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The closed-form solution for Neyman-Pearson optimal detector

performance for Laplace noise affords a rare opportunity for small

and intermediate sample relative efficiency studies. Indeed, the

Laplace noise solution is the only known closed-form description for

a non-Gaussian optimal detector of the type considered. We

illustrate numerically that, for stringent detector requirements,

convergence of detector relative efficiencies to the corresponding

asymptotic values can be quite slow. Three types of asymptotic

efficiencies are considered in this comparison of the optimal, linear,

and sign detectors.
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1. INTRODUCTION
In the analysis of detector performance of signals

corrupted by noise, the noise is commonly assumed to be
Gaussian. The assumption is often reasonable and usually
results in a mathematically tractable analysis. There are,
however, many instances where a non-Gaussian noise
assumption is considered necessary [1-11]. In this paper,
we analyze detector performance in the presence of
Laplace (or two-sided exponential) noise. Because of its
"heavy tail" behavior in comparison with Gaussian
noise, Laplace noise has been suggested as a model for
some types of impulsive noise (see [1, 2, 11]). In
addition, except for the Gaussian case, Laplace noise is
the only known noise with a nowhere-zero probability
density function for which a closed-form solution has
been obtained for discrete, independent samples [2].
These closed-form equations, however, can be
computationally involved, with the result that so far, few
comparative studies of the performance of the optimal
detector versus nonoptimal detectors for Laplace noise
have been attempted [11, 12]. With the aid of faster
computation and a streamlined breakdown of the
describing equations, we demonstrate that it is relatively
straightforward to analyze the properties of the optimal
detector, and to compare its performance with those of
other nonoptimal detectors that may be more robust or
more easily implemented [19, 13, pp. 74-93].

In this paper we compare the performance of the
optimal detector with those of two other detectors: the
linear detector and the sign detector (hard-limiter). The
linear detector is optimal for Gaussian noise, and its
properties have been well studied [14, 13, pp. 39-47].
The sign detector is a nonparametric detector that is
nearly optimal for weak signals corrupted by Laplace
noise [1]. We use a common method of comparing
detectors, i.e., relative efficiency measures, in order to
verify the validity of using such measures for small and
intermediate sample sizes. This is of interest because for
large sample sizes, the asymptotic relative efficiency
(ARE), a limiting case of Pitman's relative efficiency
(defined later), is widely used [1, 7, 15-17].1 The ARE
is easily calculated by an appeal to the central limit
theorem, and although a valuable measure, it contains
some deficiencies inherent in its definition which foster
doubt in its application to small and intermediate sample
sizes. Two other relative efficiencies are therefore
presented and their asymptotic values are derived. The
three measures present a more complete characterization
of the detectors' relative performances. Numerical results
are used to illustrate convergence to these asymptotic
values.

11. PRELIMINARIES

The basic test for the detection of a constant-level,
discrete-time signal S in the presence of noise is a choice
between two hypotheses:
'ARE is defined in Section IIIA.
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Ho: xi= gni

H1: xi - S + ni, for i = 1, ..., N. (1)
yDS

We assume S > 0, and the noise samples {nl, ..., N} to
be independent, identically distributed, real, with a
Laplace pdf given by

f(x) A (YL/2) exp{ -YL X | } (2)

where XL is the Laplace parameter. Note that yL =

V21, where uf is the standard deviation of the Laplace
noise.

Let et denote the probability of false alarm, i.e., the
probability of deciding in favor of H1 when no signal was
sent, and let P3 be the probability of detection, i.e., the
probability of deciding in favor of H1 when a signal was
actually sent.

A standard detector is illustrated in Fig. 1. The
samples pass through a memoryless nonlinearity (MNL)
denoted by g(.), are accumulated to form a test statistic
t, and are compared with a fixed threshold T. The
following decision is arrived at

Xj

H1

H0

Fig. 1. Standard forn of a detector.

4-< T,
decide in favor of H1
decide in favor of H0 (3)

The detector types compared in this paper, i.e., the
Neyman-Pearson optimal, linear, and sign detectors, each
use the canonical form of Fig. 1 with a different MNL.
In this section, we describe each detector and show how
its performance is evaluated.

In detector analysis, the central limit theorem is often
invoked on the test statistic t to estimate the detector's
performance. These estimates are presented for each
detector. Specifically, we compute the mean and variance
of t and evaluate the resulting ax and 13 estimates from use
of these parameters in a Gaussian distribution.

S

-yDS

Fig. 2. MNL for the optimal detector.

The closed-form solution for the distribution function
of the test statistic for the optimal detector with -y = YD
= yL has been derived earlier [2]. It is easily generalized
without this constraint, by using the same procedure used
in [2]. The result is

F°)(t) 2-N E (N) ()( 1)P

x E (q) (exp[(p + q)YLS]

- Lx 2YL (t+N-YDS)]

X ek-1 {2 [t + (N 2p 2q)YDS]})

X u[t+(N-2p-2q)YDS]
N /NT

+ 2-N > () (mYLS)

x u[t+(N-2m)YDS] (5)
where FV)(t) is the distribution function of the test
statistic under HO,

r

er(z) - Zili!,
i=o

and

u(z) _ {°

Also [2]

F()(t) = 1 - F(0)(-t)

for z < 0
for z - 0.

A. The Neyman-Pearson Optimal Detector

The Neyman-Pearson detector is optimal in the sense
that, for a fixed ax (specified by the threshold), 13 is
maximized. For Laplace noise, the nonlinearity for the
optimal detector [1], illustrated in Fig. 2, is given by

forx > S
for 0 c x c S
for x < 0.

(6)
where F() (t) is the distribution of the test statistic under
hypothesis HI.

Equation (5) reduces to the one in [2] if y = yD =
YL* Note that, without this constraint, the detector is still
optimum in the Neyman-Pearson sense. With all other
parameters fixed, the (a,1) coordinates follow the
corresponding optimal receiver-operating-characteristic
culrve (ROC) as YL and/or YD is varied.

[) As mentioned in the introduction, the distribution
functions in (5) and (6) furnish the only known closed-
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form solution for the Neyman-Pearson optimal detector
for non-Gaussian noise with a density function that is
nowhere-zero. The equations, however, are quite
involved computationally. Some insight into an efficient
evaluation of the expressions is given in the Appendix.

The performance of the optimal detector is determined
directly from (5) and (6) via the relations

opt = 1 - FQ() (t)

0pt = 1- FX )(t) = P0)(-t)
The mean and variance of the test statistic are (see

[2])

Eo{t} = -E1 {t} A m0pt
= N (yD/yL) [1-exp(-yLS) -YLS]

and2

var0{t} = var1{t} A aopt
= N(-YDI YL)2[3 - 2exp(-YLS)

-exp(-2YLS)- 4yLSexP(YLS)]

Using these as the Gaussian parameters, we obtaii
central limit theorem's performance estimate for large

-rGI - (D [(TG - MIap¢opt = >t(opt mopt vopt]

-pt= 1 - [H(TGt + m0pt)Ia0p]

where (¢(x) = 1I(V77;) fx cexp(-z2/2) dz and Tc
the threshold of the Gaussian approximation to the
optimal detector. (Each detector's threshold is set at
different level for equivalent performance).

B. The Linear Detector

For the linear detector, the MNL is given by

glin (X) A X.

(7)

= 1 - G(5) (t)

Pulin = 1 - GPl)(t) = 1 - G(0)(t-NS).
The mean and variance of the test statistic here are

mlin = NS

2 = 2NIy .

(16)

(17)

k 1

The corresponding central limit theorem approximations
(8) of the detector performance measures for large N are

alin= 1 l4Tfi n]

(9)

(18)

P3iPn = 1 - (KTlin mlin )/lino ] (19)
where TIn is the threshold of the Gaussian approximation
to the linear detector.

C. The Sign Detector

The sign detector has the nonlinearity

gsgn (X) = {
for x > 0
for x < 0.

The performance of the sign detector has been derived
(see [18, 19, 13, pp. 47-51].) Let

(20)(11) p = Pr[Xi > 0IH1] = 1 -Q()exp(-YLS)
(12) and q = 1 -p. Then

)ptis 3sgn =
N kqNP k

k=c+1

where c is the largest integer satisfying
N

N

(13)

The distribution functions G$$i(t) and G54)(t) under
hypotheses Ho and H1 respectively for the linear detector
have been derived [2] and are

1 + N 2-(N+k) (N :k-1)

G(0)(t)=

X [1-exp(- YyLt) eN-k-1 (YL
for t . 0

G1-G)(-t), fort<0 (14

G(')(t)= G()(tW-NS). (15

Therefore, we have

2Note that varo{t,pt} = N varo{g0p1(X)} rather than N2 varo{g0,pt(X)}
as given in [2]. Hence [2, Table 11 is invalid.

(21)

(22)

i.e., c + 1 is the threshold T for the sign detector. The
Gaussian approximation for the performance measures
here is (from [20, p. 66] see also [14])

CGn = 1 -( [(1TGn- N12)I(VNI2)] (23)

13?gn = 1 -F[( TQn -Np) / NP] (24)

where TIn is the threshold of the Gaussian approximation
to the sign detector. This approximation surprisingly fails
to give correct results for some performance measures,
even asymptotically, as it is shown later.

IIl. RELATIVE EFFICIENCY PERFORMANCE

A. General

Performance comparisons among the three detectors
can be measured in many ways. Perhaps the most widely
used technique is due to Pitman, whose definition of
relative efficiency is (see [11, 13, pp. 31-36])

RE2,1 _ N1(aX,0,S)IN2(ao,,S) (25)
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where NI(oa,1,S) is the number of samples detector one
requires to achieve the given a and P at the signal level
S, while N2(ot, 13,S) is the number of samples required by
detector two for the same ot, (, and S. This can be a
problem for small sample sizes, since it is usually not
possible for a fixed a, (3, and S to find both the NI and
the N2 that realize these exactly [13, p. 32]. Either
interpolation, or upper and lower bounds such as
employed in [11], must be used. Also, in general, the RE
is difficult to calculate. In view of all this, the most
commonly used measure is a limit (if it exists) of RE.
Asymptotic relative efficiency is defined as

ARES,1 A lim N1((x,3,S)1N2(o, P,S)
22

s o-

(26)

while maintaining a constant (x and P.
A common misconception about the AREs is that it

provides a "fairly" accurate approximation to the relative
efficiency for moderate sample sizes [211. Indeed, the
results of Michalsky et al. [14] show examples where the
RE for nonoptimal detectors converges slowly or
unexpectedly to the ARE. The measure also assumes a
vanishingly small signal.

Various alternative measures of efficiency have been
proposed in the literature [15, 16, 22, 27]. For a
summary, see [13, pp. 31-33, 87-93]. Apart from the
AREs, we use two additional measures ARE' and ARE~.
These measures have the advantage of maintaining a
fixed, finite signal strength S while N increases, which
may be more realistic than a vanishingly small S in many
applications. We define

ARE1 A lim N1(t,(3,S)/N2(ot,43,S) (27)

NI-
lX

oc

maintaining a fixed (3 and S. Similarly,

ARE!,1 A lim N1(cx,(,S)/N2(o, P,S)
N3 --> xN2->o

while ax and S are fixed.
We now derive expressions for ARE' and AREP

under the assumption that g(Xi) has a distribution
function that allows invocation of the central limit
theorem on the test statistic t.

lin = 1 - [I4vP + mlin/11inu]
sGn = 1 -([2V q v + Ngn (2p- 1)].

Let

W(S) A m2/r22

From (9), (10), and (31), we define Copt via

Copt _-OD 2mopt / oopt -

Similarly

Clin XVW-in -Mlin/g'lin.

Equating otIt to o4G, we obtain

Copt\/K = Clin \'Nlin
and

ARE' = lim in = opt
Nopt Nopt Clin

A similar manipulation yields

/Nsgn 1 [(1-2\)vo
Nopt (2p )_ V-p-1)

(32)

(33)

(34)

(35)

(36)

(37)

(38)Coptj

Taking the limit as N1, N2 -° 00, we get

AREO - opt 4W(S)
opt,sgn (2p- 1)2 (2p- 1)2 (39)

The foregoing treatment can be repeated for AREO.
Setting aotpt = otG = =LG aLo and defining v,, = 1

-F [1 - oto], we obtain

p', = 1 - D[va + 2m

P3'i = 1 - [D[v0 -Mlin / Ci. ]

(28) 3sg = 1 - (D{[v, - NKsg(2p- 1)]2Vp5q}.
After a straightforward calculation, we get

AREptlin = AREopt,lin
and

vNsgn --2\/pqT
Nopt (2p - 1) LoCpt

(40)

(41)

(42)

(43)

+ 1-
X/-0nt 2VX Jp

First, for AREa, let (Gt = p3G = 3pG = (30. Then

(29)p=t opt V, -Mopt

where

30)vO -_ (-1[1 - 00]. (:

Substituting into (11) gives

CG = 1 - (D[V" - 2mOp,/opt]

Similarly, for the linear and sign detectors, using (18),
(19), (23), and (24), we have

Therefore

ARE3pg 16pqW(S)opt,sgn (2p 1)2 opt, gn (45)

It is interesting to note that (37), (39), (43), and (45)
do not depend on vat and v(, but instead, depend only on

3 S. This permits an analysis of detector performance using
a nonzero signal strength.

In order to compare the rate with which the REs
converges to the ARES for different values of ax and (3, it
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is easiest to find Nopt as a function of S from the normal
approximation. From (1 1) and (12), we get

Nopt= (vP - Va)214W(S). (46)

Then Nli, and Nsgn can be obtained by using (37) and (43)
with either (39) or (45). Using S as an independent
variable eliminates the need for iterating to find the
values for Nlin and Nopt.

B. For Laplace Noise

For the specific case of Laplace noise, others [1, 13,
p. 81] have shown that

AREspt 2 (47=

ARE sgn = 1 (48)

Equation (48) is not surprising since, for S-> 0, the
nonlinearity for the optimal detector approaches that of
the sign detector.

From (9), (10), and (34), we have for Laplace noise

W(S) = [ 1 -exp(-YLS)- YL S] 2

/[3 - 2 exp(-yLS)

- exp(- 2-YLS) - 4YLS exP(YLS)] (49)

Thus, (37) becomes

-E 8W(S)Eopt,lin S2y2

= (AREp li

where we have used (43). The values of ARE'40sgn
follow from (39) and (45) with W(S) in (49) and the p in
(20).

Finally, we note that the threshold of the optimal
detector converges to a finite value for the AREs. From
(11) and (12)

pt= opt + opt = cropt v, - mopt
Thus

opt aopt (Vo + v3)I2 (51,
=mopt(VV + VP)/(V0 - Va), (52'

Squaring (51) and dividing by (52), we obtain

optm 4

However,
2

o.opt

mopt

3 - 2exp(-YLS) - exp(- 2yLS) -4yLSexp(- YLS)
1 - exp(yLS) - YLS

(5
Applying l'Hopital's rule twice gives

lim TG = (V2 v2)/2.
YLS 0

(55)

It is easily shown that except for the above, the
threshold of all three detectors and their Gaussian
equivalents under ARES, ARE', and AREO do not have a
corresponding finite limit.

IV. NUMERICAL RESULTS

A. Results for REs

Miller and Thomas [11] have obtained results under
the restriction that a = 1 - . Michalski, Wise, and
Poor [14] have evaluated RE1n,sgn by using exact
formulas and have numerically illustrated its convergence
to the corresponding Gaussian approximation, again under
the restriction above. Our treatment imposes no restriction
on ot and 1B and deals with the RE with respect to the
optimal detector. Also, we present results on the effect of
the signal strength and the threshold on NGp,

Figs. 3(a) through 3(f) show the values for REspt Iin
and RE sgn for values of Nopt between 1 and 50. These
curves are plotted for various values of a. and P, and both
the exact values and the Gaussian approximations are
displayed. The computed values are linearly connected
for easier viewing. -

For the linear detector, it is seen that the convergence
of the exact REspt In to its Gaussian counterpart and of
both to the asymptotic value of 2 is faster for the case
where cx = 0. 1 and 13 = 0.9 than it is when ax =
0.00001 and 1B = 0.99999. This is true in general, as
was noted earlier [11, 14]. Specifically, the more
stringent the restrictions are on ox and 13, the slower is the
convergence of both the exact and the Gaussian REpt, lin
to the ARE'op,110, and to each other. This is evident on
examining Fig. 3(a), (c), and (e), and also on Fig. 4,
which shows REs t lin and REs t,sgn for relatively large
values of Nopt for the Gaussian approximation alone.
These curves, as before, are plotted for various values of
ax and 1. Note that the plots are semilog here.

For the sign detector, the value of REsp, sgn for small
values of Nopt is quite high, and increases further as more
stringent requirements are imposed on ax and 1. At Nopt
= 1 for ax = 0.1 and 1 = 0.9, the RE is about 14 [Fig.
3(b)], while for ax = 0.1 and P = 0.99999, it is about
90 [Fig. 3(d)], and for ax = 0.00001 and 1 = 0.99999,
it shoots up to about 160 [Fig. 3(f)]. The convergence to
the asympotic value of one is also slower, as with the
linear detector.

B. Dependence of S on Nopt for RE'

Fig. 5 is a plot log,0S versus log1oNopt, using

Nopt = Cc,lW(S). (56)
4) with C, i = 1. The plot is a straight line. Comparing

(56) with (46), we let
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C == (vp - v,,)2/4 (57) power series for the exponential function, and neglecting

which is a constant for a fixed cx and 3. Varying the the third and higher order terms for S « 1, we can

value of COL shifts the curve in Fig. 5 vertically, but does show
not change its slope. Therefore, for a fixed S, and Nopt-(v-v,,)11S' for S << 1. (58)
specified at and j3, we can find approximately the N(po
needed to realize the given at and ,B. This approximation For small Nop, the exact and Gaussian approximation
is good for a small S and a large Nopt In fact, using the values of S needed to realize a given cx and f3 for a fixed

2 1.00-

g

0-.5

oc B.50-~

-......~~~~~~~~~~~............

...... GAUSS

- EXA~CT

5 10 15 20
NOPT

25 30 35 40 45

(a)

.GAUSS

- EXACT

5 10 15 20
NOPT

25 30 35 40 45 50

(b)

- GAUSS

EXACT

. II
0 5 10 15 20 25 30 35

NOPT
40 45 50

(c)

Fig. 3. REs for small NP,. (a) REopt, j. x = 0.1, [3 = 0.9. (b) REopt,sgn ox = 0.1, = 0.9. (c) REopt,Iin Ox = 0.1, = 0.99999.
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6 5 10 15 i26
NOPT

z
Lfl
g 40-
C.

1. 50

2

1.00-

0.50

In a M l l

3 5 10 15 20
NOPT

GAUSS

- EXACT

25 30 35 40 45 50

(d)

- *-- GAUSS

- EXACT

_5 30 35 40 45 5s

(e)

A........... A USS

- EXACT

-I
10 15 20 25

NOPT

(f)

30 35 40 45 50

Fig. 3 (con't.) (d) REopt,sgn at = 0. 1, P = 0.99999. (e) REpt, lin at = 0.00001, P = 0.999999.
[B = 0.99999.

(f) RE,pt,sgn a( = 0.00001,

Napt are plotted in Fig. 6(a) and 6(b). For a = 0.1 and P C. The Threshold of the Optimal Detector
= 0.9, the agreement between the two is remarkable. As

before, the more stringent the requirements are on et and The exact threshold To and the Gaussian

,3, the slower is the convergence of the Gaussian S to the approximation To using (1 1), (12), and (46) are plotted
exact S. The Gaussian approximation for the optimal versus Nopt in Fig. 7, while To and the limiting value of

detector is somewhat optimistic here. the threshold Tlim using (55) are plotted versus log1o Napt
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..............................

- LINEAR

30- ~~~~~~~~~~~~~~~~~~~~~~~~.

0-~
0.0C 0.50 1.00 1.50 2. 00 2.52 3.00 3.50 4.00 4.50 5.00 5.50 b.00

LOG1 (NOPT)

(a)

50-

,,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.....

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 b.00
LOG10 (NOPT)

(b)

.... SIGN

LINEAR

..........................................

T ~ ~ ~ ~ ~ ~~I

1. 00 1. 50 2. 00 2. 50 3. 00 3. 50 4. 00 4.50 5. 00 5. 50 b. 00

LOG10 (NOPT)

(c)

CL
a-

WU 1. 00-

0. 00
0.00 0.50

Fig. 4. REs for large N0p. (a) at = 0.1, , = 0.9. (b) a = 0.1, P3 = 0.99999. (c) at = 0.00001, = 0.99999.

for large NoJpt in Fig. 8. For the case when a = 1 - 3,

Tli, is zero. We are not able to make any generalizations
about the rates of convergence of TO and Tg to Tlir and
to each other with respect to the severity of restrictions
imposed on at and ,3, as was done previously for REs.
However, it is interesting to note that TG is very close to
Tlim for log oNopt > 4, as seen in Fig. 8. A knowledge of
Tlir may be useful in setting the threshold of an optimal

detector (see Fig. 1) when Nopt is either large, or is not
specified beforehand.

D. Results for RE' and REO

Fig. 9 is a plot of ARE' Ifi as a function of S using
(50). Note that the curve attains a minimum of about
1.58 at S - 1.97 and then slowly rises to its limit value
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1-
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1
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LOG10 (NOPT)
b 7

Fig. 5. S Versus Nopt under AREs.

5 10 15 20
NOPT

GAUSS

- EXACT

U. v7 r T - I -
25 30 35 40 45 5s

(a)

15-

10 15 20
NOPT

(b)
Fig. 6. S vesus Nopt for small N0p1. Fig. 6(a). a = 0

of 8/3 for large S. As is to be expected, the value of the
ARE at S = 0 is 2. Thus, for arbitrary S

8
N1in < Nopt

Figs. 10 and 11 show the results for ARE'pt sgn and

AREpt, sgn, which are plotted by using (39) and (45).

........- GAUSS

EXACCT

_ 1I .-I I

25 30 35 40 45 50

'.1, ,3 0.9. (b) cx = 0.00001, ,3 = 0.99999.

Fig. 10 shows that the value of ARE'pt sgn is a rapidly
increasing function of S. Fig. 11 shows that the value of
AREpt sgn is actually less than one for S > 2.26. Now
this is impossible, since the optimal detector is always at
least as good as any other detector. The reason for the
strange behavior of both AREpt, sgn and AREPt,sgn for
large S is that the Gaussian approximation for the sign

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. AES-23, NO. 4 JULY 1987

1

a 9 10

3.58-

D
s s~~~~~~~~~~~~~~~~~~~~~~~~~~

-1-

576



.... .......... GAUSS

-.-.. -- -- --- EXACT-8A

W 5 10 15 20
NOPT

25 30 35 40 45 50

(a)

4-

2

GAUSS

- EXACT-4-

J

_i

0 5 10 15 20
NOPT

40
25 30 35 4W 45 SW

(b)
= 0.1, p = 0.99999.Fig. 7. TO versus Nop, for small No,p, (a) ox (b) ax = 0.00001, 3 = 0.99999.
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LOG10 (NOPT)

Fig. 8. To Versus Nopt for large Nop, al = 0. 1, P = 0.99999.

detector is very poor. This is because for large S, the
values for cx and ,3 are obtained by a summation of very
few terms in (23) and (24), i.e., in the Gaussian
approximation, the integration of the normal density
function is over the tails. However, the Gaussian
approximation is very poor over the tails [28, pp. 174-

189]. Therefore, the values of ARE'P,sgn and ARE Pt sgn
obtained by using the Gaussian approximation are invalid
even as an approximation.

Figs. 12(a) through 12(d) show both the exact values
and the Gaussian approximation values for RE' fi,. The
Gaussian approximation is a straight line, which is also
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the limit of the exact value as Np *oo. Again, the
convergence of the exact value to the Gaussian
approximation is seen to be fairly rapid in all cases. It
becomes somewhat slower as ,--> 1.

These observations are also true for REpt lin
However, instead of P-- 1, we have c0, etc.

V. CONCLUSIONS

Analysis of the performance of optimal detectors for
moderately large sample sizes is normally intractable.
Cases where there are closed form solutions are thus
significant in that they provide insight into such
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performance and illustrate convergence to more easily
computed asymptotic values.

In this paper we have taken advantage of the closed-
form solution for the optimal detector for a signal in
Laplace noise and have presented small sample and
asymptotic results for the convergence of the Pitman
relative efficiency (RES) between the optimal detector

2 1.80-
-J

a 8.5-

0 5 10 15 20
NOPT

and the linear and sign detectors. Results for the
dependence of the threshold of the optimal detector and
the signal strength on Nopt were also derived. In order to
present a more complete picture of the detectors'
performance, two additional measures (RE' and RE~)
and their corresponding asymptotic values were derived.
Numerical results were shown to illustrate convergence.
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0.9. (b) S = 0.5, 13 = 0.99999. (c) S = 0.001, ,B = 0.9.
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APPENDIX
Efficient Evaluation of the Distribution of the Test
Statistic t of the Optimal Detector

To evaluate (5) efficiently, we first define

A exp( -rYLS)
YJ,rr (j-r)!r!
and

r - 1 (t + NyDS) - rS.2YD
We note that

FV)(t) = {°' for t < -NYDS
for t > N-YDS

Also, k ' p and N-k . q. Thus

p+q ~t+NDS - [k+ (N-k)]S
2yD

= t + NYDS
- -NS.

If t- NyDS, then FNO)(t) = 1, and (p+q . 0. Similarly,
4_m > 0 if t. NyDS. For O ' t ' N-YDS, it is
computationally more efficient to subtract from one a few
extra terms rather than sum a larger number of terms in
(5). This alternate form can be obtained by subtracting
(5) from one and solving for FNO)(t)

F(0)(t) =1 - 2 NN!fX 0 q 0-)Pk,pYkq

x [l1-exp(-yL4Xp±q)ek- 1

X (YL 4fp+q)] [1 - U(4+p+q)I
N N

+ F YN(mL(t)2m)]JN
forO ' t 'Nq DS. (Al)

Equation (Al) can be simplified further. We note that
Xp+q C lN-k+p since O' q ' N-k. Thus we can
write

[1 -U(4)p+q)I = [1 -U(4)p+q)][1 - U(4N-k +p)]
and (A1) becomes

fN k

FNO)(t) 1 - 2 NN! { p (
(k= l p=O

N-k

X 1 -U((N-k+p)] Z YN-k,q
q=0

x [1-exp(-YL4p+q)

X ek-1(YL4)p+q)] [1 U(4p+q)]

N

+ 1 YN,n[l @ )IjM]
m=O

for O' t < NYDS. (A2)

Similarly, for -NYDS . t < 0, we have 4)p 2 5p,q
Then

U@Pp+q) = u(tPp+q)U(@Ip)

and

fN k N-k
F(°)(t) = 2 N! 1T!{ (- ) Yk,p U(4p) N

X YN-k,q[l-exp(YLp+q)

x ek, 1(YL0p+q)]U(4¢p+q)
N

+ > YN,m,U(4lm) j

for -NYDS C t C 0. (A3)

In computing (A2) or (A3), the unit steps were used
to exit from the corresponding summation do-loops. Also,
it was found that initial off line establishment of a table

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. AES-23, NO. 4 JULY 1987

v. tJ y 1 T

580



of the yj,r and 4(r was computationally more efficient than
computing them as needed. A Fortran program taking
these points into account is given in [12].
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