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Sampling theory for linear integral transforms 
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A sampling theorem is developed to reduce integration error in matrix-vector and linear multiplexing processors 
that perform discrete versions of continuous linear operations. By simply filtering the operation kernel before 
sampling, one can perform integration-error-free processing on inputs sampled a t  their Nyquist rate. Example 
applications to Laplace and Hilbert transformation are presented. 

Much recent attention has been focused on optical im- 
plementation of the general linear operation 

in both one and two dimensions. The idea is to design 
a processor that, when fed an input u(e), will yield the 
corresponding output g(-). Specific cases of Eq. (1) are 
numerous and include correlation, convolution, and 
linear integral transformations (Laplace, Abel, Mellin, 
Hilbert, Hankel, etc.). 

One popular approach is to evaluate Eq. (1) by trap- 
ezoidal integration: 

where A is the input sampling interval. If the output 
is sampled, Eq. (2) can be expressed simply as a ma- 
trix-vector product. 

Coherent and noncoherent optical implementations 
of the matrix-vector o~eration in Ea. (2) are numer- 

A ~, 

ous.',"ocker" designed a system utilizing scanning 
mirrors and vidicons. Shadow-casting processors have 
been developed by Schneider and Fink4 as well as by 
Tamura and W y a n t . V o n a h a n  et aL6 use charge- 
couuled devices as storage and shift elements in their " 
optical processor. Goodman and Dias7g8 have recently 
developed another incoherent processor with incredible 
information-throughput capacity. 

Optical implementations akin to Eq. (2) have also 
been carried out in analog form. That is, the output is 
not sampled. Krile e t  al.9J0 and Jones et al.ll  multi- 
plexed a number of terms on a single hologram using 
phase-coded reference beams. Various processors using 
temporal holographic integration have been presented 
by Marks.l"asturi e t  al. l" use a frequency-domain 
multiplexing scheme. 

For certain systems whose kernels (impulse response) 
h conform to certain band-limiting criteria, Eq. (2) can 
be shown to be exact."--lVhere are, however, two 
maior drawbacks. First of all. the i n ~ u t  and the kernel 
must be sampled in excess of their respective Nyquist 
rates. Second, and more Importantly, a vast number 

of commonly used linear operations do not conform to 
the band-limited criteria. 

The purpose of this Letter is to show that by a simple 
alteration of the impulse response in Eq. (I), the ex- 
pression in Eq. (2) can be made exact in the spirit of the 
sampling theorem. The revised expression can be 
utilized in the above processors to reduce error that is 
due to trapezoidal-integration approximation. Also, 
certain linear operations that cannot be directly eval- 
uated by use of Eq. (2) because of singularities are 
shown to be capable of implementation through the 
sampling theorem characterization. As will be dem- 
onstrated, the sole requirements are 

1. The band-limited input has finite energy. 
2. The input samples are unaliased. 
3. The kernel is well behaved. 

Development 

For clarity of presentation, we will assume that the 
unaliased input data come from a band-limited signal 
of the low-pass type. Such signals are unaltered by 
low-pass filtering. Thus 

where sinc x - sin nx/(n-x), 

and W is the maximum frequency component of u. 
Substituting into Eq. (1) gives 

where the low-passed kernel (LPK) is 

Even though the kernel in Eq. (4) is altered, it yields the 
same result as in Eq. (1). 

Since both the input and the LPK are band limited 
in n, they can be expressed by the uniformly converging 
Whittaker-Shannon sampling theorem17: 
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where the input sampling interval must be chosen such 
that 

A 5 112B I 1/2W. (7) 

Substituting Eqs. (6a) and (6b) into Eq. (4) gives 

and 

Eh(x) = IX(x;q)12dq = A 2 lh(x;nA)l2 < -. 
n=-m 

Then, from Schwarz's inequality, 

lg(x)12 5 EuEh(x). 

Examples 
To illustrate use of Eq. (81, we now present example 
applications for the cases of Laplace and Hilbert 
transformation. 

Laplace Transform 

The Laplace transform can be written as 

= A C u(n~)f i (x;nA).  (8) g(x) = 1 u(E)e-'(dE. 
n 0 

This is the desired result. Comparing it with Eq. (2)' Comparing with Eqs. (1) and (4)' we have 
we conclude that the inaccuracy that is due to trape- 
zoidal integration can be totally eliminated if the LPK h(x;O = e-'£r*(E) 
is used in lieu of the original kernel. and 

A sufficient condition for Eq. (8) to converge for a 
given value of x is that both u and f i  be square integra- h(x;q) = Am e-'£ sinc(E - q)d& 
ble in q. That is 

(9) 

rn where p(.) denotes the unit step and we have chosen 2B 
lu(q)12dq = A lu(nA)12 < - = 1. 

n = - m  

Table 1. Laplace Transform of u([) = (d/d[) sin r[/[ 

x = l  x = 2  x = 3  x = 4  x = 5  

True answer 
g(x) = -1.878965 -1.133823 -0.716246 -0.478498 -0.336682 
x arctan(7rIx) - u 

Using low-pass kernel 
A = 1  -1.867870 -1.124942 -0.709506 -0.473756 -0.333234 

Trapezoidal integration 
A = l  -0.985151 -0.398756 -0.152642 -0.057020 -0.021097 
A = 0.5 -1.661102 -0.924578 -0.520156 -0.298633 -0.174596 
A = 0.1 -1.870348 -1.125219 -0.707664 -0.469945 -0.328168 

Simpson's-rule integration 
A = 1  -1.464464 -1.551033 -0.206121 -0.076378 -0.028177 
A = 0.5 -1.886756 -1.099852 -0.642660 -0.379171 -0.225762 
A = 0.1 -1.878982 -1.133787 -0.716125 -0.478259 -0.336297 

Table 2. Laplace Transform of u([) = [sin(r[/2)/[]2 

x = l  x = 2  x = 3  x = 4  x = 5  

True answer 

u x2 +-In- 
4 x2+7r2 

Using low-pass kernel 
A = l  1.386848 0.955236 0.714649 0.565340 0.465251 

Trapezoidal integration 
A = l  0.990551 0.752463 0.666651 0.635167 0.623588 
A = 0.5 1.130682 0.749933 0.557713 0.453196 0.393941 
A = 0.1 1.327210 0.897624 0.659142 0.511839 0.413826 

Simpson's-rule integration 
A = 1  1.320735 1.003284 0.888868 0.846889 0.831451 
A = 0.5 1.383008 0.954706 0.727017 0.598156 0.523008 
A = 0.1 1.386832 0.955193 0.714679 0.565375 0.465400 
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Numerical results for two band-limited functions are 
given in Tables 1 and 2. For both examples, 2W = 1. 
From the results shown, we observe that  trapezoidal 
integration does not give so accurate a result even a t  10 
times the sampling rate. The more accurate Simp- 
son's-rule integration results are also seen to  be inferior 
to the LPK technique. The error in the LPK results 
stems primarily from error in the digital integration of 
Eq. (9), which was performed on an HP-41C program- 
mable calculator. 

Hilbert Transformation 

The 'Hilbert transform 

cannot be accurately evaluated by direct trapezoidal 
integration because of the singularity a t  [ = x .  Fou- 
rier-transform analysis, rather, is commonly used. We 
will now show, however, that through application of the 
LPK, an accurate matrix-vector characterization of the 
Hilbert transform is possible. From Eq. (lo), 

If we choose B = W, the corresponding LPK is 

= -2W sin aW(x - q)sinc W(x - 7). (11) 

A further simplification arises after we note that  
Hilbert transformation is a shift-invariant operation. 
Thus, if u is band limited, so then is the output, g. This 
being true, we need to know g only a t  the p0int.s where 
x = ml2W. Substituting Eq. (11) into Eq. (8) with A 
= 1/2 W gives 

a 1 
g(mA) = C u(nA)sin - ( m  - n)sinc - (m - n). 

n 2 2 
Noting that  every other term is zero yields the final 
desired result, 

-2 
g(mA) = - u(nA) C -. 

a m-nodd m - n 
This matrix-vector version of the Hilbert transform 
contains no  singularities and is exact for all band-lim- 
ited inputs. 

Remarks 

The  sampling theorem in Eq. (8) is superior to that  
applicable to variation-limited ope ra t ion~~~-~%imply  

because required sampling rates are lower and the LPK 
method is applicable to a larger operation class-in- 
cluding variation-limited operations. 

Last, we note-as the reader can easily verify-that 
the LPK method does not yield any computational in- 
sight into discrete Fourier transformation. 
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