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Scanning technique for coherent processors

M. O. Hagler, R. J. Marks II, E. L. Kral, J. F. Walkup, and T. F. Krile

In certain linear coherent processing techniques a temporal signal is spatially encoded on an amplitude
transmittance that serves as the processor input. In this paper a technique is presented whereby the tempo-
ral signal is alternately used to amplitude- and/or phase-modulate a raster scan of the processor’s input
plane. Using the temporal integrating and summing properties of a hologram placed in the processor’s out-
put plane, one can then regain the identical processor output that would have arisen from the spatial encod-
ing technique. Preliminary experimental results are presented along with the theory of the input scanning

technique.

i. Introduction

In certain coherent processing schemes a processor
input is received as a temporal electronic signal. Con-
ventionally, this signal is spatially encoded as a 2-D
amplitude transmittance that then serves as the pro-
cessor input. It is, however, usually the corresponding
processor output that is of interest.

In this paper we present a scheme whereby one can
achieve an identical linear processor output by utilizing
the temporal signal to amplitude- and/or phase-mod-
ulate the field amplitude of an input raster scan. The
time-varying field amplitude at the system’s output is
then temporally integrated and summed using holo-
graphic techniques. Upon playback the hologram is
shown to produce a diffracted term that is identical to
that which would be obtained by placing a corre-
sponding input field amplitude transmittance mask at
the processor’s input. This scheme therefore eliminates
the necessity of spatially encoding the input. Use of
erasable photographic media suggests possible imple-
mentations near real time.

Input scanning has been used extensively in inco-
herent processing to add the temporal degree of freedom
to the already available spatial variables. Various in-
coherent processors and corresponding references are
given in the excellent review paper by Monahan et al o
Scanning techniques have also been extensively applied
in holography?-7 as have the effects of time-varying field
amplitudes.®-10
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. Theory

We limit our scanning technique to those systems
that are linear. Such systems can formally be expressed
via the superposition integral

&(x,y) = S[ulx,y)]

= JJ T wemh - £y - ms Emdgan, @

where g is the system output corresponding to an input
u into a system S[-]. The point spread function is de-
fined as

h(x — £y — m&m) = S[dlx — £y — 0, (2)

where 6(-,-) denotes the Dirac delta. We are here using
the Lohmann-Paris point spread function (impulse
response) notation.11,12
Consider then the scanning geometry shown in Fig.
1. For the fixed value of 5 = 7,, we scan the input plane
over £ at speed v. Modeling the scanning point as an
amplitude- and/or phase-modulated delta function, the
field amplitude to the right of the input plane at time
tis
u(vt,nm)o(E — vt,n — Nm). (3)

From Eq. (2) the corresponding complex field ampli-
tude incident on the output plane is

u(vt, Mm)h(x — vty — Nm;0t, Mm). (4)

Placed in the output plane is a photosensitive medium
on which is also incident a planar reference heam
exp(jkay), where « is a direction cosine.® The corre-
sponding intensity at time ¢ is thus given by

In(x,yit) = |u(ut,gm)h(x — vty — 9m3vt,1m)
+ exp(kay)}|2 (5)

Assuming the resulting hologram’s amplitude trans-
mittance is proportional to the exposing intensity
function, we have for one scan an amplitude transmit-
tance of8-10
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N T
inty) = [ InGeyit)dt, (®)

where T is the exposure time for a single scan. For M
scans corresponding to various values of 7,,, the holo-
gram’s amplitude transmittance is

M,
T o tmlxy)y=t1+tat+ts, (7

m=1

f(xy) =
where
e
ti=2 U:) u(vt,gm)h(x — vty — nms5vt,nm)dt| exp(—jkay)
to =t} (8
tg=TM+ z f

Here, * denotes complex conjugate. Itisthef;termin
which we are interested. Making the variable substi-
tution £ = vt and assuming each scan covers the entire
input pupil at n = 7, gives

w(t, nm)h(x — vty — Mm;vt,nm)|2dt.

i @
f=aE [f_m w(E M) (s = £ = i)
X dEl exp(—jkay). (9)

Playback is performed as shown in Fig. 2. The
playback beam gives rise to three diffracted terms. The
term ¢3 exp(jkayy) is the zero order through beam, and
ts exp(jRay) is the twin image conjugate component.
The term of primary interest is

] 1 =
trexpkay) == % " ulEna)hlc = £y = mmibnmddg (10)

This expression is recognized as a semidiscrete version
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of the superposition integral in Eq. (1). That is, the
integral over 7 is approximated by a summation. In
some instances Eq. (10) will be an adequate approxi-
mation for the true system output.

Under certain bandlimited assumptions on the input
and point spread function, we can obtain a better ap-
proximation by performing a low pass filtering opera-
tion in the y direction. This stems from space-variant
system sampling theory.1314 If

fm u(t,n) exp(—j2mnv)dy == 0 for |v| > wy, (11)

fm h(x,y;£n) exp(—j2mqu)dn =~ 0 for |v| > w,, (12)

then the desired low pass filter is unity over the fre-
quency band

_(wv+ Wu,) =v=(w,+ Wu)- (13)

As shown is Fig. 2, this filtering can be performed by
conventional spatial filtering techniques.®

ll. Experiment

To illustrate the temporal integration capabilities of
the hologram, we consider the system in Fig. 3. A point
source makes a single scan across the 1-D double-pulse
input aperture a(x). The linear processor in this ex-
ample is the familiar Fourier transformer that consists
of the single lens L;. The scan is performed along the
linen = 0.

Following the previous model development, the field
incident on the photosensitive medium is

alvt) exp(—jkotx/f) + exp(jkax), (14)
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where f is the focal length of lens Ly. Under the pre-
viously stated recording assumptions, the resulting
holographic field amplitude is

f(x,y) =t +ta+tg (15)
where

T/2
t1=f , a(et) exp(—jkotx/f)dt exp(—jkax),
=-T/2
ta =11, (16)
T/2
ti=T+ f a(vt)|?dt.
—-T/2

When the hologram is played back, the diffracted
term immediately to the right of the hologram corre-
sponding to ¢t is

1 = 4
= f_ " a(®) exp(—jkEx/E, (17

where we have made the variable substitution £ = vt and
have assumed the scan completely covered both input
pulses. Equation (17) is recognized as the 1-D Fourier
transform of a(x). Thus we should be able to regain
a(x) by an additional Fourier transform. This is ac-
complished by a single spherical lens. The result of
playback is shown in Fig. 4 and, as can be seen, com-
pares quite favorably with the theory. Similar results
for a single pulse (slit) input are given in Fig. 5. The
somewhat discontinuous appearance of the slit may be
due to the fact that the rotation of the optical flat shown
in Fig. 3, which produced the scanning point source, was
accomplished by hand.

IV. Conclusions

We have demonstrated a technique whereby tem-
poral signals can be linearly processed without first
being spatially encoded as an amplitude transmittance.
The scheme makes use of the temporal integration and
summation properties of the hologram.

This technique is potentially applicable to all linear
coherent processors. By using a scanning modulated
line source, it is also directly applicable to the recently
presented glass of linear 1-D coherent processors.!1
In addition, it has been shown that when coupled with
the availability of changeable Fourier plane masks, the
temporal holography approach may be used to imple-
ment a 2-D space-variant processor.!”

The scanning technique described above is, of course,
subject to the diffraction efficiency limitation of se-
quentially recorded holograms.!8-2! It should be noted,
however, that these limitations need not be severe??2!
if appropriate exposure conditions are employed. The
issue of bias-induced limitations inherent in sequen-
tially recorded holograms as compared to those obtained
in a single simultaneous recording is discussed in more
detail in the Appendix.
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Appendix

When constructing sequentially recorded holograms,
there is the potential for a bias build up problem and
consequent reduction in diffraction efficiency. To
examine the extent of this problem and lead into pos-
sible solutions proposed by other workers, we will
compare the signal-to-bias ratios for the simultaneous
recording case and the sequential recording case.

Assume an object composed of N points, and denote
by a(x,y) the amplitude of light on the hologram,
produced by point k£ on the object. For simplicity the
2-D spatial function ay (x,y) will be written as a;, from
now on.

In the case of simultaneous exposure of a hologram
derived from all N object points, the total film exposure
is:

Egn = Tsimlﬁ'sim + Eaklh2
= Tuimi| Rsim|® + Riim Zar + RemZaj+ TZaaj), (Al

where T'gin, is the exposure time, R, is the amplitude
of the reference beam, and the index in all sums runs
from 1 to N. The signal-to-bias ratio is then given
by

R;imzak
I!Rsirnl2

Zay
Rsim :

aaim = =

(A2)

where we assume 2Za;a7 « |Rgim]|2
For the sequential recording case the total film ex-
posure is

Eseq o Tseqleaeq + ag | A
= TieqiV|Reeq|2 + RiqZar + ReeqZay + ZZaia}}, (A3)

where T'geq is the total film exposure time over all ex-
posures. Note that R.q is not necessarily the same as
Rgim, but we do assume Req is the same for each indi-
vidual exposure. In this case the signal-to-bias ratio
is

el R;quak o _]._ Zay,
T INIRueal?] N [Roql S
Combining Egs. (A2) and (A4) we find that
i _ py 1 Bomal (A5)

6suaq |Rsim| i
Now, it is customary to choose the R, such that
|R9im| = al Zag | max, (A6)

where « is a number on the order of unity. Since Zay
represents the signal in the recording plane from the
entire object, | Zay, | max is the brightest spot in the re-
cording plane when all object points are active.

For the sequential recording case it is only necessary
to require that

|Rse5ql = CYl ap | maxs (AT)
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where « is the same number as before. Here |ay | max 18
the brightest spot in the recording plane when just the
kth input point is active.

Combining Egs. (A5), (A6), and (A7), we find that

aiiT:N!aklmaX_ (A8)

Bseq IECL}; I max

We see from Eq. (A8) that the relative sizes of the
signal-to-bias ratios in the simultaneous and sequential
recording cases clearly depend on the nature of the total
signal at the recording plane and how it is partitioned
for sequential exposures. For example, at one extreme,
if the total signal at the recording plane is uniform and
is partitioned into disjoint spatial regions for sequential
recording, then

IEak | max = |ak | maxs (A9)
so that
ﬁsim
e (A10)
5seq

At the other extreme, if the signal at the recording
plane is uniform and is partitioned for sequential re-
cording such that the {a.} are uniform and equal,
then

|Eak|max = Niaklmax, (A1l)

so that

6sim
g T Al2
Do (A12)
As a more realistic intermediate case, we can consider
the {a.} to be phasors with equal amplitudes and uni-
formly distributed random phases, in which case we
would expect that on average

|Eak|max = ‘\/-Nlﬂklmax; (A13)
so that
';sﬂ =N. (A14)
seq

In practical cases, therefore, we can expect the sig-
nal-to-bias ratio for the sequential case to degrade as the
+v/N . It is important to note, however, that the deg-
radation in dsq can be reduced significantly by opti-
mizing Rg.q for each exposure. Such conditions are
discussed in Refs. 18-21 and lead to situations where
Osim can be made equal to Dgeq-

To add credence to these observations, we have in our
own laboratory successfully recorded 100 sequentially
multiplexed holograms of the Fourier transforms of
point sources for the purpose of holographically repre-
senting space-variant optical systems.22 The system
plays back well so we are confident that we are achieving
adequate diffraction efficiencies. At this point the
number of holograms successfully recorded in sequence
has been limited mainly by our patience.
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