
OF WE-The International Society for Optical Empeerin3 

Volume 881 

Optical Computing 
and Nonlinear Materials 

Nasser Peyghambarian 
Chair/Editor 

Sponsored by 
SP1E-The International Society for Optiwl Engineering 

Cooperaring Organimtions 
American Academy of Otolaryngology--Head and Neck Surgery 

American Society for Laser Medicine and Surgery 
Awlied Optics Laboratw/New Mexico State University 

Beckman Laser Institute and Medical Clinic, University of California/lrvine 
Center f w  Applied Optics Studies/Rose-Hulman Institute of Technology 

Center for Applied Optics/University of Alabama in Huntsville 
Center for Devices and Radiological Health. FDA 
Center for Electro-Optics/University of Dayton 

Cemer for Laser Studies/University of Southern California 
Center for Optical Data Processing/Carnegie Mellon University 

European Laser Association 
Georgia Instilute of Technology 

InSIitute of Optics/University of Rochester 
Optical Sciences Center/University of Arizona 

SPSE-The Society for Imaging Science and Technologl 

11 -13 January 1988 
Los Angeles, California 

R.J. Marks II, L.E. Atlas, J.J. Choi, S. Oh and D.C. Park, "Nonlinearity requirements for correlation based associative memories", 
Proceedings of O-E/LASE '88 Conference on Optical Computing and Nonlinear Materials, 

Los Angeles, January 1988, SPIE volume 881, pp 179-183. 



Nonlinurity Rqmirunt8 for Correlation 8.8~3 A88ociatim 
1(.lOriea 

University of Washington, Interactive System Design Lab 
FT-10, Seattle, WA. 98195 

PgSTRACT - 
A matched filter based architecture for 

associative memories ( I Q A M  ) has been 
proposed by many researcaers[l-12:. The 
correlation from a leg of a matcheb filter 
bank, after being altered nonlinearly, 
weights its corresponding library vector. 
The weighted vectors are summed and clipped 
to give an estimate of the library vector 
closest to the input. We analyze the 
performance of such architectures for 
binary and/or bipolar inputs and libraries. 
Sufficient conditions are derived for the 
correlation nonlinearity so that the MFAM 
outputs the correct result. If, for 
example, N bipolar library vectors are 
stored, then the correlation nonlinearity 
Z ( x )  - Nxr' will always result in that 
library vector closest to the input in the 
Hamming sense. - 7- 

In detection theory, the matched filter 
is optimum in many scenarios 113-151. 
Thus. under similar conditions, a matched Fiaure I: Block diagram of a matched filter 
filter followed by a table lookup would be based associative memory (MFAM) with 
the optimal architecture for an associative nonlinearities in the correlation domain. 
memory [21. In terms of implementation, 
however. it is more straightforward to use 
the correlations of the matched filter The input vector is correlated with each 
output to weight each corresponding library library vector to form: 
object 16.7.11.121. The weighted terms are 
summed to give an estimate of the memory 
output. If the library is known to be % -G1tn 
binary, this output can be clipped to or, in vector form: 
hopefully improve the result. The output 
can then, in turn, be iteratively fed into + T + 

a - E  g 
the memory. Certain neural network asso- 
ciative memories 11,4,51 are algorithmical- where the library matrix is defined by 
ly identical to this procedure [2,31. 

F - [tll tzl t31 ...... I tN] 
In this paper, we show that for binary - 

objects, matched filter architectures are Each correlation coefficient is then 
optimum for finding that library object operated on by a point non-linearity Z,(.) 
closest in the Hamming sense to the input. which, in turn, weights the corresponding 
The use of nonlinearities in the correla- library vector. The weighted vectors are 
tion domain is also considered. Sufficient summed to obtain 
constraints for the matched filter associa- + N 
tive memory (WAM) to operate successful- 
ly are explored for a number of cases. 

h -,Z 1 Zn(%) ?n 

Each element of 2 is fed through a hard 
limiter 

In this section, we develop a general- 
ized matched filter approach to associ - 
tive memory architectures. Let 2- (f I 

l?;nSN) denote a set of bipolar (+I,-0 
library vectors of length L and ? a 
perturbed bipolar version of one of the 
library vectors. An associative memory 
architecture for finding that vector is 
shown in Fig.1. 

c [ ' I  - sgn [.I 
The output is thus 

N 
to - C Zn(%) GI 

-, 
Ideally. f' should be that library vector 
closest to in some sense. 
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- 
1. The output, f' ,could be again fed 

into the processor to yield a hopefully 
better result. We refer to such a 
processor as an iterative matched filter 
associative memory ( W A M  ) . 

2. We will also want to examine the MFAM 
performance when the input or matched 
filter bank is binary(0.1). As such, define - 

1 Zn - - 
2 ( tn+-t, 

+ .  where 1 rs a vector of 1's. Clearly, the 
hatted vectors are binary when the unhatted 
vectors are bipolar - l +  For binary 
inputs, the hard limiter parforms a unit 
step operation. - 

1. When operated iteratively with a 
binary input and bipolar matched filter, 
IWAM performs algorithmically similar to 
Hopf ield' s content addressable memory (a\M) 
when Z,(x) - x [1,51. 

2. Soffer et. al. 171 implemented a 
nonlinear holographic associarive memos? 
with feedback using a hologram and 
phase-conjugate mirrors (PCM's) . The holo- 
gram acts the memory element. The PCM's 
were used for feedback. thresholdina and 
amplification to improve the correiation 
between the input object and desired image. 

3. Athale et. a1. [lo1 suggested library 
vector-dependent weights for 'attentive' 
associative memory. Specifically, Z,(x) - 
anx where an is an attentive factor. 

4. Psaltis et. a1.161 used square law 
and unit step nonlinearities in a MFAM 
optical architecture. 

5 .  We justify a form of MFAM from a 
receiver design point of view. Let 8 be a 
librarv vector werturbed bv additive white 
~aussien noise. * The corresponding decision 
function is [I31 - I1 ; - 2n 112 

Qn 
ddn) - e 2.9 

(2xd L'2 

where Q, is a priori probability, i.e., Q= 
Pr 1 .  Hence if the decision function 
for < is comparatively large, it should 
dominate the expression 

If the library vectors are bipolar, then 
11?-',1t2. 1 and we can write 

where (LC 11*112) 
a - 1 e 2d 

(2x0' ) I 1  2 

If all priors are equal ( i.e. Q-l/N 
then they may be absorbed into the 
constant. 

Matched filters are used largely due to 
their optimal performance in cercain 
scenarios. If 3 is a library vector 
werturbed bv white Gaussian noise. then 
ihoosina th; librarv vector corres~ondina . ~ ~ 

to the largest correlarion coef'ficieni 
results in minimum probability of error and 
maximum SNR f13.141. We show in four cases 
below wheri the matched filter also 
minimizes the Haming distance. 

1. Let be a bipolar library vector at 
a Hamming distance of h, from the bipolar 
vector 3". Then 

'J,, = L - Zh, ( 3 )  

where L is the length of the library 
vectors. Thus, maximizing correlation is 
the same as minimizing the Hamming 
distance. 

2. In some situations 1e.g. Hopfield's 
model ) the binary vectors are stored at 
the memory as bipolar forms. To observe 
this binary input, bipolar matched filter 
case, the correlation coefficient is 

1 + B,-~(s+i'??, 

d 

where S, is the sum of the elements in f,. 
Substituting Eq. (3)  gives 

L 
If we assume S, - mz i,, - S for all n:* 
Eq. ( 4 1  becomes - 1 
Then maximizing the binary-bipolar correla- 
tion is the same as minimizing the Hamming 
distance. 

** This constraint has a similar flavor to 
that of requiring each library vector has 
the same energy. Such constraints are 
common in matched filter detectors [131. 
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3. If both input and library vectors are 
binary, then the correlation coefricients 
are 

1 
Y n - i  (5)  

where S d S, are the total number of 1's 
in g' an& respectively. Again, if S, - S 
, Eq. ( 5 )  can be maximized by minimizing h,, 

4. Finally, the bipolar input-binary 
fiIter correlation coefficient is 

Thus, we have maximum correlation by 
choosing minimum Hanuning distance. 

Above four cases are summarized in table 
I. 

Library Element 

Table 1: Correlation coefficients for the 
four possible combinations of bipolar- 
binary / input-library. For bipolar inputs, 
maximizing the correlation minimizes the 
Hamming distance. This is also true for 
binary inputs if the sum of the elements of 
each library vector, in bipolar form, is 
the same. 

Under what conditions will the HFAM 
output the library vector closest in 
Hamming distance to the input? We consider 
three cases, all of which assume homoge- 
neous nonlinearities ( i.e. Z,(a) = Z(a) 
for all n ) and bipolar inputs and 
libraries. Similar results can be obtained 
for the binary input-bipolar library and 
bipolar input-binary library cases. The 
remaining binary input - binary filter case 
will not work on the MFAM without 
modification of the clip (i.e. h is 
always non-negative ) .  

Binary 

A". (112) (Sp+l) 

- h. 

Y, - (in) (~-h.) 

+ (114) (Sp+ S.) 

- 
m - 
o 
0. .- 
m 

C .- 
m 

6.1. S- 

Here, we require that Z(x) be strictly 
increasing function and that the library 
vectors are separated sufficiently such 
that 

?;zq I; a : P * 9  16) 

#- 

Bipolar 

a. - L -2h. 
B. - (in) (~4.) 

- hn 

where a represents the magnitude of largest 
correlation coefficient among the library 
elements. Note that, if 2; tq - L.S( p - q ) 

, the library vectors are orthogonal. 
Let a-be the maximum correlation between 
the input and library vectors: 

nax I ~ & , ) - L -  2k 
%ax - S n S N  

where k is the minimum Hanming distance 
between 3 and the library. We will assume 
there is a unique library vector, ?..., that 
results in this maximum correlation. 

As a consequence of our assumptions, it 
follows that 

The input to the clipper is 

4 
N 

h - C Z(q , )  tn 
n-1 

or, in vector component forr, 
N r: "; - n-1 =('+I) fn; 

E - Z (%ax) fmx,; + Z(%) znl 

In order for alh;) - f,,,; , we 
require that 

or equivalently, that 

h~ fmx,; ' 0 

Since a<b implies that Z(a) < Z(b) and 
tn; fmaX,,- J;1. w e  write 

N 
h m a ,  ( )  + Z (6) fn; f,,, ; nrmax 

2 Z(L -2kl - nzmaxZ(C+,) 

2 ZIL-2k)-(N-l)2(2k+a) 

where we have used Eq. ( 7 )  and Eq. (8 )  . Thus, 
i f 

then the Inoniterative) associative memory 
in Fig.1 will give the desired result. For 
orthogonal library elements, the constraint 
becomes 
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We consider two special cases: 

Z(X) - X*' ; Q-0,1,2,. ... 
From Eq.(9), for a given L.N.~ and Q, 

the KFAM will produce the correct output if 
the input Hamming distance obeys, 

or, for orthogonal library vectors, 

For 9-0 we are at the equivalent of 
Hopfield's associative memory neural net 
for bipolar inputs and library. Here, 
k < L/2N assures one step converuence 121. 

We also can compute the minimum Q 
required for proper MFAM operation by 
solving Eq. (9) for a given L, k and a The 
result is 

for nonorthogonal library elements and 

for orthogonal elements. 

This nonlinearity is motivated from Eq. (2). 
Using Eq. (9), we can find a proper 
condition for k which guarantees conver- 
gence. 

From a design point of view, we would 
require 

The exponential nonlinearity in Eq. (10) 
has an additional convergence property that 
warrants special attentiy. If there is 
Only one library vector, f,, that produces 
x , then 

4 -, 
h(fs,9) - h(?,,Z) 2 1 

where h denotes the Hanuning distance. 
Equivalently 

From Eq. (7) and (8 ) ,  it follows that 

Thus, from Eq. (ll), we have the weaker 
convergence criterion 

This constraint is not parameterized by a 
or k. Thus, assuming equality in Eq. (12) 
is sufficient, the nonlinearity 

Z(X) - tN-l)*' 
will always produce the correct output if 
there is a unique solution. 

5.3. Even enwe- N- . . -. . 

Physics many times dictates nonlineari- 
ties of the form 

Z(x) - x4 ; Q=1,2,3, ... 
( e.g., square law detectors . Such 
nonlinearities have the disadvantage of 
emphasizing negative and positive correla- 
tions equally. The analysis of the strictly 
increasing nonl.inearity, however, is appli- 
cable here if, in lieu of Eq. (6), we 
require 

lTts~ s a : ~ * q  

Larse neaative correlations are then taken 
~ ~ ~ .-.. 

into acc6unt. Following the analysis, we 
find that Eq. (9) is still applicable. IC 
then follows that 

2Q > Ln(N-1) 

4 ;;:: 1 
The technique is also directly appli- 

cable to other even nonlinearities that are 
strictly increasing for positive argument 
such as Z(x) = exp(alxl) or polynomials in 
1x1 with positive coefficients. 

An object, g(x,y), is said to be bipolar 
if it takes on values of only +I. For such 
objects, the Hamming distance can be 
defined as the area over which one object 
from the other. If denotes this area, 
then, Eq. (3)  is applicable if we let 

and 

where g and f, are, respectively, the 
bipolar input and nU bipolar library 
object . There are similar expressions for 
when the input andlor library is binary. 
Further application of this generalization 
to results in this paper is obvious. 
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We have shown that, for binary (bipolar) 
objects, the matched filter indicates that 
library element closest to the input in the 
Hamming sense. The performance of non 
iterative matched filter associative 
memories was also analyzed. Sufficient 
conditions for desired performance were 
derived for a number of cases. 
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