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ABSTRACT 

Methods of characterizing linear space-variant systems by their 
responses to various sets of inputs are discussed. Recording 
these responses within a volume hologram results in a filter 
which is approximately equivalent, in an input-output sense, to 
the space-variant system. 

The approaches considered are (1) storing the transfer functions 
of the system for point sampling of the input plane on playback: 
(2) a piecewise isoplanatic approximation approach based on di- 
vision of the input plane into isoplanatic regions, with storage 
of the transfer function for each isoplanatic patch; and (3) stor- 
age of the system's responses to elements of an orthonornal basis 
set. The potential advantages and limitations of each of these 
approaches, as well as experimental results, are discussed. 

INTRODUCTION 

It is well known that a hologtaphically recorded filter can be 
placed in the Fourier plane of a coherent optical processor and 
used to represent the transfer function of a linear, space-invar- 
iant system. This single filter displays the input-output char- 
acteristics of the corresponding system (1). Unfortunately, many 
optical systems which one might desire to represent holographic- 
ally are space-variant. For example, even an ideal imaging sys- 
tem with non-unity magnification is rigorously space-variant. 
Space-variant systems may, however, be characterized by catalog- 
ing the system's responses to a number of separate inputs, as con- 
trasted with the use of the single point spread function required 
to characterize the space-invariant system. If a thick medium is 
used to store the system responses, the resulting volume hologram 
can subsequently act as a space variant filter which exhibits the 
input-output characteristics of the original system. Such a rep- 
resentation can, in principle, significantly reduce the weight and 
size of a coherent processor, and should also improve its orien- 
tation stability. 

For mathematical and notational simplicity attention will be re- 
stricted to one dimensional linear, space-variant systems. For 
additional details, the reader is referred to some recent papers 
by the authors and their colleagues (2-6). S2ace variant systems, 
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characterized by the linear operator S[-1, may be described by the 
superposition integral 

m 

g(x) = SIf(x)l = f(S)h(x-S;S)dS 
m 

(1) 

where f (x) is the input, g (x) is the output, and h (x-<;<) repre- 
sents the space-variant line spread function. That is 

h(x-5;5) = S[G (x-S) 1 (2) 
where 6(x) is the Dirac delta function. This form of the line 
spread function has some advantages in describing space-variant 
systems (6-7). In the event that S is space invariant, we find 
that 

h(x-S;S)+h(x-S) ( 3 )  
which says that h(x-5;S)i.s independent of its second argument. 

We now consider three approaches to representing the effects of 
the space-variant system S described by Eq. (1). Each of these 
approaches may, at least in principle, be implemented holographic- 
ally. Some details on the holographic implementation of the samp- 
ling theorem approach are given in a later section. 

THE SAMPLING THEOREM APPROACH 

A modification of the Whittaker-Shannon sampling theorem (1) per- 
mits us to design a holographic representation for space-variant 
systems based on line source sampling.of the input plane of S, 
and subsequent angle-multiplexed holographic storage of the trans- 
fer function of S for each input plane sample. 

The sampling theorem for space-variant systems ( 5 )  is based on the 
concept of the system's variation spectrum, which is defined by 

A 
Hg (x;v) = F5 [h(x; 5) I ( 4 )  

where F [ a ]  denotes Fourier transformation with respect to the in- 
5 

put variable 5 ,  and where v is the frequency variable associated 
with 5. The variation spectrum is a measure of how the line 
spread function changes form with respect to the input variable 5. 
In brief, the theorem states that if the input, f(c), is bandlim- 
ited to bandwidth 2Wf, and if h(x;c) has a variation spectrum of 

width 2Wv (i.e. HS(x; v) = 0 for Ivl>wV for all x), then their 

product f(~)h(x;Sj will have bandwidth 2W = 2Wf + 2Wv. As a re- 

sult, the sampling theorem states that by sampling the input line 
to the system S at a rate of 2W samples per unit length, the out- 
put g(x) may be written as the infinite sum 

m 

where En = n/2W. Equivalently, in the frequency domain, 
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sin sx , and where, sinc x = - sx * 2 ,  IxI< S 
rect x = 

0 ,  1x12 4 

Equation (6) states that G(fy) may be obtained as a weighted sum -. 
of individual transfer functions Hx(fx;(n), where the nth of which 

is weighted by the nth input sample f (5,). The presence of 

rect (fx/2W) in Eq. (6) indicates the low pass interpolation fil- 

ter (bandwidth 2W) function necessary to reconstruct the contin- 
uous output g(x). One obvious problem with Eqs. (5) and (6) is 
that they require us to store a countably infinite number of holo- 
grams for an exact reconstruction of g(x). In practice we would 
expect to approximate g(x) by storing a finite number determined 
by space-bandwidth product considerations. 

The advantage cf the sampling theorem approach is that it speci- 
fies a technique for exact reconstruction of the continuous out- 
put g (x) (i. e. low pass filtering) . A disadvantage is that it. re- 
quires that we sample the input to S at a minimum rate determined 
by the sum of the variation bandwidth of S and the input band-, 
width. One technique for cutting down on the density of input 
plane samples required is to employ the piecewise isoplanatic 
approximation (PIA) approach described next. 

THE PIECEWISE ISOPLANATIC APPROXIMATION (PIA) APPROACH 

The piecewise isoplanatic approximation, or PIA approach (4) makes 
the assumption that the space-variant system S is piecewise space- 
invariant (see Ref. 1). It effectively divides the input line in- 
to segments (or the plane into "patches"), and each segment is 
characterized by its own line spread function. Mathematically we 
may rewrite the input f (6) as 

where rect ((;Cm,um) represents a rectangle function of unit 

height, extending from 5 = 1, to 5 = urn, and l,( 5, 2 um. Since 

g ( x )  = S[f (511 we obtain 

g(x) = 1 SZfm(E-Sm)1 (9 
m 

or equivalently 
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When compared with the sampling theorem approach, the PIA approach 
appears to offer the advantage of being independent of the band- 
width of the input function f(x). Rather it is the manner in 
which the line spread function h(x-6;S)changes which determines 
the number of holograms which must be stored to represent the 
system. Depending on the relative sizes of the system's varia- 
tion bandwidth and the input bandwidth, this advantage may or may 
not be significant. It would appear to be difficult, in general, 
to compare the performance of a PIA-based implementation with one 
based on the sampling theorem in situations where systems are not 
truly piecewise isoplanatic. 

In the next section we discuss the orthonormal response approach, 
where the nature of the input function must be considered, but 
where the nature of the space-variant system is in general, not a 
determining factor. 

THE ORTHONOR-L RESPONSE APPROACH 

A third approach to characterizing the space-variant system is to 
expand the input function f(x) as a weighted sum of the elements 
of an orthonormal basis set. Thus we write 

where the elements of the set C$n(~): n = 1,2, . . . I  are assumed 
orthonormal, i.e. 

m 

with 6 m  being the familiar Kronecker delta function. Substitut- 

ing Eq. (11) into the relationship g (x) = S [f (x) ] we obtain 

g (x) = 1 an S Mn (XI I (13) 
n 

where the expansion coefficients are found by 
m 

Note now that if we let On(x) be the response of S to tha input 

$,(XI, 

@,(XI = SIOn(x)l 

then Eq. (13) may be rewritten 
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It is worth noting here that the elements of the system response 
set {Qn(x) are not necessarily orthonormal, as are the elements 

of the input set {$,(XI 1 .  

To illustrate this approach, if we assume that f(x) is bandlimit- 
ed to bandwidth 2Wf, then by the sampling theorem 

m 

f (x) = 1 f (x sinc 2Wf (x-xn) 
n=-m n 

where xn = n/2Wf. We can view Eq. (17) as an orthonormal expan- 

sion with 

@n(~) = sinc 2Wf (x-xn) 

and with 

a = -  I f (xn) 
nq 

The system's sinc response is then given by 

S [sinc 2Wf (x-xn) I = - On(x) q 
and the system output, g(x), may be written as 

g (x) = 1 f (xn) S [sinc 2Wf (x-xn) 1 
n 

Note here that the advantage of the orthonormal response charac- 
terization is that only the input bandwidth determines the mini- 
mum required input plane sampling rate, = the variation band- 
width of S. In addition, since the sinc function is just the 
Fourier transform of the rectangle function (Ref. 11, physical 
generation of a coherent system's-sinc response is easily imple- 
mented. A possible approach to implementing the sinc response 
approach is discussed at the end of the next section. 

We have presented three approaches to characterizing the perform- 
ance of space-variant systems. In principle, each of these ap- 
proaches can be implemented experimentally. In our experimental 
work to date we have assumed point sampling of the input plane of 
a system, with the idea of implementing the sampling theorem 
approach. In the next section we briefly discuss some of the 
practical limitations present when one attempts to angle multi- 
plex the sampled transfer functions of a space-variant system 
within a thick recording medium. 

IMPLEMENTATIONS 

Our experimental work to date has concentrated on the holographic 
implementation of the sampling theorem approach (2-3). Figure 1 
illustrates (in one dimension) the basic approach. Point sources 
are used to sample the input plane of the space-variant system S, 



110 R. J. Marks 11, J. F. Walkup, M. 0. Hagler 

resulting in the system's point spread function appearing at the 

output of S. The nth reference point source, shown of £set by a, 
also lies in the output plane of S. After the lens L performs a 
Fourier transf~r~, the interference of the reference plane wave 

and the transfer function of S for the nth point source input is 
holographically recorded in the thick medium. When we perform 
this operation sequentially, with a different reference point 
source for each object point source, we are angle multiplexing a 
number of transfer function holograms into the medium. By using 
the extinction angle concept we can guarantee essentially non- 
interfering holograms. 

I / Reference 

Fig. 1. Recording volume hologram: sampling theorem 
approach 

One places the volume hologram in the Fourier plane of a coherent 
optical processor for playback, as indicated schematically in Fig. 
2 .  On playback one spatially samples the input plane using a dup- 
licate of the reference array. Each input point accesses the 
hologram which represents the transfer function of S for that in- 
put point location. Neglecting crosstalk between the stored holo- 
grams, coherent addition of the outputs then gives the desired 
response. The experiments have mainly been performed using a 
DuPont holographic photopolymer (8) as the recording material, 

0 

and an Argon laser operating at 5145 A ( 2 - 3 ) .  Experimental imple- 
mentations of simple one- and.two-lens magnifiers for objects con- 
sisting of simple arrays of point sources have been produced and 
found to yield the correct magnifications though the images con- 
tained some aberrations. Additional experimental work is in pro- 
gress. 
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The extinction angle, be, is the major factor affecting system 
resolution (2-3,9). One can show that even in the worst case 
where the system point spread functions associated with sampling 
the input plane of S overlap each other completely, it is possi- 
ble, by properly spacing the reference array point sources, to 
obtain noninterfering holograms in the thick recording medium. If 
we assume (see Fig. 1) that the transforming lens has focal length 
ft>>a, the reference array offset, we find that based on the 

assumption that the extinction angle is essentially invariant as 
one moves the reference and object beams over their respective 
arrays (a reasonable approximation in many cases), the minimum 
reference array element-to-element spacing is given by 

Axmin it A0 (22) 

Fig. 2. Playback scheme: sampling theorem approach 

This spacing will assure minimum hologram crosstalk on playback. 
To illustrate, we found that for a 100 micron thick layer of the 
DuPont holographic photopolymer, with ft = 10 cm. and with an on 

axis object array, plus a 30° reference array offset, the extinc- 
tion angle was A8E2". Based on Eq. (22) this predicts that Axmin 

= 3.5 mm. Since on playback one illuminates the input trans- 
parency through a duplicate of the reference array, the maximum 
spatial frequency present in the object for which we could achieve 
the Nyquist sampling rate would be 1/2Axmin = 0.14 cycles per mil- 

limeter = 3.6 lines per inch. While this is not a very high res- 
olution, it should also be noted that thick recording media such 
as photochromic glasses exist with extinction angles one and two 
orders of magnitude smaller than the example just cited (101, so 
that the state of the art predicts much higher system capabil- 
ities. It is clear, however, that storing large numbers of well 
require, poses numerous problems. These include signal-to noise 
ratio problems, crosstalk problems., and dynamic range problems, 
to mention just a few. An additional problem involves the diffi- 
culty in obtaining resolutions, for two dimensional representa- 
tions, which are equal to the one dimensional system resolutions 
predicted on the basis of the extinction angle concept (11). 
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A comment should be made concerning implementation of the sinc 
response approach discussed in Eqs. (17)-(21). Based on Eq. (21) 
and Figs. 1-2, we see that by replacing the Dirac delta function 
by a sinc function at the input to S, one can effectively use the 
same recording geometry for implementing the sinc response appro- 
ach as was used in implementing the sampling theorem approach. 

The three approaches presented for synthesizing and using volume 
holograms to represent space-variant optical systems appear prom- 
ising, despite some obvious practical limitations. The potential 
savings offered by such holographic optical systems representa- 
tions should, however, be sufficient to motivate further research 
into overcoming some of the problems identified to date. Addi- 
tional work is underway at present to explore the potential and 
limitations of these and alternative techniques for optically re- 
presenting space-variant optical processors. 
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