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rINTRODUCTION
I Vc'f"f'

;\:M In concert with the theme of this special session , our charter is to provide a tutorial
ti,ntroduction to artificial neural networks (Ai~N's) that solve certain combinatorial search
0pfoblems. In the section to follow, we outline an architecture for a continuous time
~ti0mogeneous neural network. Using simple lateral inhibition, the network is shown capable of
~!gcating that neuron with the maximum initial state. Building on this conceptual foundation,
{cneural networks are developed that solve the Queens Problem and Traveling Salesman
mproblems .
@jl/?=:
tree:::

~*I' Although the concept of applying ANN's to search problems of this type is intriguing, the
,'f~ llry is still out on whether the approach, when mature, will perform better than more
llisonventional techniques. The potential advantages,of ANN's include fault tolerance, regularized
~ a:rchi tectural structure , parallelism, and asynchroniciry (i.e. no clock is needed) .,

leA HOMOGENEOUS NEURAL NETWORK

Consider a set of L neurons (or nodes) each of which is assigned a value or state,
~{Sk : l <k<L } . The jth neuron is connected to the kth neuron with an interconnect value or
i[ ansmittance of tik. We will assume symmetric interconnects (tjk = t~j) and zero
auroconnects (tkk=O). The state of the kth neuron is determined by the state ot every other

{rleuron. A first order analog circuit model for a single neuron [1] is shown in Figure 1.
(Alternately, discrete synchronous and asynchronous linear algebra models can be used [2-3].)
''The neural states are introduced as voltages at the left and are fed to the neuron through the
tmterconnect resistors shown. The voltage, e , is referred to as the excitation and is used in part to
;Provide energy to the network. The capacitor provides the voltage inertia required to maintain a
state sufficiently long to affect other neurons. Using KCL, it is easy to show that the circui t
obeys the dynamics :
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SOLUTION OF SEARCH PROBLEMS BY LATERAL INHIBITIO N ANN'S
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Figure 2:Figure 1: A first order circuit model
for a neuro:' .

C uk ' =~ tjk S - Uk I tjk - Uk G + e.

here the prime denotes temporal differentiation.
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The two trianaular shaped circuit elements in Fizure 1 are memorvless siamoid
onlineari ties. Sigmoid nonlinearities are continuous and monotonically increasing over the
ange of zero to one. If Z(·) denotes this nonlineari ty, then the curre nt neural state is:

e simulations in this paper use the easily computed nonlinearity shown in Figure 2. (In some
ANN's, strictly increasing nonlinearities are required.) The bottom nonlinearity in Figure 1
outputs the negative of that produced at the top. Availabi lity of this voltage allows simulations
of negative interconnect resis tances.

i;t;. If a neuron has a large state value and its interconnects to other neurons are negative, it
\1,,,attempts to reduce the state values of or ' turn off ' the other neurons . Thi s process is referred to
~i', as lateral inhibition. Such networks have demonstrated utility in spectral enhancement and
(:l;yowel recognition [4-5]. Our attention will be restricted to application of lateral inhibition
~;.neural networks (LINN's) to solving certain combinatorial searc h problems. In order to
1/K effectively demonstrate this capabi lity, we will show how a LINN can perform a ' search' for the
. maximum value in a sequence of numbers in the King of the Hill Prob lem. Dimensional
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Fi gu r e 3: A hierarchical flowchart of search problems considered in this paper.

eralization leads us to a LlL"-rN that can solve the Rooks Problem. Specifically, how many
ks can be placed on a chess board so that no rook can cap ture another? (Placing them on a
genal is an obvious soluticn.) Trivial though it may be, the Rooks Problem directly
eralizes into both the Traveling Salesman Problem and Queens Problem. A flow chan of this
elopmental hierarchy is shown in Figure 3.

ll g of the Hill

A simple search problem is the King of the Hill or Winner Take All Problem. The goal of
is problem is to isolate that neuron with the largest initial state , i.e. , find the maximum. To do
is, we construct a neural network where every neuron laterally inhibits every other neuron.
eally, the neuron with the largest initial state inhibits the most and, due to the sigmoid,
curates in steady state at one . The remainder of the neurons ideally go to zero . In a 3 neuron
Stem, for example, the rnatrix.T, of interconnects, tjk, would be

'here the positive number c. is the interneuron inhibition strength. In order to prohibit the
th~twork from degenerating to an all zero state , the LINN requi res external excitation, e. , applied
~~§ each neuron. Balanc ing the excitation against the constraints is, in general, still an an . For
~~.tie King of the Hill Problem, however, we can straightforwardly reason through certain
fP~rfonnance dynamics. With only one neuron on, all of the other neurons must be turned off
;'Wi th an inhibition strength of c , The external excitation, e. , must therefore be less than c ,



If e is very sma ll, the network will approach the solution very slowly. If e is only
hrlv smaller than c , a neuron must be almost totallv on in order to overwh elm the excitation.
s will cause the equivalent of a overshoot, as other neurons will be partially on.. If e is greater
nc but less than twice c. ,exactly two neurons will be on in steady state.

Rooks Problem

The Rooks Problem requires the placing of rooks on an N by N chess board so that no
k can capture any other rook. Although easily solved, the Rooks Problem is a straightforward
ension of the King of the Hill Problem and generalizes nicely to the Queens, Traveling

lesman and other problems (6].

Our LINN is best visua lized as an N by N array of neurons -- one for each chess board
are. We desire a steady state solution wherein there is only one neuron on in each row and

lumn corresponding to the locations of the rooks on the chess board. Each row and column
us competes in a King of the Hill Problem. In each row and column of neurons, the
rerconnects are chosen to inhibit all of the other neurons in that row or column. Since every
f neuron will be inhibited by two on neuron s, the excitation, e , must be less than twice c .

To illustrate , consider the case where N=3 (or 9 neurons). If the neurons in the first row
e numbered 1,2,3, -- those in the second 4,5,6, etc. , then the matrix of interc onnects is:

0 - co -c. - c. o. 0 -co 0 0
-c. 0 - Co 0 - co 0 0 - co 0
- co -Co 0 0 0 -co 0 0 -Co
- co 0 0 0 - co -c. - Co 0 0

T = 0 -Co 0 - Co 0 -Co 0 - Co 0
0 0 - Co -Co - Co 0 0 0 - Co

- Co 0 0 - Co 0 0 0 - Co -Co
0 - Co 0 0 -Co 0 - Co 0 - Co
0 0 -c. 0 0 - Co - Co -Co 0

Unlike the King of the Hill problem, the Rooks problem has a number of solutions.
.mceen, different initializations will result in different solutions. Do to this diversity, we have the

, tn~edorn of constraining the solution by clamping desired neural states to one, i.e: the inputs to

neuron are ignored and the neural state is set to one . If, for example, we clamped the upper
neuron to one, then the network will converge to a solution that places a rook in the upper

left comer of the chess board. Multiple neural clamp ing, if consis tent with the problem
•.•••• c()ns,traint.s, will produce a similar resul t. In the absence of clamping, the initial states of the

neurons can be chosen stochastically.

The Queens Problem

The Queens Problem is a straightforward exten sion of the rooks problem: queens are
used instead of rooks. The only further alteration to the network is use of lateral inhibition along
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Figure 4: A LINN to solve the Queens Problem on a 3 by 3 chess board.

Every interconnect has a value of - -::.

.',:,

~'the diazonals of the chess board. An example of the interconnects for a 3 by 3 chess board is
l;shown in Figure 4.
h--·

~{ Examples of the dynamics of a LINN solution to the Queens Problem for a standard 8 by
f,8 chess board are shown in Figures 5 and 6. The neural states are coded by grey level: black is
(,one and white zero. In both figures, the net's initial states were chosen randomlv on the interval
i,Krorn zero to 1/2. In figure 5, ~arious stages are shown in the evolution towards 'steady state. In
,'general, for N>3, N queens can be placed on the chess board and satisfy the Queens Problem
)fonsrraint. In Figure 5, there are only seven queens in steady state. Although the constraints of
the problem have been met, an optimal solution was not obtained. Such result s are characteristic
tof LINN ' s. The networks many times produce good but not optimal results. Unlike the Queens
;Problem, evaluation of the quality of the result in other search problems is usually not
straightforward.

The solution in Figure 5 was not optimum because the networks excitation was too low.
The value of was raised and the simulation illustrated in Figure 6 resulted. Here, convergence
is to a proper solution using 8 queens .

As with The Rooks problem, one or more neurons can be clamped consistent with the
problem constraints and the LINN will produce a consistent solution.
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Fi gure 5: Snapshots of a LINN solving the Queens Problem. The final solution shown at the
left. although meeting the constraints required of the problem. does not contain the maximum
'number of queens (8). This is because the exc itation was too small (e. = 0. 1 and Co = 0.15).
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Fizur e 6: Snapshots of the same LINN as in Figure 5 with the excitatio n raised to e. =0.25. The
ste'='ady state solution contains the maximum number of queens and meets the problem
constraints.
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Eigure 7: Snapshots of a LIi'm solving the Traveling Salesman Problem for a ten city tour. The
Iesult is that city D should be visited first, city H second, etc. The result is optimum (from
iHopfield and Tank (61).

The Traveling Salesman Problem

The Traveling Salesman Problem can also be considered as a generalization of the Rooks
Problem. There are N cities. The distance between city X and Y is dXY . We wish to arrange
the cities so that the distance of a total round trip is minimum. We draw freely from the work of
HopfIeld and Tank (1].

An ANN solution for the Trave ling Salesman Problem can be obtained from an N by N
array of neurons. The kch column of this array corresponds to the kth city. The jth row dictates
the rank of the city on the salesman's itinerary. Thus, if the third neuron in column A is on, the
salesman would visit city A third.

There are three classes of interconnects that comprise the LINN for this problem. The
final value of an interconnect is obtained simply by summing the values of the three
components:

(1) As with the Rooks Problem, a valid steady state solution can only have one neuron on in each
row and each column. In order to assure that all cities are visited, each row and column
must have one on neuron. The corresponding interconnect component values are identical
to the interconnect values in the Rooks Problem.

Additional inhibitory interconnect components are required to parame terize the distances
between cities. Specifically, we desire neuron pairs corresponding to distant cities to inhibit
more than those corresponding to cities that are close. Every neuron in the row for city X is
thus connected to the correspondin g neuron in city Y with the transrrnnance - 0 dXY where
b is a some appropriate constant.



Hopfield and Tank [1] also found use of a global inhibition useful. Each neuron inhibits
every other neuron by a negative transmittance, - a.. This third interconnect compo nent has
the effect of squelching uprisings when a number of neurons are intensively competing.

Snapshots of the convergence of the neural network using a hyperbolic tangent sigmoid
e shown in Figure 7. Here , the size of the square parameterizes the neural state. This
articular solution is indeed optimum, but 'tweaking ' of the system parameters was required.
ypically, the network produces ' good ' though not optimal results.

AL REMARKS

Artificial neural networks (ANN' s) prov ide an intriquing architecture for the solution of
mbinatorial search pro blems . There are clear obstacles to using neural networks in such
oblems. To date, choosing inhibition values is more of an art than a science. The non­
~timality of the solution can be a problem. Techniques such as simulated annealing [7-8],
wever, can be used to assure convergence to the optimal solutions in such cases. Convergence
such tech niques can be quite slow. Nevertheless, preliminary results such as those presented
this paper are quite encouraging.
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