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ABS1'1tACT

The notion of a global computation performed by a large
number of simple and idemicallogic elemc::rus (neural network) bas
recentJy stirred peal in1crest in the field of pattern recognition. The
appeal lies in the simulation of human neural processing and the

high potential for fast VLSI and optical architeClUres. In order to

gain a pteliminary undemmding of the efficacy of this approach
.. for speech analysis applications. we have applied seven! simulated

neural networks to the problem of spealc.er.independelS vowel nor
malization.· The results of this normalizaIion were compared with

-. human perceptual data and it was found that an orthogonal projec
tion neural network mau:hed the human data fairly well. 11 was also
found that a conventional matched filter classifier performed better
than the neural networks . A neural network version of this best
classifier was derived and tested.

INTRODUCTION

Tbere bas recemly been a rapid growth of imeresl in artificial
neural network rescan:h. In 1982. Hoptield published a paper (1]
which has inspired I number of researcbeIs in various disciplines
to investigate neural network models. The original model
presented was a programmable. auto-associative memory for static
binary patterns. Its operaIioo was asynchronous and stochastic.
This model bad me ability to recaD stored memories when a panial
and noisy version of the memory was input. McEliece et al. (2]
analyzed the model to estimate its information SU)Jage capacity
using statistical approximations. Several researebers reponed opti

cal implemeDJation of the model with some simplification and
modification (e.g.• Psaltis and Fartw (3]; Alhale et al. (4]). Typi
cally. these models opcrared synchronously with uniformly zero
thresholds and no external inputs.

Instead of using the outer product mauix in the Hopfield
model. Personnaz et al. (S] suggested an orthogonal projectioo
matrix which projects an input vector omo the subspace spanned
by the stored memory vectors. Their model opemed synchronous!y
with zero thJesbolds. bipolar (+1 and -1) states. and DO external
inputs. On me condition that all the stored vectors are linearly
independent, the model showed more reliable auto-associativecapa
bility than the original Hoptield model.

Based on these results. we simul:ued various neural netWOrk
formulations. applied these to recognize vowels whose spectra are
time invariant. and evaluated performance by a sequence of test

inputs which scan through me Fl' F 2 fearure plane. One simu-
lated neural netwOrk model was the modified Hopfield model with
the ortbogonal projeaioo matrix, which operated synchrooously
with zero tblesbolds and no external inputs. The original model

USIng the outer product matrix was also simulated for comparison.
A conventional thresholded matChed filter classifier was used as a
control and a neunl netWOrk approximation of the control was also
simulated.

Vowel spectra were quantized as binary input and SlOrage
panems. The test inpu1 sequence was created by specifying !he lim
two forman1 frequencies. F \ md F 2 scanning through tbe Fl ' F z
plane. The pI'OU)typeS were obtained using the avenged formam
frequencies found in the classic study by Peterson and Barney (6]
and the peIformance of the netwm formulation was~ by
comparisons wilb human percepwal performance. The goal of this

study was to check the validity of these netWOrk types for the lim
ited task of speaker independent vowel recognition.

BACKGROUND AJ"ID NETWORK FORMULAnONS

HopfieJd Model

The basic idea behind Hopfie1d's net is to have L identical
neurons. each with an initial stored binary value. The i th neuron is
assumed to be coonected to me j th neuron with a transmia:ana: of
Tjj' If the sum of the inputs to a neuron exceeds a specified thres
bold. the neuron fiJes (sets its binary value). If the sum is less Chan
the threshold, the DCUI"OI1 turns off (resets its binary value). This
process continues for all neurons umi1 a sable state is reached.

The choice of Tij's is the programmed panof the neural net
work. Hopfield designed these imercormeaion values as a represen
tation of stored binary vectors or "library elemems." Given I por
tion of one of the library dement veeors, the emire vector can
sometimes be regencnted by iterative operations described alove.
Furtbem1ore. the algorithm is bighly tolenm of faults. Eernems
(neurons) can be desu'Oyed or iDlen:ormea values can be grossly
quantized (7], and the processor will still be functional.

Synchronous Bop6eld Model (Outer Product)

In Hopfield's dcrivatioo of the cboiC% of in1ercooncas. an
c:Dergy function was formu1aled and mjnjmiurl. Also, il was
assumed that JJeUI'OOS were DOt synchronous. In order to utilize
coaventional signal space formulations. a synchronous vClSioo of
me Hopfield model canbe derived:

Let (r" liS .. S N) denote a set of library elemcms. each

of length L. The i Ih element of r" is f iii. Each f iii is either 1 or
-1. We form the Lx L mattix T with eleme:ms

Ii

T ij = IJ.J.j ; iJ=l,2,....L

.-\
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'i'Hence. we refer 10 T as the 0flU' product 1ftiJI1U. Note tIw this

' model assumes symmetric interconneas (T jj = T~) and autoimer-

connectS (1".. - 0).

Consider a given initialization or input vector. I. composed of
±l·s. We can form the ueranon

1""'1 =senITI" l
. where &0 = I and the vector operator. sgn, examines each element
of lew and. if the element is positive. sets it to 1. Otherwise. the

element is reset to -1.

-. EaJh iteration can be described from ~ signal ~e stand-
. point. F lu = a where each clemcn1 of a LS propomonal to the

magnitude of a projection of lu onlO fj • Tbese a j actUally
Correspond to the outputs of a matebe:d til~g operation where

the input is lu and the filter is 'j' Fa = FF lu will therefore be
equivalent to a linear combination of the 'j's weighted by the pro
jection componems. TIle last pan of each iteration. which is the
sgn. corresponds to a nonlinear thresholding operation, This is
equivalent to timing the nearest comer of a hypercube in the L
dimensional signal space.

This overall iterative process is therefore algorithmically
equivalent to the block diagram shown in figure 1. If the behavior
of the synchronous Hopfield netWork is the same as the asynchro
nous net, the above iteration would idcaDy converge to the library
element , '" that is closest to I in the Hamming dist.ancc sense.

Orthogonal Projection Model

This model involved a change in only the formulation for T.
Lt. only tbc in1enxlaDecIion weights were modified in lbc neunl
net. As first suggeSled in (S]. we used an orthogonal projection to
formulate an alternative to T which will be referred 10 as t. This
alternative will project Cu onto the subspQU spanned by fj where
i =1:l....fl and L>N. The basic idu behind lbc onhogonal pro
jection is to make sure that the neural network is always able to
converge to any given library elemenl when that library elemem is
used as the inpuL Namely.

'j = trj

for i = 1;2•...)1. These equalities are the same as

F=tF

If all 'j are line3rly independent, lhcD rank(F] = N and a pseudo
inverse of F can be defined as

F+ = [FTF]-1F
T

and the desired equalities imply that

t =FT· = F(FTytF
T

The iteration for me orthogonal projectionnetwork is 1berefore

CjI+l = sgn{tCjI]

Matched f1Iter Culllei'

'lbiJ fonDul.1DoIl, whidl does noc conapond to a neunI
netWOrt.type desiIn. was UIcd u the c:amol. TIle aoal is to WIt a
cooventionaJ ca:tDque m find the library dement, thIl is the

closest to the inpn I in the Hamming distInce sense.The firsl SIq)

is the same as the bulk of muehed filtm described in the~
nous Hop6e1d modeL l.e. find

T
a=FI

The second step coosists of surching through the elemerus of aID
find the muimum. say a . The index", then points to f as the

closest library element The rank~rdered search through~ ele
ments of a docs DO( fit the usual definitions of a neunJ netWork
archite~. Fu.r1b:rmore. this control classifier is non-iterative.

Lateral Inhibition Model

This last formulation was driven by the need to put an
approximau: ven:ioo of the above matcbcd tilter classifier in10 a
neural network architecture. The second step of the matChed filter
classifier was n:plac:ed with an iterative neunl network which con
sisted of positive and identical autoimeraxmects and negative and
identical cxmoeaioos between neurons. Each neuron could take m
an integer (and not just binary) value. The effect of this stnlaure
was intended to enhance large initial values while suppressing
smaller values. In the limit. the processor with the largest initial
value will increase infinitely while the value stored at all other pr0

eessors will com:inue to decrease. Thus. the largest matched filter
outpn evemually beccmes much larger thm all other outpUts.

In order to make this Sb'Ueture praaical, a clipping mnlincar
ity 1) was used at eacb. neural OUtpuL 1'1 bad a linear input~utpUl

relationship between two empiricaBy chosen thresholds. The max
imum matebed filter output was indiCated whenever a neural output
reached lbc larger of the two thresholds. This neural network-based
classified can be expressed as two steps. The lim step is identical
to the comrol classi1ier. t.e. find

T
CI=FC

Note that this noo-iter.Wve step could be accomplished by a neural
network with in1ercooneaion weigbls CDrresponding to the ele
ments of an 'j' The second step is the Imnl inhibition iteration

all +1 =1)(BOou]

B =(1 + liN) I - (l1N)1f

where I is tbc idcmiry matrix. 1 is a veaor of length N which con
siSlS of an l·s. md B thereby specifies the Dl:tWork inIerc:onnec
tions for 1aleral inhibition..

METHODS

1be daIa base used for this smdy was the average vowel for
mam frequencies found for 76 speakers (male. female. md chil
dren) and the human idcnIificaIion of vowels produced by listening
tests with 70 subjects. Ten vowels were used and all of this data

comes from the stUdy by Peterson and Bazney [6].



For all four DetW'OIt fomaaJ.lDons. a bipolar veca .. UJed
to~ me vowel speaJa. This veaor was c:onsuuc:ud by

. divldinl W entire rwura1~ s:aled frequency ranae (100 •
~ kHz) in10 L teetions. 1bc spean was quanlized by assilJ1inl +1
to &IUS in w neighborhood of I formam and -1 to aD ocher fre·
quency bins. This is shown lChcnatic:ally in figure 2. Nexe thai.
only the lim 2 formants were used; the ex~ions of F3 outside
!he chosen trequency range eliminaa=d the usefulness of this higher

pcB.
The bandwidth of the quannzed vowel {which was 00( deter

mined by Peterson and Barney, ....as chosen to have a fixed width
of 100 Hz for formants below 500 Hz and to have a width equal to
0.1 times the formant frequency for frequencies above 500 Hz.

Using the notatioo of the previous section. the vowel spectral
coding corresponds to L =100. The choice of N is based on !he
number of S1O~ panems. In order DOt to exceed !he capacity of
!he various network formulations. N was chosen 10 be 10. i.e. one
average female vowel was chosen as the library elemeru for each
vowel classification region. Tberefore, in order 10 generate the van
ous network interconnections. f, where i = 1.2•...•10 were derived
by quantizing the 10aveJ"2g1: female vowels.

Each network was teslCd by inputs sets which exhaustively
covered all possible choices of F 1 and F1 when: F i>F r The
final, stable. vector was determined for each inpuL Tbese output
vectors then were used 10 determine the classification regions
described in the results.

RESULTS

All four vowel classificaioo methods described were tested.
The assessmem of performm::c can be made by comparing !he
aulOmatically chssified regioes with the average regions foWld by
w human listeners in me Pelerson and Barney study. Figure 3
depicts these desired regioos within the feature space. Tbc areas
which listeners found ambiguous (i.l. incoosisten1 vowe1labelings)

are DOt included. 1'bese ideal ~pom are included as dasbcd lines
in all subsequc:ru figures for refe:re:nce.

Figure 4 shows the classification results for the SynchroDOus
Hopficld Model It is fairly obvious t1ut Ibis model failed 10 to

perform adequaIdy. Only ODe out of all 10 vowels was crudely
classified. The rest of the vowels. even those that were identical to
the S1O~ average vowels, wen: DOt idenJified ax all.

The onhogonal projeaioo model's result is shown in figure 5.
As intended, an vowels whic:b closely resemble the stored average
were classified. However. several problems exist. The lim is that a
spurious ftJ region exists for vowels with very low formam fre
quencies. Another problem is the small size of the classification
regions. It was DOl possible to make this network formul2tion accu
rately capture me variatioo in articu.l.aIion across male. female. and
c.bildrcn.

Figure 6 illusUaleS the regioos for me collUOI mau:hcd filter
classifier. Note ttw the regions are a better malc:b to the percepo1al

data than figure S. Also. the variable detection threshold implicil in
this classifier allowed the regioos to be larger.

The same experimems with the lateral inhibition model pro
duces the results shown in figare 7. 1bc spurious N region is again
seen. Nevertheless. the classification performance is somewhat
better than that seen in figure 5.

CONO..t;SlONS AND nJTUJlE WORK

There is I ~ possible variety of ncW'll netwcn type suuc:•
tures which CDUld be 6t 100 a sicnaJ cllSlifiWion problem. We hive
demonsttued dw I synctuooous type of Hoptidd model is of little
use for me problem and panmetm studied . An orthogonal projec.
tion modification improved the performance dRmatically. but did
not equaJ the results seen for I conventional malChed filter
classi6cr. It was also shown that a neural netWOrt version of the
best performing classifier wu almost as good.

It still rerrwns to be seen whether the performance of a
ncunl network can be any better than the more conventional tech

niques thai have Ipplied to problems of speaker independence.
However. the fonnulmons discussed may be appropriate for certain
architectures which are needed for very large vocabularies. We feel
that this swdy has helped Ie provide a firmer theoretical foundation
for more extensive SlUdies of DOvel architeeD1reS for speech
analysis. Several needed extensions are the use of neural netWorks
for dynamic panems in speech. the addition of learning to update
!he interconnection weights. and the performance of neural net
works which include more inspiration from the biology, l.g. cas
caded Detworts and teDporal synchrony. Other issues imponam to

the speech analysis problem include the potential for neural net
worts to distinguish regions which are not linearly separable and
for learning networks to automatically cluster distinct feaIuJ"eS [81.
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Figure 4. Vowel classification result for synchronous Hopfield

model.

Figure 1. Represenucon of synchronous Hopfield model.
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Figure S. Vowel classification result for orthogonal projection
mOdel.
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Figure 2. Schematic represemanon of bipolar coding of vowel
spectra.

HZ
4000

InFZ

4000HZ

HZ
4000 100 4---- -_

100

Figure 6. Vowel cl.assi.fication result for mau::bed filter classifier
(control).
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Figure 3. Human listener vowel classification results. Data from
Peterson and Barney (6].
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Figure 7. Vowel cbssification result for lateral inhibition model.
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