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INTRODUCTION

\ In concert with the theme of this special session, our charter is to provide a tutorial
inroduction to artficial neural networks (ANN’s) that solve certain combinatorial search
problems. In the section to follow, we outine an architecture for a contnuous time
homogeneous neural network. Using simple lateral inhibition, the network is shown capable of
locating that neuron with the maximum inidal state. Building on this conceprual foundaton,

neural networks are developed that solve the Queens Problem and Traveling Salesman
Problems.

Although the concept of applying ANN’s to search problems of this type is intriguing, the
jury is sull out on whether the approach, when marture, will perform bertter than more
conventional techniques. The potendal advantages:of ANN’s include fault tolerance, regularized
architecrural structure, parallelism, and asynchronicity (i.e. no clock is needed).

A HOMOGENEOUS NEURAL NETWORK

Consider a set of L neurons (or nodes) each of which is assigned a value or state,
{sk:1<k<L}. The jth neuron is connected to the kth neuron with an interconnect value or
Tansmittance of tik. We will assume symmetric interconnects (ty = t;) and zero
autoconnects (tkk=6). e state of the kih neuron is determined by theé state of every other
neuron. A first order analog circuit model for a single neuron [1] is shown in Figure 1.
(Alternately, discrete synchronous and asynchronous linear algebra models can be used [2-3].)

e neural states are introduced as voltages at the left and are fed to the neuron through the
interconnect resistors shown. The voltage, ¢, is referred to as the excitadon and is used in part to
provide energy to the network. The capacitor provides the voltage inerda required to maintain a

state sufficiently long to affect other neurons. Using KCL, it is easy to show that the circuit
obeys the dynamics:
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Figure 1: A first order circuit model

Figure2: A sigmoid nonlinearity that has
for a neurcer.

computational advantages in
numerical simulations.

Cuk’=ErJ-kS-uthjk-ukG+ e

_ where the prime denotes temporal differentiation.

The two wiangular shaped circuit elements in Figure 1 are memorviess sigmoid
nonlinearities. Sigmoid nonlinearities are continuous and monotonically increasing over the
_range of zero 1o one. If Z(.) denotes this nonlinearity, then the current neural state is:

Sk = Z(Uk)

The simuladons in this paper use the easily computed nonlinearity shown in Figure 2. (In some
ANN'’s, strictly increasing nonlinearities are required.) The bottom nonlinearity in Figure 1

outputs the negative of that produced at the top. Availability of this voltage allows simulations
of negative interconnect resistances.

SOLUTION OF SEARCH PROBLEMS BY LATERAL INHIBITION ANN’S

If a neuron has a large state value and its interconnects to other neurons are negative, it
atternpts to reduce the state values of or 'turn off’ the other neurons. This process is reterred to
as lazeral inhibition. Such networks have demonstrated utlity in spectral enhancement and
vowel recogniton [4-5]. Our attenton will be resmicted to application of lateral inhibition
neural networks (LINN’s) to solving certain combinatorial search problems. In order to
effectively demonstrate this capability, we will show how a LINN can perform a 'search’ for the
maximum value in a sequence of numbers in the King of the Hill Problem. Dimensional
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King of the Hill

The Rooks
Problem
The Queens The Traveling
Problem Salesman Problem

Figure 3: A hierarchical flowchart of search problems considered in this paper.

ieenerahzanon leads us to a LINN that can solve the Rooks Probiem. Specifically, how many
,rocks can be placed on a chess board so that no rook can capture another? (Placing them on a
diagonal is an obvious solution.) Trivial though it may be, the Rooks Probiem directly

;vcneruhzes into both the Traveling Salesman Prob[em and Queens Problem. A flow chart of this
developmental hierarchy is shown in Figure 3.

King of the Hill

\ A simple search problem is the King of the Hill or Winner Take All Problem. The goal of
this problem 1s to isolate that neuron with the largest initial state, i.e., find the maximum. To do
this, we constuct a neural network where every neuron laterally inhibits every other neuron.
Ideally, the neuron with the largest initdal state inhibits the most and, due to the sigmoid,

saturates in steady state at one. The remainder of the neurons ideally go to zero. In a 3 neuron
\syStcm for example, the matrix, T, of interconnects, tjk, would be

0 -c¢ -c
0 -n
-¢ ~C <3

Where the positive number ¢ is the intermeuron inhibiton strength. In order to prohibit the
Network from degeneraring to an all zero state, the LINN requires evernal excitaton, ¢, applied
1o each neuron. Balancmc the excitation against the constraints is, in general, stll an art. For
the King of the Hill Probiem, however, we can stmwhtforwardly reason through certain
;pcrtormance dynamics. With only one neuron on, all of the other neurons must be turned off
‘with an inhibition strength of ¢. The external excitation, e , must therefore be less than c.
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If e is very small, the network will approach the solution very slowly. If e is only
jghtly smaller than ¢, a neuron must be almost totally on in order to overwhelm the excitation.

This will cause the equivalent of a overshoot, as other neurons will be partially on.. If ¢ is greater
hanc but less than twice ¢ , exactly two neurons will be on in steady state.

The Rooks Problem

The Rooks Problem requires the placing of rooks on an N by N chess board so that no
rook can capture any other rook. Although easily solved, the Rooks Problem is a straightforward

_extension of the King of the Hill Problem and generalizes nicely to the Queens, Traveling
: Salesman and other problems [6].

‘ Our LINN is best visualized as an N by N array of neurons -- one for each chess board

square We desire a steady state solution wherein there is only one neuron on in each row and
column corresponding to the locations of the rooks on the chess board. Each row and column
thus competes in a King of the Hill Problem. 1In each row and column of neurons, the
interconnects are chosen to inhibit all of the other neurons in that row or column. Since every
off neuron will be inhibited by two on neurons, the excitation, ¢ , must be less than twice c.

To illustrate, consider the case where N=3 (or 9 neurons). If the neurons in the first row
_are numbered 1,2,3, -- those in the second 4,3,6, etc., then the marrix of interconnects is:

0 -¢ -¢ -¢ 0 0 - 0 0]

-¢ -C 0 0 0 -c 0 0 -c

0 -c¢ 0 0 -c 0 -c 0 -c
0 0 -c 0 0 -c¢ -¢ -C 0

Unlike the King of the Hill problem, the Rooks problem has a number of solutions.
Indeed, different initializations will result in different solutions. Do to this diversity, we have the
freedom of constraining the solution by clamping desired neural states to one, i.e. the inputs to
the neuron are ignored and the neural state is set to one. If, for example, we clamped the upper

left neuron to one, then the network will converge to a solution that places a rook in the upper
left corner of the chess board. Muliple neural clamping, if consistent with the problem
constraints, will produce a similar result. In the absence of clamping, the initial states of the
neurons can be chosen stochastically.

The Queens Problem

The Queens Problem is a straightforward extension of the rooks problem: queens are
used instead of rooks. The only further alteration to the network is use of lateral inhibition along



Figure 4: A LINN to solve the Queens Problem on a 3 by 3 chess board.
Every interconnect has a value of - <.

the diagonals of the chess board. An example of the interconnects for a 3 by 3 chess board is
shown in Figure 4.

Examples of the dynamics of a LINN solution to the Queens Problem for a standard 8 by
8 chess board are shown in Figures 5 and 6. The neural states are coded by grey level: black is
one and white zero. In both figures, the net’s inidal states were chosen randomly on the interval
from zero to 1/2. In figure 5, various stages are shown in the evolution towards steady state. In
general, for N>3, N queens can be placed on the chess board and satisfy the Queens Problem
consmaint. In Figure 3, there are only seven queens in steady state. Although the constraints of
the problem have been met, an optimal solution was not obtained. Such results are characteristic
of LINN’s. The networks many times produce good but not optimal results. Unlike the Queens

Problem, evaluation of the quality of the result in other search problems is usually not
straightforward.

The solution in Figure 5 was not optimum because the networks excitation was too low.

The value of was raised and the simulation illustrated in Figure 6 resulted. Here, convergence
is 10 a proper solution using 8 queens.

As with The Rooks problem, one or more neurons can be clamped consistent with the
problem constraints and the LINN will produce a consistent solution.
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Figure 7: Snapshots of a LINN solving the Traveling Salesman Problem for a ten city tour. The

result is that city D should be visited first, city H second, etc. The result is optimum (from
Hoprield and Tank [6]).

The Traveling Salesman Problem

The Traveling Salesman Problem can also be considered as a generalizadon of the Rooks
Problem. There are N cities. The distance between city X and Y isdxy. We wish to arrange

the cities so that the distance of a total round trip is minimum. We draw freely from the work of
Hopfield and Tank [1].

An ANN solution for the Traveling Salesman Problem can be obtained from an N by N
array of neurons. The kth column of this array corresponds to the kth city. The jth row dictates

the rank of the city on the salesman’s itinerary. Thus, if the third neuron in column A is on, the
salesman would visit city A third.

There are three classes of interconnects that comprise the LINN for this problem. The

final value of an interconnect is obtained simply by summing the values of the three
components:

(1) As with the Rooks Problem, a valid steady state solution can only have one neuron on in each
row and each column. In order to assure that all cities are visited, each row and column

must have one on neuron. The corresponding interconnect component values are identical
to the interconnect values in the Rooks Problem.

(2) Additonal inhibitory interconnect components are required to parameterize the distances

between cides. Specifically, we desire neuron pairs corresponding to distant cites to inhibit
more than those corresponding to cites that are close. Every neuron in the row for city X is

thus connected to the corresponding neuron in city Y with the ransmutance -o dyy where
b is a some appropriate constant.



{3) Hopfield and Tank [1] also found use of a global inhibition useful. Each neuron inhibits
" every other neuron by a negative transmittance, -a. This third interconnect component has
: the effect of squelching uprisings when a number of neurons are intensively competng.

Snapshots of the convergence of the neural network using a hyperbolic tangent sigmoid
ﬁrc shown in Figure 7. Here, the size of the square parameterizes the neural state. This
\;jpanicular solution is indeed optimum, but ’tweaking’ of the system parameters was required.
Typically, the network produces ’good’ though not optimal results.

FINAL REMARKS

Artificial neural networks (ANN’s) provide an inmiquing architecture for the solution of
combinatorial search problems. There are clear obstacles to using neural networks in such
_problems. To date, choosing inhibition values is more of an art than a science. The non-
_optimality of the solution can be a problem. Techniques such as simulated annealing (7-8],
however, can be used to assure convergence to the optimal soludons in such cases. Convergence

of such techniques can be quite slow. Nevertheless, preliminary results such as those presented
_in this paper are quite encouraging.
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