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ABSTRACT

jat ==

Hopfield neural net processors (NNP)
have been shown to be an interesting class
of fault tolerant, parallel computers for
pattern recognition. In this paper; we
give some limited simulation results that
contrast the performance of the Hopfield
NNP, whose T-matrix is in sum-of-outer-
products form, and the Projection NNP,
which uses an orthogonal projection onto
the linear space spanned by the library
elements. A Compact NNP is introduced
which promises good recall ability with a
low density of neuron interconnections.

I. INTRODUCTION

introduction of neural

the engineering community
by Hopfield (1], a number of applications
and variaties of the basic net have been
proposed. In this paper, we present both
the Hopfield and the Projection neural net
processors (NNP) and compare performance
based on some limited simulation results.
The Projection NN (PNN) , in which
Hopfields T-matrix, Tws is replaced by the
projection matrix, Tes; onto the linear
subspace spanned by the library elements,
is suggested by signal space concepts. In
addition to these baseline performance
comparisons, we present a reduced
complexity neural net, the Compact NN
(CNN), whose T-matrix is obtained from T,
by quantizing far off-diagonal terms to
zero. Reorganization of the library
elements is a key point in the development
of efficient nets of this type.

Since the
networks (NN) to
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I1. NONLINEAR NEURAL NET PROCESSORS

The usual setting 1is that we are
given L library elements F_=(f,,...5fC ),
in which each library element f. is an N-

vector whose elements are chosen from
{(-1,+1). Defining the set Ve =
(V:(V‘,.---VN)? vik) € (=-1,+1),
k=1,25...3N) we see that f.€Vy, for all

H. We describe Vo as the set of hypercube
vertices in RM with card(Va)=2N. * Next,
assume we are given a probe vector péERM,
The NNP seeks to find that f.€F_ such that
the L= distance, f“—p||=, is a minimum.
The Hopfield NNP forms the matrix

w
NIy + Z

M=

T = (1)

fufuT

Tr is

matrix.

cuter
the
The
and

where is
Notice that
products of library
diagonal elements
Hopfield iteration
iterate according to

identity
the sum
elements,
set to
to set

of
with
zero.

is Va=p

Vaer = sgn( Thv, ) (2)
until a
v=sgn(Tv),

select

fixed point v, satisfying
is reached. Since véVn, we
v as our estimate of which library
element is closest to the probe p in
Hamming (or Le) distance. This NNP works
well when L < Cy = N/(2logN) << N, that is
we operate the net below its capacity Co
{2l. In general, the net magy take many
iterations to converge--if it does so at
all. In addition, we are not guaranteed
that Vv€F_. Fixed points that are not
members of the original set of library
elements F_ are known as false memories.
Also, it is not assured that every library
element f. is a fixed point. A NNP for
which every library element is a fixed
point is said to have the input
verification property. Note that the
Hopfield neural net is not optimal in the
sense that if we assume Pr(p=1) = ., =
Pr(u=L) = 1/L, p=f. + ny, nN-MYN(O,021Iny),
then the minimal probability of error
classifier implements



minllp-f,!" or when f,f,7 = 8,4,
"

max PTT..
»

This is the well-known matched filtgr
receiver t31. The advaptaggs of a NNP l}e
in areas other than optimality under a min
Pe criterion and strict assumptions on tﬁe
input noise. The HNN is fault tolerant in
the sense that if one interconnection is
proken or if 1 neuron is "stuck at" a
given value, the net is remarkably
resilant. Also, the NNP solution does not
require detailed assumptions about the
noise distribution. For these reasons,
and because a neural net wuses a large
number of simple processorss NNPs are an
important class of parallel computers.

Of course, if given the probe p, we
only wanted to find the nearest library
element in S. = span{f.,...,f ), the
linear subspace spanned by the library
elements,; we would set v=Tep where Te =
F(FTF)—*FT 1is the projection onto the
subspace S. and F=(f.l...if ) is the NxL
library element matrix. This suggests the

projection NN (PNN) whose iteration is
defined by

Vaer = Sgn( Teva ) (3)
with Vve=p. This neural net has been

suggested by [4] and is discussed in Marks
and Atlas [(S]. No analytical results such
as (2] are available for the capacity of
the PNN, but limited simulation studies
show that the PNN usually converges to a
fixed point in fewer iterations than a
HNN .

One might measure the overall
performance of a neural net processor by
its performance in five basic areas:

(1) Input verification
Are all library elements fixed points?

(2) False memories
How likely is it that we converge to an
element not in F_7?

(3) Speed of convergence
How many iterations does it take to
reach a fixed point?

(4) Fault tolerance

(S) Implementation complexity.
Areas (4) and (S) are addressed in section
IV. In section 11I, we compare the HNN
and PNN based on (1)-(3).

IT1.SIMULATION RESULTS ON THE HNN AND PNN.

Based on 780 independent simulation
trials with N=100, and L=10, we find that
the HNN and PNN both have their merits,
but in different areas. The results are
Summarized in Tables 1 and 2. In Table 1,
we see a histogram of the number of
iterations required to reach a fixed point
for the PNN and the HNN. Our experience

in this and other simulation studies is
that the PNN often exhibits single-step
convergence. Table 1 shows that on the
average, the HNN can take many more
iterations than the PNN to converge to a
fixed point. It 1is not clear from this
data whether a majority of the neurons
were still changing after the first
iteration or if it is only a small subset
of the N neurons that take a protracted
number of iterations to converge.

No. of

Iterations HNN PNN
10 (0] 0o
9 S (0]
8 es (o]
7 14 0
) 40 10
S 101 19
4 139 S1
3 204 161

251 232 539 ®

TABLE 1 Histogram of the number of
iterations required for a fixed pt.

No. of False
Fixed Points

HNN 16
PNN 110
TABLE 2 False Memories

Note that _ although the speed of
convergence of the PNN is much faster than
that of the HNN, the probability of
landing at a false fixed point is
increased. In Table 2, we show that of
the 1002=10,000 possible states, the HNN
exhibits convergence to some 16+10=26

while the PNN converges to 110+10=120 ( in
780 trials). The PNN has the input
verification property, while this is not
guaranteed in the formulation of T.j5i.e.,
that every library element 1is a fixed
point. Library elements are always fixed
points in the PNN by construction of Te.
However, when L << N and the net is
operated below capacity, this will usually
be the case for Tn as well. In all of our
simulations, the neural net 1is operated
synchronously.

IV.THE_COMPACT NEURAL NET

An important issue in NNP design is
the implementation complexity.
Electronic, optical, and hybrid net
architectures have been proposed. An
important complexity measure, regardless
of implementation technology, is the
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Based on 780
trials with N=100,

independent simulation
and L=10, we find that
the HNN and PNN both have their merits,
but in different areas. The results are
Summarized in Tables 1 and 2. In Table 1,
we see a histogram of the number of
iterations required to reach a fixed point
for the PNN and the HNN. Our experience
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in this and other simulation studies |is

that the PNN often exhibits single-step
convergence. Table 1 shows that on the
average, the HNN can take many more
iterations than the PNN to converge to a
fixed point. It is not clear from this
data whether a majority of the neurons
were still changing after the first
iteration or if it is only a small subset
of the N neurons that take a protracted

number of iterations to converge.

No. of

Iterations HNN PNN
10 (o} (o]
9 S (o]
8 25 [o]
7 14 (o]
) 40 10
S 101 19
4 139 S1
3 204 161

2,1 252 539 .

TABLE 1 Histogram of the number of
iterations required for a fixed pt.

No. of False
Fixed Points

HNN 16

PNN 110

TABLE 2 False Memories
Note that _ although the speed of
convergence of the PNN is much faster than
that of the HNN, the probability of
landing at a false fixed point |is
increased. In Table 2, we show that of
the 1002=10,000 possible states, the HNN
exhibits convergence to some 16+10=26
while the PNN converges to 110+10=120 ( in
780 trials). The FPNN has the input
verification property, while this is not
guaranteed in the formulation of T.ji.e.,
that every library element is a fixed
point. Library elements are always fixed
points in the PNN by construction of Te.
However, when L << N and the net is
operated below capacity, this will usually
be the case for Tn as well. In all of our

simulations, the neural net is operated
synchronously.
IV.THE COMPACT NEURAL NET

An important issue in NNP design is
the implementation complexity.
Electronic, optical, and hybrid net
architectures have been proposed. An
important complexity measure, regardless
of implementation technology, is the



connectivity of the NNP. Specifically,

poth Tw and T~ previocusly defined are, in
generals dense NxN matrices. Trs of
courses, has zerao diagonal elements—--that

the Hopfield NNP uses no auto (or self)
As N increases, it

iss .
inccrconnect1ons.

pecomes increasingly difficult to lay out
a densely interconnected net. For this
reasons we have investigated Compact

Neural Nets (CNN) in which elements of the
T-matrix far from the diagonal are set to
zero. In this section, and in all of our
studies of the CNN to date, we restrict

ourselves to the Hopfield formulation and
let T=T e

A HNN whose T-matrix is all zero
except for the 1 upper and lower
jiagonals, can be efficiently implemented
ising a ring architecture. This is
illustrated in equation (4) where X

signifies a nonzero element and N=4,

O X O x| |v(l)
X 0 X Of {v(2)
Tv = O X 0O X||v(d) . (4)
X 0 X 0} |vi(a)
Notice that the design wraps around so
that neuron i is connected to neuron
(i+1)mod(N). A ring architecture

rorresponding to the T-matrix shown in (&)
is shown in Figure 1.

‘igure 1| Ring Architecture

‘he question arises : Which matrix T is

east affected
2lements to
inalytical

by quantization of outer
zero? Although we have nc
proof (in the sense of least
yerformance degradation), we seek T
natrices whose elements are largest near
‘he main diagonal and smallest far from
‘he the diagonal. At least in this way
| T-Ta is maximized, when T, is the
iriginal T=Tn with all but the j upper and
lower sub (super) diagonals set to zero.
Jut what freedom do we have in the design

f T, given that we follow the Hopfield
‘ecipe (1)? The answer is that we can
‘®@arrangey; or permute; the elements of
‘very f,. to obtain g. where gli) =
wlmeid) and (M(1) ...y m(N)) is any
'ermutation of (1s.003N). Any probe
'ector that we receive would be permuted
Ipon arrival, input to the modified or
Oompact NNP , a fixed point reached
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(or,possibly, we allow only a fixed ngmber
of iterations for ease of implementation),
and the output sent through the inverse
permutation (if really necessary) to
obtain our best estimate of which library
element was transmitted, given the
received (distorted) probe vector as data.

in all of our studies, we have found

that a single iteration of Vesr  F
sgn(Tecva)s where Tc is the CNN T-matrix,
is sufficient for convergence of a
majority of the neurons. Thus, for probe
P we decide that v=egn(Tcp) was
transmitted. More iterations may increase
recall performance, at the expense of
implementation complexity.

An example of the library element

matrix F and its rearrangement G is shown
in (S). Here, L=3 and N=10. THese values
are used for illustration and were not
used in any of our simulations. Notice
that -1,+1 components appear randomly
distributed.

F G

— —— .
Py -

- -—

‘s = (5
+++ -

-+ +++

— -

PR —

Notice that +1 or -1 components now appear
in bursts. We have used a greedy algorithm
to determine this rearrangement. The
algorithm starts at row i=1 and makes 1
pass through the data to i=64. Most of
the rows of G are close in a Hamming
sense, except for i=1 and i=64. This
affects recall ability of these
components, but is an artifact of our
rearrangement algorithm. No attempt has
been made at this time to wutilize the
bursty structure of the library elements
in order to develop a more fault tolerant
compact neural net. Remember that the
Hopfield Neural Net is already fault
tolerant by design. In the CNN, we expect
that error correcting code techniques can

be applied. Some simulation results for
N=464 and L=3 and | iteration are shown in
Table 3.

D No. Converged

o} 3 3

1 192 192

2 300 289

3 300 276

4 300 235

S 300 204
Table 3 Convergence of probe vectors

at distance D from library



that as the Hamming distance (
the probe and the nearest library

increases, the percentage of
elements that converge correctly
decreases. Although the quantization of
T.. to Tc has some effect, we feel that the
:im‘ry reason is because only a single
?ceration is allowed. In any event, the
d,gradation is gradual and no threshold
effect is visible, at least in these
limited simulations. In Table 4, we list
a summary of some further results on the

Notice ok

petween
element

percentage of probes that correctly

converged, parametric in N,L and the

numper of neighbors (diagonals) wused in

the CNN.

N L No. of % Converge
Neighbors

32 3 1 0.99

32 3 2 0.99

32 4 1 0.77

32 4 2 0.60

b4 3 1 1.00

b4 3 = 1.00

b4 4 1 0.92

&6 4 2 0.89

b4 S 1 0.63

b4 S =] 0.35

Table 4 Percentage of Correct Convergence

for the Compact Neural Net

For example, when the number of neighbors
is 2, a total of 4 off-diagonals is wused
in Te. These results are also taken after
a single iteration. We find a strong
relationship with the capacity results of
tal.

V.CONCLUSIONS

we have present some
that contrast
the Hopfield NN
matched filter

In conclusion,
limited simulation results
the differences between
and that suggested by
theory, the Projection NN. The fact that
the PNN exhibits a large number of false
memories is a great disadvantage in many
applications. However, simulations of NNP
that wuse large numbers of neurons,
say;N=10,000, may yet show the importance
of the speed advantages of the PNN.
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