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Noise sensitivity of interpolation and extrapolation
matrices

Dmitry Kaplan and Robert J. Marks 11

The noise sensitivity of interpolation and extrapolation matrices is investigated. For certain bandwidth
and truncation parameters, the interpolation matrix is shown to yield results at a lower noise level than the
input data. The input noise level, however, can be lowered by filtering the result. The noise level in the in-
terpolated interval is shown to be lower near where the image is known. The extrapolation matrix is shown
to be ill-conditioned, thus demonstrating severe sensitivity to input noise.

1. Introduction

Various closed-form discrete extrapolation algo-
rithms have been proposed.1-5 With a slight modifi-
cation, these algorithms can also be applied to inter-
polation problems.

In this paper, we numerically explore noise sensitivity
of both the interpolation and extrapolation matrices.
Both are shown to be less sensitive near where the object
is known. The interpolation matrix is shown to perform
well, while the extrapolation matrix is ill-condi-
tioned.

1. Preliminaries

Define the bandlimiting operator -Bw by

fBws(x) = s(x) * 2W sinc2Wx, (1)

where since = sin(7rt)/(7r). We say that f (x) is ban-
dlimited with a bandwidth <2W if

(2)wf(x) = f(x).

Consider the object degradations

g (x) = f(x) [1 - rect(x/T)],

ge(x) = f(x) rect(x/T),

where T is a duration, and

_W =r; I 1/2
rect~) ~10; l xI > 1/2-

Regaining f(.) from g, (-) is extrapolation and from gi (.)
is interpolation. The former is an ill-posed problem in
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the sense that a small amount of noise on g, (.) can cause
large error.6 -9 Interpolation, on the other hand, is
well-posed.6 9 The ratio of output to input error energy
can be bound.

Note that, from Eqs. (2) and (3a), we can write gi (x)
= [1-rect(x/T)I3w]f(x). Inversion of the operator in
square brackets would result in closed-form interpola-
tion. If the problem is treated digitally, the sample
values of g () and f (-) are placed in the vectors gi and
f. The fM6w operator becomes a low-pass matrix Bw
which, for example, can be formed as in Ref. 10. The
rect function is replaced by a square matrix, RT, with
is and Os placed appropriately along the diagonal and
zero elsewhere. Then Eq. (3a) can be written as g =
[I - RTBW]f. Inverting gives

(4)f = 5gi,

where we shall refer to

Y = [I - RTBwI-l (5)

as the interpolation matrix
A parallel development can be applied to extrapola-

(3a) tion. Specifically, ge(x) = 11 - [1 - rect(x/T)]3wBf(x).
(3b) Thus,

(6)f = ge,

where

6' = [I - (I - RT)BW>-l (7)

is the extrapolation matrix.'

Ill. Matrix Structure

The analysis of the structure of the interpolation and
extrapolation matrices is in order. Since the input
vector is zero over the interval to be interpolated, a
portion of the interpolation matrix picture in Fig. 1 is
not used. This portion is shown shaded and is titled
Don't Care. Furthermore, the output vector must be
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Interpolation Matrix

Fig. 1. Structure of the interpolation matrix J.

(i(x) = [1- rect(x/T)](x),

(e(x) = rect(x/T)t(x).

If gi + i is used in lieu of gi in Eq. (4), the corre-
sponding result is f + Pi, where

(8)

Similarly, the error for extrapolation isqi = 6' ~,e If 4i
is zero mean, so is i. That is, E[qi] = .E[ti] = 0, where
E denotes the expected value operator, and 0 is the zero
vector. Similarly, E[te] = 0 - E[tie] = 0.

Of greater interest is the output's variance, which is
a measure of the noise sensitivity of the restoration al-
gorithm. With attention to the interpolation matrix
structure shown in Fig. 1, we can write Eq. (8) as
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Fig. 2. Structure of the extrapolation matrix 6.

equal to the input vector at those points where the input
vector is nonzero. The interpolation matrix performs
this operation by mimicking an identity matrix in the
four corners as shown in Fig. 1. The submatrices Li and
Ri thus completely suffice to specify 7. As the problem
is presented, the interpolation matrix is symmetric. It
is not if the time and frequency intervals are asym-
metric.

A similar structure describes the extrapolation ma-
trix. As is shown in Fig. 2, there are now two Don't Care
strips. The subidentity matrix is centered. As shown,
the matrix is solely determined by the submatrices Ue
and Le

IV. Noise Sensitivity

The restoration schemes in both Eqs. (4) and (6) are
linear. Thus, for the case of additive noise, the corre-
sponding output noise is also additive and signal inde-
pendent.

Let t(x) denote a zero mean stationary random pro-
cess so that the corresponding sample vector t consists
of statistically independent identically distributed el-
ements, each with variance a2. Such would be the case,
for example, if t(x) were a Gaussian random process
with sufficiently short duration autocorrelation. De-
note the corresponding interpolation and extrapolation
input noise by, respectively,

(?ii)m = E imn(i)n,
n Don't Care

where (i)m and (i)m are the mth elements of Xi and
i, and imn denotes the mnth elements of S. Since the

input vector is zero over an interval, the summation over
the Don't Care portion of the matrix is excluded in the
sum.

Since var(ti)n = U
2for all nand all (Qi)n are statistically

independent, it follows that"

var(m)_ = 2 E imn
nd Don't Care

or, in normalized form,

(i)r2- var(fl)m

= E imn,
nd Don't Care

The normalized variance of mth element of Xi can thus
be obtained by summing the squares of the elements in
the mth row of Y outside the Don't Care region. As
expected, the variance of the output where the signal
is known is the same as the input. It is the variance of
the elements of Pi corresponding to zero element inputs
which is of interest.

A similar analysis applied to the extrapolation matrix
in Fig. 2 yields

(EI ) var(le)m

n
= E emn

nd Don't Care

where emn is the mnth element of 6, etc.
Once interpolation or extrapolation is performed, we

may wish to low-pass filter the result to rid ourselves of
high-frequency noise components. Equivalently, we
can define revised interpolation and extrapolation
matrices by f = Bw J and 6 = Bw 6. The corre-
sponding revised normalized output variances are

n mn
n d Don't Care

= mn
nd Don't Care

where mn and 6mn are the mnth elements of i and &,
respectively.
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10 20 30 40 m-

Fig. 3. Normalized noise level for interpolation, 3 = 3. The standard
deviation for the ten interpolated points (within arrow) is lower than

that of the data.

V. Numerical Results

For the examples to follow, we use Sabri and Stee-
naart's low-pass matrix.10 The matrix is parametrized
by the filter cutoff frequency : (the digital equivalent
of W) expressed as the number of sample points in the
frequency domain. All vectors are of length 50. For
interpolation, ten centered elements corresponding to
the T interval are filled from knowledge of the tails.
For extrapolation, the ten centered elements are used
to approximate the tails. Additive noise is white and
Gaussian, with zero mean and a standard deviation of

= 0.1.
Example 1: For interpolation with: = 3, the nor-

malized output standard deviation (Li)m is shown in
Fig. 3. Interestingly, the SNR for the interpolated
portion is superior to the data. This bothersome ob-
servation is resolved when we recall the high-frequency
noise has not yet been smoothed. The revised nor-
malized standard deviation (Li)m reveals that, after
filtering, the noise level is reduced by a factor of 2 (see
Fig. 4).

Example interpolation results are shown in Fig. 5.
The original sinc signal is shown in Fig. 5(a). Using the
tails as data, the interpolation matrix restoration of the
ten inner data points is shown in Fig. 5(b). The result
is graphically indistinguishable from the original but
does peak at 1.04 instead of 1.00 due to truncation and
quantization error.

Figure 5(c) shows interpolation when additive noise
is added to the tail data. As predicted by Fig. 3, the
interpolation is smoother than the data, peaking at 1.13.
The result of filtering is shown in Fig. 5(d). The tails
are smoothed and the interpolation remains un-
changed.

Example 2: The interpolated noise level is not always
an improvement of the data noise level as witnessed by
the = 5 plot for (i)m shown in Fig. 6. Since the
bandwidth is larger, the omitted data can have more

10 20 30 40 m-
Fig. 4. Normalized noise level of Fig. 3 after high-frequency noise

components have been filtered.

0 10 20 30 40 m- 50

Fig. 5. Interpolation of ten points of a sinc, , = 3: (a) object; (b)
noiseless interpolation; (c) interpolation in the presence of additive

noise; and (d) filtered result.

2.

10 20 30 40 m-

Fig. 6. Normalized noise level for interpolation, = 5.
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Fig. 7. Normalized noise level of Fig. 6 after high-frequency noise
components have been filtered.

10 20 30 40 m.

Fig. 9. Normalized and filtered noise level for the extrapolation
matrix, / = 3.

on the input will yield enormous output values. This
is in addition to error due to sampling.

Matrices demonstrating such noise sensitivity
properties are labeled ill-conditioned.12 Examples of
application of extrapolation matrices in two dimensions,
including effects of noise, can be found in Ref. 13.

0 10 20 30 
4 0 m- 50

Fig. 8. Interpolation of ten points of a sinc, /3 = 5: (a) object; (b)
noiseless interpolation; (c) interpolation in the presence of additive

noise; and (d) filtered results.

structure within the interpolation interval. We would
thus expect greater noise sensitivity. The normalized
output variance after filtering is shown in Fig. 7. As
before, the noise level in the tails is reduced.

An example of interpolation with this matrix is shown
in Fig. 8. The original sine object is shown in Fig. 8(a)
and the corresponding interpolation in Fig. 8(b). For
comparison purposes, the peak values are, respectively,
unity and 1.09. Noise was added to the tails. The
corresponding interpolation shown in Fig. 8(c) is
smoother in the interpolation region but, in accordance
with our prediction of greater noise sensitivity, has a
peak value of 1.52. This same peak value occurs in Fig.
5(d), where the result has been filtered.

Example 3: For extrapolation with : = 3, the nor-
malized standard deviation curves are illustrated in Fig.
9. The two curves are indistinguishable outside the
interval where the data are known. Note that the ver-
tical scale is logarithmic. Clearly, small levels of noise
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