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A Class of Continuous Level Neural Nets 

Robert J. Marks 11, Les  E. Atlas and Kwan F .  Cheung 
In te rac t ive  Systems Design Laboratory 

PT-10 University of Washington, Sea t t l e ,  Washington 98195 

A neural ne t  capable of r es to r ing  
continuous l e v e l  l i b r a r y  vectors  from memory is  
considered. The vectors i n  t h e  memory l i b r a r y  
a r e  used t o  program t h e  neural  interconnects.  
Given a por t ion of one of the  l i b r a r y  vectors,  
the  net extrapolates  t h e  remainder. Suf f i c ien t  
conditions f o r  unique convergence a r e  s t a ted .  

a rch i t ec tu re  f o r  o p t i c a l  implementation of 
the  network is proposed. 

Neural network content addressable memories 
(CAM's)' have s t i r r e d  g rea t  i n t e r e s t  i n  t h e  
s igna l  processing community. Such networks have 
been implemented both opt ical ly" '  and 
e lec t ron ica l ly4  . 

The neural net  introduced in t h i s  paper 
allows f o r  l i b r a r y  vectors with continuous 
l eve l  elements. This is i n  con t ras t  t o  previous 
proposed CAM's where binary l i b r a r y  vectors a r e  
stored. I n i t i a l l y  known neural s t a t e s  a r e  
imposed on t h e  net  during each i t e r a t i o n .  That 
is, t h e  known s t a t e s  a c t  a s  t h e  net  stimulus 
and t h e  remaining nodes cata log t h e  response. A 
human memory analogy is our a b i l i t y  t o  r e c a l l  a 
well known paint ing by continuously viewing 
only a por t ion of it. 

Consider a neural net  with L nodes. The 
transmission from t h e  k th  t o  the  irh node is 
ti, . W e  w i l l  assume a symmetric net (ti, - t,, ) 
and w i l l  allow f o r  auto-interconnects (t,, t 0 )  . 
The s t a t e ,  st,  of t h e  kch node w i l l  be assumed 
t o  be a function of t h e  sum of its inputs.  For 
synchronous operation (1.6. a l l  delays between 
node p a i r s  a r e  iden t i ca l ) ,  we have a t  time M 

+ where sJ is a vector of the  L neural s t a t e s  
a t  t i m e  M, 1, is t h e  vector of t h e  L input sums 
a t  time M and 2 is  t h e  matrix of t l , , 's .  Let N 
denote t h e  node operator t h a t  determines the  
next set of s t a t e s  from t h e  input sum: 

Since t h e  s t a t e  of t h e  kch node depends 
only on its input sum, N must be a pointwise 
vector operator.  Subst i tu t ing (1) i n t o  (2) 
gives the  s t a t e  i t e r a t i o n  equation 

A -RY EXTRAPOLATION NET 

Consider a set of N continuous l e v e l  
l i n e a r l y  independent vectors of length L > N: 
(% I 0 S n S N )  . W e  form t h e  l i b r a r y  matrix 

and t h e  interconnect matrix 

where t h e  superscr ipt  T denotes 
t ransposi t ion.  W e  d ivide  t h e  nodes i n t o  two 
sets: one i n  which t h e  s t a t e s  a r e  known and the  
remainder, in which t h e  s t a t e s  a r e  unknown. 
This p a r t i t i o n  may change from appl icat ion t o  
appl icat ion.  Without l o s s  of general i ty ,  
assume t h a t  t h e  s t a t e s  of neurons 1 through 
P <  L a r e  known f o r  some vector ?! i n  the  
l ib ra ry .  Define t h e  node operator by 

where f, is t h e  kc element of 2. That is, 
f o r  1 S  k S  P, t h e  node s t a t e  i s  kept a t  the  
known value f k ,  otherwise, the  node s t a t e  is 
t h e  input sum. Q =  L -  P f loa t ing  neurons w i l l  
converge t o  t h e  remi-der  of f i f  the  f i r s t  p 
rows of E form a f u l l  rank matrix '. 

A tabla look-up nat is  one i n  which t h e  
same P nodes a r e  always used a s  t h e  n e t ' s  
st imulus and t h e  remaining Q nodes i t e r a t i v e l y  
converge t o  t h e  desi red response. Note t h a t  the  
i t e r a t i o n  i n  (3)  can be par t i t ioned  as :  

where T ,  denotes the  f i r s t  P rows of 2 and 
T o  is  t h e  remaining Q. Since the  f i r s t  P 
neural  s t a t e s  a r e  always clamped t o  t h e  known 
values, t h e r e  is no need t o  know 2 ,  . Indeed, 
an equivalent expression is  : 

A basic  methodology f o r  o p t i c a l  
implementation of t h i s  i t e r a t i o n  is  i l l u s t r a t e d  
i n  Fig.1. The known portion of the  l i b r a r y  
vector,  ?,, is  input i n t o  t h e  processor by an 
i n t e n s i t y  modulated point source a r ray  (e.g. 



LED'S) . Multiplication by T Q  matrix is 
perfonned by a standard vector-matrix 
multiplication architecture . (The astigmatic 
optics are not shown). the vector output, 
sp , - , is input into a fiber bundle shown on 
the right. The bundle is then fed back into the 
input vector required in (2). We are thus 
performing the table look-up net at light 
speed. Feedback could also be provided by 
mirrors. , 

The astute reader will have already noted 
three major problems with this processor: 

(1) There is no provision to detect the 
output. 

(2) There is no provision for compensating 
for absorbtive and other losses in the 
feedback loop. 

(3)  The T matrix and the input generally 
contain both positive and negative 
numbers. Incoherent optics can only 
add and multiply positive numbers: 

Each of these problems has a 
straightforward solution: 

(1) The output can be detected by placing a 
highly transmitting pellicle in the 
feedback path and using appropriate 
focusing optics. This clearly 
increases absorbtive losses and contrib- 
utes further to problem two: 

(2) If the matrix transmittance can be 
amplified, then we can com- pensate for 
absorbtive loss. One can easily show, 
for example, if the library vectors are 
orthogonal, then max ( ti -N/L. Thus, 
if L>>N, we can "amplify" the matrix 
transmitt- ance significantly and still 
not exceed the maximum passive 
transmittance value of unity. 

(3) The problem of performing bipolar 
operations with inco-herent optics has 
a number of solutions. One 
straightforward technique is to rewrite 
each matrix and vector as the sum of a 
positive and negative matrix or vector: 

+ 
The matrix 2, , for example, is formed by 

setting all of the negative elements in T Q  to 
zero. Then (2)  can be written as: 

The corresponding optical imple-mentation, 
although somewhat more involved, requires only 
positive multiplications and additions and is a 
straightforward generalization of the 
architecture in Fig.1. The positive and 
negative components are added electronically 

Using the continuous level neural net 
(CLNN) algorithm developed in 111, we have 
proposed a corresponding optical 
implementation that require no electronics or 
phase conjugation optics in the feedback path. 
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