projects onto
a bo x. Choice of stationary relaxation parameters without numerical
and/o r empirical study of each specific case, however, generally
remains more of a n art tha n a science .
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s , LAnRED APNN' S

The networlt:s thu:s far con:s idered are homogeneou:s in the :sense
t ha t any neuron can be clamped or floating. If t.he part it ion i:s
s uc h that the :same set of neuron:s alway:s provide:s the networlt
st~ulu:s and the remainder re:spond, then the networlt:s can be
s~plified. Clamped neurons, for example, ignore the state:s of the
ot h e r neurons. The corre:sponding interconnects can then be deleted
from the ne u r a l network architecture . When the neuron:s a re :so
p a r t i t i one d , we will refer the APNN a:s layered.

In t h i :s section, we explore va r i ou:s aspect:s o f the layered APNN
a nd in particular, t he u:se of a so called hidden layer of neurons
t o i nc r e a :se the storage capacity of the network. An alternate
arch i t e c t u r e for a homogeneou:s APNN t ha t require only Q neurons has
been reported by Marksz .

Hi d d e n Lavers : In its generic f o rm , t he APNN cannot pe r f o rm a
simple exclusive or (XOR) . I nde ed, f a i l ure to perform this a ame
operation was a nai l i n t he coffin of the perceptron22. Rumelha r t
ez . al.1 7 -1. revived ehe perceperon by adding additional layers of
ne u r ons. Although doing so a llowed nonl i ne ar discriminaeion, t he
i t e r a e i ve e r aining o f such neeworks can be p a i n f ully slow. With t he
addieion o f a hidden layer, ehe APNN likewise generali:e:s . In
ccnezaec, t he APNN c an be t r a i ne d by l oolti ng a e each data vector
only once l .

Although neura l nee wo r ks wi ll no t likely be used for performing
XOR ' s , ehei r use in e xplaining e he role of hidden neurons is quite
ins t r uct i ve . The lib r ary matrix fo r e he XOR i s

I ·[~~~~1
The f irs t t wo r ows of I do not form a matrix of full column ranlt .
Our approach i s to a ugment L wi th two more r ows such t ha t t he
r e :su l ting matrix is f u ll ran k. Most any nonlinear combination of
t he first two rows will i n general increa:se the matrix rank . Such
a p r oc e du r e , for example , is used i n ~-classifiers23 . Poss ible
nonlinear operat ions i nclude multiplicaeion, a l ogi c al "AND " and
running a weighted sum o f the clamped neural :state:s through a
memoryles:s non l i ne arity such a:s a :sigmoid . Thi:s latter alteration
i s particularly well su i t.ed to neural architect ure:s .

To i llu:strate with t he exclu:sive or (XOR), a new hidden neural
sta ee is set equal to the exponentiation of t he :sum o f the first
two row:s . A second hidden ne u r on :s will be a:s:signed a value equal to
t h e co:s ine of the sum o f t he first two neural state:s multiplied by
1t/ 2 . (The c h oice of non l ine ari t i e:s here is arbitrary .) The
augmented l ibra ry matrix is

0 0 1 1
0 1 0 1

I+ - 1 e e e 2

1 0 0 - 1
0 1 1 0
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!n either the t:::aining or look-up mode, the st.ates of the hidden
neurons are clamped indirect.ly as a result of clamping the input
neurons .

The playback architecture for this net.work is shown in Fig .1.
The int.erconnect. values for the dashed lines are unity . The remain­
ing int.erconnects are from the project.ion mat.rix formed fromI+.

]1
1/2F -

Geomet.:::ical !nte=:::etation !n lowe::: diInensions, the effects of
hidden neurons can be nicely illust.:::ated geomet:::ically . Consider
the libra~J mat:::ix

Clearly .. [1 /2 11- Let the neurons in the hidden laye::: be
~

determined by the nonlineariy x2 where x denotes the elements in
the £i=st row of I. Then

l( t; ] [ 1/2
1

f..+ - t~ I - 1/4
1~2 J1

The cor:::esponding geomet:::y is shown in Fig. 2 for x the input
neu:::on, y the output and h the hidden neuron. The augmented library
vectors are shown and a portion of the generated subspace is shown
lightly shaded. The surface of h - x2 resembles a cylindrical lens in
th:::ee dimensions. Note that the linear variet.y corresponding to x­
1/2 intersects the cylindrical lens and subspace only at ~.
Similarly , the x - 1 plane intersects the lens and subspace at t 2 •

Thus. in both cases, clamping the input corresponding to the first
ele.'Ilent: of one of the t '<10 library vect.ors uniquely determines the
library vector ,

Convercence !morovement: Use of additional neurons in the hidden
layer will improve the convergence rate of the APNN~'. Specifically,
the spectral radius of the 1

4
mat.rix is decreased as additional

neurons are added. The dominant: time constant controlling
convergence is . thus decreased.

Caoacitv: Under the assumption that nonlinearities are chosen such
that the a ugmented f; matrix is of full rank, the number of vectors
which can be stored in the layered APNN is equal to the sum of the
number of neurons i n the input and hidden layers. Note, then , that
interconnects between the input and output neuron:s are not needed
if there are a sufficiently large number of neurons in the hidden
layer.

6. GENERALIZAUON

We are assured that the APNN will converge to the desired
result if a portion of a training vector is used to st.imulate the
net.work. What., however, will be the response if an init.iali::ation
is used that is not in the training set or, in other words , how
does the net.work generalize from the t=aining set. :

To illu:st=at.e generali::ation, we return to the XOR problem. Let
s~ (M) denote the s tate of the output neuron at the Meh (synchronous)



y

layer :

- input

- hidden

Figure 1. Illustration of a
l aye r ed APNN for,performing
an XOR.

:It

Fi gu r e 2. A geometrical
i l l us t r at i on of the use of an
x2 nonlinearity to determine
the states of hidden ne urons.

541

Figure 3. Response of t he
e l ementary XOR APNN using an
exponential and trignometric
nonlinearity in the hi dde n
l ayer. Note that , at t he
corners , t he function is
equal to the XOR of the

1

Fi~~re 4. The generalization
of t he XOR ne tworks formed by
thresholding the function in
Fig.3 at 3/4. Different
hidden layer nonline a r i t ies
r esult in differe nt
generalizations.
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1t
t~scosT (Sl+s2 )J

(10 )
3. The

1 - t s 5

A plot of ~~ (~) versus (~1'~2 ) i~ ~hown in figure
plot goe~ through 1 and zero according to the XOR of the corner
coordinate~. Thre~holding figure 3 at 3 /4 re~ults in the
generalization per~pective plot ~hown in figure 4.

To analyze the network I s generalization when there are more
than one output neuron, we u~e (5) of which (1 0 ) i~ a special case .
If conditions are such that there is one ~tep convergence, then
generalization plots of the type in figure 4 can be computed from
one network ite ration using (7 ) .

iteration. If ~1 and ~2 denote the input clamped value, then
~~ (m+l ) - t 1 5 ~1 + t 2S ~2 + t 3 S ~3 + t~ S ~4 + t~ S ~S (m ) where ~3 -exp (~1 +~2 )
and ~ 4 ·co~ (1t (sl + s2)/2] To reach steady state , we let m tend to
infinity and solve for s~ (~l :

1

7. NOTES

(a) There c l ear l y exists a great amount of f r eedom in the choice of
t he nonlinearities in the hidden l aye r. Their effect on the
network performance is currently not well understood. One can
envision, however, choo~ing nonlinearities to enhance some
network attribute such as interconnect reduct ion, classification
region shaping (gene r a l i za t i on) or convergence acceleration .

(b) There is a possibility that for a given set of hidden neuron
nonlinearities, augmentation of the I1 matrix co i ncidentally
will result in a matrix of deficent column rank, proper
convergence is then not assured. It may also result in a poorly
conditioned matrix. convergence will then be quite slow . A
practical solution to these problems is to pad the hidden layer
with additional neurons. As we have noted, this will improve
the convergence rate .

(c ) We have shown in section 4 that i f an APNN has a single
bipolar output neuron, the network converges in one step in
the sense of (7) . Visualize a layered APNN with a ~ingle

output neuron. If there ar e a sufficiently large number of
neurons in the hidden layer, then the input layer does not
need to be connected to the output layer . Consider a second
neura l network identical to the first i n the input and hidden
l aye r s except the hidden to output interconnects are
different . Since the two networks are different . only in the
output interconnects, the two network~ can be combined into a
singlee network with two output neurons. The interconnects
f r om the hidden layer to the output neurons are identical to
those used in the s ingle output ne urons arch~tectures. The new
network will also converge in one step. This process can
c l earl y be extended to an arbitrary number of output neuron~ .

REFERENCES

1. R. J . Marks I I, "A Class of Continuou~ Level Associative Memory
Neura l Nets," ~. 2E£., vol.26, no.10, p.2005 , 1987 .



2 . K. F . Cheung e t . al ., "Ne ural Net Associative Memories Based on
Convex Set Pro j ections ,"~. ~~ International Conf . ~
Neural Networks, San Oiego, 1987 .

3 . R. J. Marks II et. al., "A Class of Continuous Level Neural
Nets ," ~. ~ Congres s £! International Commission 12£
Octics ~., Quebe c , Canada, 1987.

4. J.J. Hopfield, "Neura l Networks and Physical Systems wi th
Emergent Collective Computational Abilities," Pr oc eedi na s
~. ~. £! Scienc e s , USA, vol. 79 , p.2554, 1 982.

5 . J .J . Hop f iel d et . a1 . , "Neur a l Comput at ion of Decisions i n
Optimization Problem," Biol .~., vol .52, p .141 , 1985 .

6. ·D. W. Tank e t . al., "Simple Neure l Opt imi za t i on Netwo rks : an AID
Converter, Signal Decision Circuit and a Linear Programming
Circuit,"~~. Ci r. ~., vol . CAS-33 , p.533, 1986 .

7 . M. Takeda et . al, "Neural Networks for Computation : Number
Representation and Programming Complexity ,"~. ~., vo l .
25 , no. 18, p.3 033, 198 6 .

8 . S . Geman et. a1 ., "Stochastic Relax at ion, Gibb 's Distributions ,
and the Bayesian Re s t or ation of Images ,"~ Trans. Patter n
~. & Machine Intellia ence. , vol. PAMI-6, p .721, 1984 .

9 . S . Kirkpatrick et. a1. ,"Optimization by Simulated Annealing , "
Scienc e, vol . 220 , no. 4598, p .671 , 1983.

10 . D.H. Ackley et. al . , "A Lea rni ng Algorithm for Bolt zmann
Machines," Coanitive Science, vol. 9, p .147 , 1 985.

11 . K.F. Cheung et . al . , "Synchronous vs . Asynchronous Beha viour
of Hopfield 's CAM Neural Net ," t o appear in Applied Optics .

12 . R.P . Lippmann. "An Int r oduction to Computing With Neur a l nets , "
I EEE ASSP Maaazine , p.7 . Apr 1987 .

13 . N. Fa r hat e e . a1.. , "Optical Impleme ntation of the Hopfield
Model," ~. ~., vol. 24, pp .1469, 1985 .

14 . L.E. Atlas, "Auditory Codi ng in Higher Centers of t he CNS,"
IEEE ~. in Med i c i ne and Sio l oav Maaazine , p . 29, Jun 1987 .

15. Y.S . Abu-Mostafa et. al ., "Informacion Capacity of the Hopfield
Model, " ~~. !£!. ~. vol . IT-31 . p .461, 1985.

16. R.J. McEliece et. a1.,"The Capacity of the Hopfield Associat i ve
Memory , " ~~. !£!. Theorv (s ubmi t ted) , 1986.

17. D.E . Rumelhart et .al . , Parallel Distributed Processing, vol . I
, II, Bradford~, Cambr i dge , MA. 1986 .

18. D.E. Rumelhart et. al., "Learning Representat ions by Bac k-Pro­
pagation Errors ." Nature . vol . 323 , no. 6088, p . 533, 1986.

19 . R. J . Ma rks I I at. al. ,"Alternating Pro jection Neural Networks ,"
I SDL r epor t t l 1587 , Nov . 1987 (Submi t t ed fo r publication) .

20. D.C. Youla et. al , " Image Restoration by the Method of Convex
Projections : Part I-Theory ,"~~. ~. Imaaing , vol .
MI-l , p.8 1, 1982 .

21 . M. I . Sezan and H. Stark . " Image Restoration by t he Method of
Convex Projections: Part II-Applications and Nume r i cal Result s , "
~~. ~. Imaaing, vol. MI- l, p.95, 1985 .

22 . M. Minsky ec . al ., Pe r cept r ons , ~ Press, Cambridge, MA, 1 969.
23 . J. Sklansky at . al ., Pattern Classifiers and Trainabl e

Machines, Scri~aer-Verlag, New York , 1981 .


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011



