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A continuously sampled object is one periodically set to zero. A continuously sampled band-limited object can be
restored by multiplying by an appropriately parameterized periodic function and filtering the product. The sensi-
tivity of this restoration procedure to additive noise is considered. In general, the restoration noise level increases
dramatically as the degree of aliasing of the data increases or the duty cycle of the degradation decreases. Numeri-
cal results are given for white noise and noise with Laplace autocorrelation. The results are compared with the
noise sensitivity of conventional (discrete) Shannon-sampling-theorem interpolation, in which fewer data are

used. ~

INTRODUCTION

A band-limited object is periodically set to zero. Restoration
techniques include conventional linear filtering and loga-
rithmic filtering.! (Other possible restoration techniques and
corresponding references are given in the introduction of Ref.
2.) A recently presented closed-form algorithm is applicable
even when the data are aliased.2 In this paper the noise
sensitivity of this restoration scheme is explored. We dem-
onstrate that, as the severity of aliasing increases or the duty
cycle of the degradation decreases, the effects of additive noise
on the image yields an ever-increasing noise level. Numerical
examples are offered for white noise and noise with Laplace
autocorrelation. The results are compared with conventional
(discrete) Shannon-sampling-theorem interpolation, in which
fewer data are used.

PRELIMINARIES

Let f(x) denote a finite-energy band-limited signal with
bandwidth 2W. That is,

w

flx) = jt-w F(u)exp(j2mux)du,
where

F(u) = fm f(x)exp(—j2mux)dx

= Ff(x)

and F denotes the Fourier-transform operation. Define a unit
period pulse train with duty cycle o < 1:

ro.(x) = i 1'ec1:(Jc — n),
a

n=—wo

where rect(y) is unity for |y| < % and is zero otherwise. The
continuously sampled image, illustrated in Fig. 1, is

g(x) = fx)ra(x/T),
where T is a specified period. The restoration problem is to

regain f(x) from knowledge of g(x) and 2W.

0030-3941/83/111518-05%$01.00

A linear restoration scheme, schematically depicted in Fig.
2, is?

f(x) = [g(x)¥u(x/T)] » 2W sinc(2Wx), (0

where the asterisk denotes convolution and sinc(y) =
sin(wy)/(wy). The periodic function Y s(x) is defined by

Ymix) = Op(x)ra(x), (2)
where fjs(x) is the trigonometric polynomial

Bm(z)= 3 by exp(~j2xms) (3)

m=—-M

and the b,’s are the solution to the Toeplitz set of equa-
tions

M
2 bmen-m= Bm
m==M

In] <M. 4)

Here, 6, denotes the Kronecker delta function and ¢, = «
sinc an. M is equal to the greatest integer not exceeding 2WT
and is called the degree of aliasing of the degradation.

By using Eq. (3), Eq. (2) can be written alternatively in
Fourier-series form as

Yulx)= 3 dnexp(—j2mnx), (5)
where
On, Inl =M
d, = M s (6)
p2 bmtn - m, |nl >M
m=-M

EFFECTS OF NOISE ON THE RESTORATION
SCHEME

We consider here the effects of additive wide-sense-stationary
zero-mean noise, £(x), superimposed upon g(x). Because of
linearity, an input of g(x) + £(x) into the restoration algorithm
will yield an output of f(x) + n(x), where 1(x) is the algorithm
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Fig. 1. Illustration of a band-limited object f(x) and the corre-
sponding continuously sampled g(x).
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Fig. 2. Restoration of continuously sampled objects. The periodic
function ¥ is parameterized by the duty cycle a and the severity of
aliasing. The low-pass filter has the same bandwidth as the restored
signal.

response to £(x) alone. Using Eq. (1):
n(x) = [E(xWar(x/T)] + 2W sinc 2Wx,

In general, 5(x) is also zero mean, although it is not sta-
tionary.
The restoration noise level follows as

n%(x) = E[n(x)]

=K [f:& ) (1) 2W sinc[2W(x — 7)]dT

XJ: e(k)w( )2Wsmc[2W(x— )]d)\}

STLCH W et AP

X sinc[2W(x — 7)]sinc[2W(x — A)]d7d],

where E denotes the expected value operator and the input
noise autocorrelation is
Re(r = N) = E[E(r)EN)].

By straightforward integral manipulations we have

@ = [ RAG Nd), (7)

where

hx; A) = 2Wiy (%)sinc 2W(x — A)

* 2Winm (%)sinc 2W(x — A). (8)

The star denotes autocorrelation with respect to A. The

output noise level in Eq. (7) is an even periodic function with
period T.

White Noise
For white noise

Re(7) = E25(7). (9)
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Equation (7) becomes

7%(x)/E% = h(x; 0)
= (2W)? sinc2(2Wx) » Y2y (%) (10)
From Eq. (2),
Y2 (x) = ro(x)02p(x),

where, from Eq. (3),

02m(x)= ¥ ¥ bpbrexp[—j2r(k+Dx). (11)
ki=M |I[=M

Fourier transforming both sides of Eq. (10) gives

Fn2x)/E = 2WA(—- FY2, (})

=2WA ( ) [TRL(Tu) » F024(x/T)], (12)
where

A) = (1 = |y])rect(y/2)

and
R (u) = Fro(x)

= i cpo(u + p)

p=—w

and 8(y) is the Dirac delta function. Substituting this and
the transform of Eq. (11) into Eq. (12) gives

TI/EE = M
FnifE 2WA(2W)

s k+€—p)]
Cyi b beb ju+ ———m=
p=z—m p]klst k|£’|2':_<M 4 (u T
u
=2WA|— b
(2W} |k|st X

X Z bg z Ck+g_q5 (u =5 E):
1£]=M  |qi=M T
where ¢ = k + £ — p and we have recognized that the finite
extent of the triangle function lets through only 2M + 1 of the
Dirac delta functions. Evaluating A(u/2W)atu = ¢/T and
inverse transforming gives the desired result:

x)/E= ¥ b T b
lkisM  |#|=<M

q ;
X ¥ (2W - J—') Chto—q exp(—j2mwqx/T). (13)
lgl=M T
An illustration of the restoration noise level for various duty
cycles for first-degree aliasing is shown in Fig. 3. The effects
of variation of aliasing order are illustrated in Fig. 4.

Colored Noise

With the aim of placing Eq. (7) in more tractable form for
colored noise, we Fourier transform with respect to A using
the autocorrelation theorem of Fourier analysis3:



1520 J. Opt. Soc. Am./Vol. 73, No. 11/November 1983

10*
02
1% 10°F .
~
=
~ 0.3
=

2

]
0ok 0.6 B
0.7
08
09
] 1 1 1 1
00 008 0OI8 024 032 040
x

Fig.3. Normalized restoration noise level for additive white noise
for various duty cycles . 2W = 2and T = 0.9, giving M = first-order
aliasing.
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Fig. 4. Normalized restoration noise level for additive white noise
for various orders of aliasing M. The values of T corresponding to

M =1,23are T=0.9,1.4, 1.9, respectively. Because of symmetry, ’

plots are needed only for0 £ x = T/2. (2W =2and a = 0.6.)

H(x;v) = fm h(x; A) exp(—j2wvA)dA

2

(14)

TV (Tv) = [exp(—j?’a‘ux )rect(#]]

where Wy (v) is the Fourier transform of ¥(x) and convo-
lution is with respect tov. From Eq. (5):

V)= T dpdv+n).

n=—w

Thus Eq. (14) becomes
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v+% .
= n
H(x;v) = dn -j2 + =
(x;v) ,,.25.. exp[ Jj2mx (u T) rect e
(u+-— .
= d, =i T)rect . (15
n‘):_n exp(—j2mrnx/T)rec \ZW (15)
Since
vio i —
t I t L
rec
U ow |7 ow
m+n
v+
ect[ _n\rect 2r
=r
Wr) [ = m|

substituting into Eq. (15) and further recognizing from Eq.
(6) that d,,, = o, for |m| < M gives

v
H(x;v) = rect (2W) + ln'IL:M Il;n_lgf d.dm

m|<M
m+n
v+
X rect exp[—j2w(n — m)x/T)
b T
T
v
= rect|—| + Aoty = m
(2W) In}z>M f;"_l;%iM
2n—m
v+
X rect exp{—j2xmx/T). (16)
ow — Iml
T
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Fig. 5. Normalized restoration noise level for input noise with La-

place autocorrelation for various duty cycles . 2W =2and T' = 0.9
giving M = first-degree aliasing. The Laplace parameter is @ = 2.
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1.0 T T T T T qﬁ(x) = QIE(W) + z dndn—m
a=2 Inl>M ||m¢ z
3 n-m|>M
o8t R - =
_ B X cos(2xmz/T) |I; (’"—I;ﬁ—}—" + W)
|‘;“:. 0.6 16 - | 2
m+ |m|—2n
= -1 (4—— W)] (18)
v 32 J 2T
oL 04
&4 For white noise, as in Eq. (9), I¢(u) = £u. The equivalent
Ozr 128 ] result in Eq. (13), however, is in closed form.
256 For an example application of Eq. (18), consider the Laplace
1 i i wie T 1
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x

Fig. 6. Normalized restoration noise level for additive input noise
with Laplace autocorrelation for various Laplace parameters . 2W
=2and T = 0.9, giving M = first-degree aliasing. The duty cycleis
o = 0.6.
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Fig. 7. Normalized restoration noise level for additive input noise
with Laplace autocorrelation for various degrees of aliasing. The T
values correspondingto M = 1,2, 3 are T = 0.9, 1.4, 1.9, respectively.
Because of symmetry, plots are needed only for 0 < x < T/2. (2W =
2,a=06,anda = 2)

By using Parseval’s formula,* Eq. (7) can be written as
7 = f " S H(x; v)dv,

where the power spectral density S;(v) is the Fourier trans-
form of R¢(\). Define the odd indefinite integral

L) = j; * Se(v)dv.

Then substituting Eq. (16) into Eq. (17) and recognizing 72(x)
is real gives the Fourier series

(17

autocorrelation
Re(r) = e~elvl,
where a > 0 is a specified parameter. Then

-
Iu) = £ arctan(@— .
™ a

In the numerical examples to follow, W is set to unity.
Figure 5 shows the dependence of output noise level on the
duty cycle « for first-order aliasing. The dependence of the
Laplace parameter is shown in Fig. 6 for a fixed duty cycle. As
a increases, adjacent points of the input noise become less
correlated and the interpolation noise level decreases. De-
pendence of the output noise level on order of aliasing is il-
lustrated in Fig. 7.

Some observations follow: (1) Clearly, the restoration noise
level increases dramatically with an increase in the degree of
aliasing M or a decrease of the duty cycle «. The condition
of the Toeplitz matrix5 corresponding to Eq. (4) is equivalently
worsened. (2) For Mth-order aliased data, Yn(x) can be used
in Fig. 2 in lieu of Ypr(x) if N 2 M. Our results, however,
clearly demonstrate that the use of higher-order {’s to restore
lower-order aliased data significantly increases the restoration
noise level.

COMPARISON WITH SAMPLING THEOREM
RESTORATION

For certain combinations of the parameters T, 2W, and «, the
continuously sampled signal can be discretely sampled
uniformly at or in excess of the Nyquist rate. Let this rate be
denoted by 2B = 2W. The result is the same as if we had
discretely sampled the original signal at a rate 2B.

Let 7', 2W, and « be such that this uniform sampling can
be performed. Assume that, as in the previous section, each
sample point is perturbed by additive Laplace autocorrelation
noise with parameter a. When the noisy samples are inter-

Table 1. Noise Level Comparison®
Example T 2w a 2B min 72(x)/E2 max 72(x )/ £2 n02/E2
(a) 1 1.5 0.9 5 0.7460 0.7478 0.7647
(b) 1 1.5 0.7 3 0.7768 0.7842 0.8020
(c) 5 0.3 0.96 1 0.2810 0.2822 0.3754
(d) 5 0.2 0.2 0.2 19.925 19.925 1.000

¢ Comparison of noise levels for some cases in which the signal can be restored using either the continuously sampled signal-restoration algorithm
or the conventional sampling theorem (followed by filtering). The former, in each case but one, yields a better noise level. In (d), for which
this is not the case, M = 0 restoration can be used even though, as in each entry, M = {(2WT) = 1. In each case, the Laplace parameterisa =
2
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polated and passed through a filter unity on |u| < W and zero
elsewhere, the output noise level is®

e % e sinh ( )tan( 22’)

2] -1

As one would expect, fewer data are used in restoration, and
thus a higher noise level results.

Four examples of noise levels are shown in Table 1. For
each entry,a = 2 and M = 1. In order to fit the uniform
sampling within the continuously sampled intervals, each case
requires that sampling be done such that there is a sample at
the origin. In each case but one, the noise level in Eq. (19)
exceeds the maximum restoration level in Eq. (18) for the
same noise. For example (d) in Table 1, this is not the case.
Note, however, that even though M = 2WT = 1, the spectra
are simply touching with no overlap. Hence no unscrambling
of aliased spectra is required. Rather, for restoration, we
should here restore using M = 0.

(19)
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