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V u 
This thesis describes various techniques for perform- 

ing linear space-variant operations with coherent optical 

processors. General linear system theory is developed for 

application to processor design, The continuum orthonor- 

mal basis set response system characterization, of which 

the conventional superposition integral is a special case, 

is modeled by three implementable approximations display- 

ing contrasting properties. The piecewise isoplanatic 

approximation, in which the parent space-variant system is 

approximated by a n er of space-invariant systems, is 



essentially independent of the input, The discrete ortho- 

normal basis set response characterization, in which the 

system is defined by its responses to elements of an ortho- 

normal basis set, is essentially system independent. A 

er of sampling theorems applicable to certain classes 

of space-variant systems are also presented. 

The continuum orthonormal basis set response system 

characterization is applied in a number of generalized 

coherent processors that are capable of performing a 

large class of one-dimensional space-variant operations. 

These include magnification, coordinate distortion, con- 

volution, correlation, magnifier spectrum display, cross 

power spectral density display, and inverse Abel trans- 

formation. Two-dimensional serendipity applications of 

these processors include Laplace transformation and ambig- 

uity function diaplay. A technique for lensless space- 

variant processing is also presented wherein a one-dimens- 

isnal linear operation can be performed with an input, 

a mask, and a few centimeters of free space, 

Extension of generalized space-variant processing 

to two dimensions through utilization of the several 

approximation techniques is explored. A composite holo- 

gram scheme results from a direct application of a space- 

variant system sampling theorem but is shown to be limited 



to a relatively small class of operations. Use of the 

angular sensitivity of volume hologram for 2-D space- 

variant processing is also explored with the conclusion 

that only one-dimensional operations can be straightfor- 

wardly performed. A phase coded reference beam approach 

is also discussed. Here, unwanted crosstalk terms are 

smeared into diffuse background noise. Methods of gen- 

eration of system responses to various orthogonal, point 

source, and complex exponential inputs are also presented. 
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Chapter I 

1. INTRODUCTION 

Initial recognition of the ability to perform general 

mathematical operations with coherent light can be attribu- 

ted to the members of the research team involved in the so 

called Project Michigan. In initially classified re- 

search, they demonstrated the feasibility of utilizing 

coherent optical processors to handle vast quantities of 

data at the speed of light. Coherent processors can thus 

perform operations at a rate far in excess of that re- 

quired by conventional digital computers. Being an analog 

computer, however, the coherent processor suffers from 

inflexibility and inexactitude when compared with the 

digital computer. The coherent processor, though, has a 

far greater capacity for information throughput. 

There are two basic building blocks for any coherent 

processor. The first is the thin lens which, besides 

familiar imaging operations, is capable of performing a 

Fourier transformation on incident light field amplitudes. 

The second is the hologram on which complex field amplitude 

distributions can be represented. The most basic processor 

utilizing these components is shown in Figure 1-1. A two- 

dimensional transmittance, f, is illuminated from the left 

by a coherent plane wave. The Fourier transform of another 



Figure 1.1 A basic coherent optical processor for per- 
forming space-invariant (isoplanatic, con- 
volution) operations. 



function, say h, is placed in plane P2. The convolution 

sf h and f then appears on the processor output plane. 

The convolution operation performed here is also referred 

to as a linear space-invariant (or isoplanatic) operation. 

The space-invariant operation is a subclass sf the more 

general class of linear operations. If a linear operation 

is not space-invariant, then it is said to be space-variant. 

A more rigorous treatment of these concepts is presented 

in Chapter II. 

The use of the term "space-variant" in the thesis 

title is somewhat inexact and is used not because of the 

author's preference but rather due to precedence. Due to 

the wide spread use of the coherent processor in Figure 

1-1 and the predominance of time-invariant systems in 

the sister electrical sciences, the term "space-(time-) 

variance" has been used to stress that a linear operation 

is "not space-invariant." There are also those to whom 

the term "linear" implies "invariant" although such is 

not rigorously the case. Following this unfortunate 

historical development, we herein also use the term 

"space-variant" although the term "linear" (space-variant 

and space-invariant) is rigorously more appropriate in 
P 

most cases. 

The class of space-invariant operations that can be 

performed by the coherent processor in Figure 1-1 is fun- 



damentally limited only by the implementability of the 

so called transfer function mask on plane P2. More ex- 

citedly, any coherent processor which performs a two-di- 

mensional space-invariant operation, irregardless of the 

number of components or complexity, can, in principle, be 

reduced to the elementary configuration in Figure 1-1. 

Unfortunately, most coherent processors are, in fact, 

not space-invariant. Many, however, are linear in nature. 

As such, it would be a useful undertaking to develop a 

space-variant coherent processor displaying the simplicity 

of Figure 1-1 to which all linear coherent processors 

could be reduced. Investigation o< this possibility is 

the main topic of this thesis. 

There are of course, many specific coherent processors 

which perform space-variant operations. The thin lens 

Fourier transformer and non-unity magnification imaging 

systems are prime examples. In our investigations, how- 

ever, we are more concerned with developing a general 

processor capable of performing a wide class of opera- 

tions. 

We begin treatment of processor design in Chapter I1 

where several aspects of linear system theory are developed. 

System characterization by determination of the system re- 

sponse to all elements in a continuum orthonormal basis 

set is presented and leads to the well known line spread 



function and frequency response characterizations as special 

cases. The continuum orthonarmal basis set response char- 

acterization brings to light the possibility of alternate 

system descriptions which allow for the enrichment of lin- 

ear systems theory beyond conventional impulse and £re- 

quency response characterization. 3-4 Furthermore, it is 

shown that due to the choice of our system response no- 

tation, Fourier analysis, conventionally utilized only 

for space-invariant system description, can straight- 

forwardly be generalized for description of the more gen- 

eral class of linear systems. 

The remainder of Chapter I1 is concerned with system 

characterization wherein certain restrictive assumptions 

are placed on the system and/or input. The result of 

these constraints in all cases considered is the reduction 

of the required system responses needed for system chara- 

cterization from an uncountable to countable number- 

The first scheme, titled the piecewise isoplanatic approxi- 

mation (P IA)6 -7 ,  requires that the shape of the system 

impulse response change slowly with respect to a small 

interval in the input space. Under this constraint, the 

system can be approximated by the superposition of a number 

of space-invariant systems. 

The second constrained system characterization in 

Chapter I1 is termed the discrete orthonormal basis set 



response characterization. * Here, the constraint is placed 
on the input which we restrict to be in that signal class 

spanned by a given orthonormal basis set. In this case, 

the system is completely characterized by knowledge of 

the system response to each element in the basis set. 

Finally, in Chapter 11, a number of sampling theorem 

characterizations are presented that correspond to various 

compact support and bandlimited constraints on the system 

input and/or line spread function. '-lo For the most part, 

these characterizations depend on both the input and 

system. 

Chapter I11 presents various schemes for performing 

one-dimensional space-variant operations utilizing astig- 

matic processors.11 The processors here are as general 

for performing space-variant operations as that in Figure 

1-1 is for performing space-invariant operations, We 

can, however, perform only - one-dimensional operations 

here as opposed to the two-dimensional capability of the 

processor in Figure 1-1. The basic idea for the one- 

dimensional processor was initially proposed by Cutrona. 12 

Generalizations and implementations of 1-D processors were 

simultaneously reported by Goodman et. a1.l3 afid Marks 

et. a1 .14 An interesting serendipity is a processor for 

simultaneous display of the complete ambiguity function 

display first suggested by Said and Cooper15 and later 



reported by Marks et. al. 16-18 

Chapter IT7 discusses the present state-of-the-art in 

the effort to formulate a generalized coherent optical pro- 

cessor for performing two-dimensional space-variant opera- 

tions. The first scheme (the composite hologram approach) 

is a straightforward implementation of a sampling theorem 

developed in Chapter 11. It suffers, however, from a 

strict limitation on the class of allowable systems and 

inputs. 

The second two-dimensional space-variant processor 

discussed utilizes the selective diffraction efficiency 

effects inherent in volume holography. This scheme was 

initially proposed by Burton et. al.l9 and was developed 

via the PIA by ~ a r k s ~  and via a sampling theorem by Deen 

et. al. 20-21 The volume hologram approach, however, suf - 
fers from the one-dimensional nature of the useful angu- 

lar bandpass which prohibits a straightforward generali- 

zation of the scheme to two dimensions. 

The final two-dimensional space-variant processing 

scheme utilizes phase coded reference beams. This ap- 

proach, proposed by Krile et. a1. , 22 smears unwanted 

crosstalk terms into diffuse background noise. 

Chapter V contains some concluding remarks and sug- 

gests some possible areas of future investigation. 



CHAPTER I1 

2 .  GENERAL LINEAR SYSTEMS CHARACTERIZATION THEORY 

A system may be abstracted into three basic components: 

an input, a black box, and an output. For a given set of 

conditions on the black box, the output is simply the re- 

sponse of the black box to a given input. A system can 

be multidimensional and have associated with its input- 

output domain any number of physical quantities. An 

electronic circuit-type system, for example, has associ- 

ated with its input-output domain temporal voltage and 

current waveforms. A coherent processor, on the other 

hand, has associated with its input-output domains two- 

dimensional spatial variations in electric field intensity 

(light). Input-output domains for a given system need not 

be the same. For example, television has both acoustical 

and optical output domains corresponding to a single tem- 

poral voltage input. 

In a more mathematical sense, we can think of a system 

in terms of a mapping. An input is mapped to an output, 

according to a deterministic mapping rule dictated by 

the black box. If we denote our input by f(y) and our 

output by g (x) , then 23 



Here, S ( * )  corresponds to the mapping rule or system 

operator. That is, the output, g(x), corresponds to the 

input, f ( y ) ,  being operated on by the system operator 

S ( * ) .  Again, the input and output can correspond to 

any physical quantity such as voltage or temperature, 

and the variables x and y can correspond to any variable 

domain (such as space or time) in any desired dimension, 

When applied to coherent optical processors, both g(*) 

and f(e) denote electric field amplitude, and both x and 

y correspond to two-dimensional spatial output and input 

planes respectively. 

The general system characterization in Eq. 2-1 leaves 

little room for further development. In order to charac- 

terize this system completely, we would need to catalog 

the system output corresponding to every possible input 

under all possible system conditions. To avoid performing 

of this formidable task, further assumptions need to be 

made concerning out black box. 

2.1. Classical Linear System Characterization 

The most popular system assumption is that of lin- 

earity where two basic suppositions are made: 1) The 

response of the system to the sum of a number of inputs 

is equivalent to the sum of the system's response to each 

of the inputs individually and 2) amplification of the 



input will result only in the equivalent amplification of 

the output. These system properties are known respectively 

as superposition and homogeneity and together constitute 

the definition of linearity. We write these conditions 

respectively as 

and 

where a is a constant independent of the y variable. 

These two conditions may be combined into a single neces- 

sary and sufficient condition for linearity: 

While no physical system is exactly linear, the concept 

of linearity allows powerful mathematical treatment and 

in many instances excellent description of a system pro- 

cess. 

Linear systems can be described by the superposition 

integral which we shall now derive. We begin with the 

sifting property of the Dirac delta function: 2 3  



This relationship is substituted into the system charac- 

terization in Eq. 2-1. Since the system operator, S(*), 

is linear, we can make the following two observations: 

1) Thinking of the integral as a continuum sum, we can 

take the operator inside the integral sign due to the 

superposition property of Eq. 2-2. 2) Since the system 

operator operates only on functions of y, the terms f(5) 

and d< may be factored out of the system operation due to 

the homogeneity property sf Eq. 2-3. This leaves 

The quantity S[B(y-<)I is interpreted as the system re- 

sponse to an input Dirac delta function located at the 

input coordinate y = 6. This response has various names, 

including the impulse response and the system Greens 

function. In optics, it is referred to as either the 

system line spread function or the system point spread 

function depending on whether analysis is being performed 

in one or two dimensions. Since our treatment to date 

has a one-dimensional flavor, we will refer to this re- 

sponse as the system line spread function and write it 

Then, Eq. 2-6 becomes the superpositional integral: 



It should be noted that the use of the line spread 

function notation here is not that which is convention- 

ally used. 23-24 There are. however, certain computational 

advantages of this notation5' 25-27 which will soon become 

clear. 

Let us now physically interpret the superposition 

integral description of the linear system. In order to 

completely characterize a system in this manner, we must 

catalog the responses of our system to Dirac delta inputs 

at every point of our input space. The number of re- 

quired responses is thus uncountably infinite. 

For coherent optical systems, we make the following 

physical interpretation: A line source placed on our 

input plane at y = 5 ,  possibly by the focusing of an 

incident plane wave with a lens, gives rise to a field 

amplitude distribution on our output plane which is the 

system line spread function corresponding to the input 

coordinate y = 5 .  As the input line source explores new 

positions on the input plane, the line spread function 

shifts and/or changes shape. 

Suppose that the line spread function shifts directly 

with the input Dirac delta without changing shape. That 

is, if we move our input Dirac delta a distance d, then 



our output also shifts a distance d and otherwise remains 

unchanged. The system is then said to be space-invariant 

and the line spread function takes on the form 

In temporal systems, this property is referred to as time- 

invariance and in optics as spatial invariance or isopla- 

nicity. 

Actually, the properties of linearity and invariance 

are independent. That is, there are systems which are 

invariant and not linear. An invariant system is simply 

one in which the output shifts directly with the input for 
a 

all inputs. 

For linear invariant systems, the superposition in- 

tegral becomes the convolution integral: 

One of the computational advantages of linear invariant 

systems is the applicability of Fourier analysis in their 

treatment. We define the Fourier transform of a signal 

m 

= / s (x) exp ( -  j 2afxx) ax. (2-11) 
-a3 

Here Fx(e )  refers to the Fourier transform operator with 



respect to x, and fx is the frequency variable correspond- 

ing to x. Here, and henceforth, a capital letters refers 

to the Fourier transform of the corresponding lower case 

letter. (e.9.. S (fx) is the Fourier transform of s (x) ) . 
Suppose, then, we apply the Fourier transform oper- 

ator to both side of the convolution integral in Eq. 2-10. 

Since the Fourier operator is linear, we may bring it 

through the integral sign and past the input to operate 

only on the system line spread function. Utilizing the 

shift theorem28 we write 

This familiar relationship is the statement of the Four- 

ier domain input-output statement of a linear invariant 

system. The Fourier transform of the line spread func- 

tion, Hx(fx), is referred to as the system transfer func- 

tion, or simply the system function. The relationship 

in Eq. 2-12 reduces the convolution integral to the more 

computationally attractive operation of multiplication. 

The system discriptions presented to this point 

are relatively standard. 23-24128-29 In the remainder of 

this chapter, various other methods of linear system char- 

acterization are presented, These inelude generalization of 



the superposition integral concept to other response map- 

pings of continuum orthonormal basis sets of which the 

Dirac delta set is a special case. Also presented are 

three schemes by which the required number of cataloged 

responses is reduced from a continuum to a countably in- 

finite set. Each of these three methods requires assump- 

tions on the system input and/or line spread function. 

As will be seen, the three schemes are highly complemen- 

tary to each other. The overall purpose of this chapter 

is to establish a wealth of linear system theory to be 

later utilized in the development of coherent processors 

capable of performing a wide class of linear operations. 

The theory, however, is applicable to all linear systems, 

2.2, Continuum Orthonormal Response Characterization 

The conventional superposition integral can be 

viewed as a special case of system characterization 

through cataloging the system response to each element 

in a continuum basis set. A continuum set, I$x(<)l, is 

said to be orthonormal if 30 

where " * "  denotes complex conjugation. In our linear 

system treatment in the previous section, {6(y - 6)) 



obviously conforms to this definition. 2 9 

A system input, f(y), can be expressed in terms of 

a continuum basis set by 

where 

We can prove the validity of this relationship as follows: 

Substitute Eq. 2-15 into E q .  2-14 and interchange the 

order of integration. Utilizing the orthonormality con- 

dition of E q .  2-13 and the sifting property of the Dirac 

delta function in E q .  2-7 will then reduce the result to 

the identity f (y) = f (y) . 
To develop the input-output relationship of a linear 

system corresponding to an input f(y), we substitute E q .  

2-14 into our system operator in Eq. 2-1. As in the 

development of the superposition integral, we make the 

following two observations concerning our linear operator 

S(*): I) Viewing the integral as a continuum sum, we 

can bring the system operator inside the integral due 

to the superposition property of E q .  2-2. 2) Since the 

operator only operates on functions of y, we can factor 

out the input f ( 5 )  and the difgerential d< due to the 



homogeneity property of Eq. 2-3. The system operator thus 

only operates on the orthonormal basis set element: 

Together with Eq. 2-15, this is the general statement of 

the continuum orthonormal basis set response characteri- 

zation of a linear system. 

Let's interpret it. In our input space, we place 

our continuum basis set element $ (6). As we vary 5 in 
Y 

$ (5) the corresponding system output, S [lly (6) 1 is cat- 
Y 
aloged. With knowledge of the system response for all Sf 

the system is completely defined. For an arbitrary input, 

f (y) , the functional coefficient a f c )  is computed from 
Eq. 2-15 and substituted into Eq. 2-16 to determine the 

corresponding system output. Note that, in general, the 

set {S [ $  (5) 1 is not orthogonal. 
Y 

2.2.1. Spatial Frequency Response 

As was mentioned, the superposition integral in Eq. 

2-5 is a special case of this relation. Here, l/iy(<) = 

6 (y - 6). By the sifting property of the Dirac delta in 

Eq. 2-5, it follows that a(<) = f (6) and, from Eq. 2-7, 

S[4~~(5)1 = h(x - 5; 5) - 
Another continuum basis set that is meaningful in 

engineering applications is the complex sinusoid: 



Here, v is used instead of 5 due to the obvious frequency 

personality of the variable. From Eq. 2-15, our functional 

coefficient is seen to be the Fourier transform of the 

input : 

Due to its extensive use later, we will distinguish the 

response to an input complex sinusoid with the name "fre- 

quency response" and denote it by 

k(x - cv; v) & S[exp(j2nvy)]. (2-19) 

This particular notation is used due to certain computa- 

tional advantages. The constant c merely retains dimens- 

ional consistancy between x and v which have reciprocal 

units. 

Substituting Eqs. 2-18 and 2-29 into the general 

continuum orthonormal response characterization of ~ q .  

2-16 gives 
m 

g(x) = I F (v)k(x - cv; v)dv. (2-20) 
-m 

Note the computational similarities between this frequency 

response characterization and the superposition integral 

repeated here: 



From our definition of the frequency response in Eq. 2-19, 

we can use the superposition integral to write 

As such, the frequency response is simply the inverse 

Fourier transform ~f the line spread function. Inspection 

of Eqs. 2-20 and 2-21 also dictates this must be true if 

Parseval's theorem is to be satisfied.28 That is, if f (5) 

and F (v) are Fourier transform pairs, then h(x-5; <)  and 

kIx-cv;v) must also be Fourier transform pairs. 

2.2.2. Output Frequency Mapping 

For purposes of discussion, assume that both 5 and 

x are spatial variables. It follows then that v and fx 

respectively are the corresponding frequency variables. 

Thus, the superposition integral maps an input spatial 

domain to an output spatial domain and the frequency re- 

sponse characterization maps the input frequency domain 

to an output spatial domain. It is also possible to 

directly ma,p to the output frequency domain. To do this, 

in accordance to our observations concerning the relation 

between spatial and frequency variables, the following 

two Fourier transform operators are defined on function 

s1x,5) : 



and 

Application of the linear operator Fx(*) to both sides of 

the superposition integral of Eq. (2 -8)  gives 

where, in the second step we have utilized the shift 

theorem of Fourier transform theory. ** Here, we are 
directly mapping the input spatial domain to the output 

frequency domain. Before applying a similar procedure to 

the frequency response characterization, it is instruc- 

tive to discuss the interpretation of Eq. 2-25. 

First of all, note that we are still using the line 

spread function notation given in Eq. 2-7. The computa- 

tional advantage of this particular notation choice is 

made clear in the development of Eq. 2-25. Mathernatic- 

ally, one makes the transition from h(x - 5;  5)  to h(x; 6) 

by simple variable manipulation- A straightforward pro- 

cedure for doing this is to make the substitution x = (x-6) 

i- 5 for all x's appearing in h(x - €,; 5 ) .  To form h(x; 5)  , 



one then simply substitutes x's for all (x - 5)  's. 

In a more physical sense, the transition from h(x-5;S) 

to h(x; 6) can probably be best interpreted by visualizing 

a temporal linear system. With reference to Fig. 2.la, 

we first excite the system with a Dirac delta at input time 

5 = 0. The system responds in this example with the tri- 

angular response shown. We wait a bit, and again excite 

the system at a later time 5 > 0. The system response is 

now a triangle of shorter duration. Note that the system 

shown here is causal in that we can have no system re- 

sponse prior to application of an input. As such, the 

system impulse response (line spread function) must be 

identically zero for x - 5 < 0. Thus the line x - 5 = 0 

is a reference line of sorts for our response. In the 

more general (non-causal) case, the line x .= 5 is a ref- 

erence or a common system axis for comparison of the 

relation of the location of the input Dirac delta to the 

corresponding system line spread function. As is shown 

in Fig. 2.lb, the transition from h(x - 5; 5 )  to hlx; 5) 

is thus a shift of this reference axis to the origin for 

all possible 5. 

In a cruder sense, we can envision the transition 

from h(x - 5; 5)  to h(x; 5 )  as follows. For the invariant 

case, h (x - 5 )  varies directly as 8 (y - 5 )  . That is, as 

8 ( y  - 5)  moves up the input plane, h(x - 5) moves up the 



Figure 2.1 An example of a space-variant system's line 
spread function on the (x,<) plane in two 
different forms. 



output plane without changing shape. In the linear vari- 

ant case we can also envision h (x - 5 ;  5 )  moving up the 

plane, but changing shape as it does so. Returning to 

the invariant case, make the transition from h (x - <)  to 

h(x) as in Fig. 2.2. As the input Dirac delta moves up 

the plane, h(x) remains unchanged in position and shape. 

Similarly, h(x; 5)  may be thought of as remaining unchang- 

ing in its position. That is, it does not shift as before, 

but, as the input Dirac delta moves, h(x; 5)  changes shape. 

Again, this view of h (x - 5;  5 )  vs h (x; 5)  is crude, but 

does provide for a somewhat intuitive feeling of physical 

interpretation. 

Returning now to the output frequency mapping rela- 

tion in Eq. 2-25, we can generalize the idea of the system 

transfer function to a general linear system. We define 

the system transfer function as 

our output frequency mapping in Eq. 2-25 can then be 

written 

Note that the generalized transfer function is sensitive 

to input location, €,. Note also that, for the invariant 

case, Hx(fx; 5 )  + Hx (fx) and Zq. 2-27 takes on the famil- 



Figure 2.2 An example of a space-invariant system's line 
spread function on the(x,<) plane in two 
different forms. 



iar product form given in Eq. 2-12. 

Equation 2-25 gives an input spatial to output £re- 

quency mapping. An input frequency to output frequency 

mapping can be developed by applying similar steps to 

the frequency response characterization in Eq. 2-20: 

(2-28) 

where the inverse Fourier transform operator with respect 

to 5 is given by 

From Eqs. 2-20, 2-21, 2-25, and 2-28, we have expres- 

sions covering all possible frequency/spatial-input/out- 

put mappings. A summary is given in Table 2.1. These 

relationships, which have roots in the generalized con- 

tinuum orthonormal basis set response characterization 

of linear systems, lend a flexibility to linear system 

representation which will later be utilized in linear 

coherent processor implementation schemes. 

2.3. The - Piecewise Isoplanatic Approximation (PIA) 
In the previous section, we require a continuum 



Table 2.1 Summary of all possible input to output 
mappings from space and/or frequency 
domain to space and/or frequency domain. 



cataloging of system responses in order to completely char- 

acterize our linear system. By making certain assumptions 

or approximations concerning the system and/or input class, 

it is possible to reduce this to a countably infinite num- 

ber of required input-output relationships. We will dis- 

cuss three such linear system characterizations the first 

of which is the piecewise isoplanatic approximation (PIA). 7 

In optics nomenclature, the terms space-invariant and 

isoplanatic are equivalent. Thus, an isoplanatic system's 

input-output relationship is given by the convolution in- 

tegral. A class of systems which lie between the isopla- 

natic and space-variant classification consists of those 

systems which are piecewise isoplanatic.26 The input 

spaces of such systems consist of a number of adjoined 

isoplanatic patches. 31-32 For this class of linear systems, 

as an input Dirac delta explores a given isoplanatic patch, 

the corresponding line spread function shifts directly 

without changing shape. That is, within a single isopla- 

natic patch, the system is space-invariant, When the in- 

put Dirac delta moves from one patch to the next, the line 

spread function immediately changes shape. While the in- 

put Dirac delta explores this second isoplanatic patch, 

however, the corresponding output response will again shift 

accordingly. Thus, we may interpret the piecewise iso- 

planatic system as a number of space-invariant systems. 



A given input, £(<I, is divided into isopkanatic regions. 

Each isoplanatic input region serves as an input to a space- 

invariant system defined by the impulse response assigned 

to the isoplanatic patch. The outputs of each of these 

component systems are summed to give the output of the 

overall piecewise isoplanatic system. 

The power of the piecewise isoplanatic system con- 

cept lies in its use for approximating space-variant 

systems. If the line spread function of a space-variant 

system does not change shape drastically corresponding 

to small input region, then we may approximate the system 

as isoplanatic over this region. The result of making 

this approximation over a large number of disjoint regions 

is appropriately termed a piecewise isoplanatic approxi- 

mation or PIA.' An illustration of a possible P I A  as 

applied to an example line spread function is pictured 

in Fig. 2 . 3 .  

We now will proceed with a brief overview of the 

mathematics of the PIA. Let the nth input isoplanatic 

patch in our one-dimensional treatment extend from S=R n 

to 5=un. The midpoint of this patch is 

and the patch's width is 



Figure 2.3 A possible piecewise isoplanatic approximation 
( P I A )  of the space-variant system line spread 
function in Figure 2.1. 



We assume adjacent patches are adjoined so that the upper 

point on the nth patch is equivalent to the lower point 

of the (n + 1) St patch. That is 

For each isoplanatically modeled patch, we must some- 

how choose a single space-invariant line spread function. 

If our parent space-variant system has line spread function 

h ( x  - 5;  < ) ,  it follows that a reasonable choice of the 

isoplanatic patch line spread function would be h(x-tn;gn) 

where 

< V Rn I En - n * ( 2 - 3 3 )  

This is, our descriptive space-invariant line spread func- 

tion should correspond to the system response to an input 

Dirac delta function placed somewhere within the isopla- 

natic patch. 

Suppose then, we have knowledge of 

for each isoplanatic patch. We must now divide our in- 

put, £(<), into isoplanatic patches. Thus, let 



We assume adjacent patches are adjoined so that the upper 

point on the nth patch is equivalent to the lower point 

of the (n + 1) St patch. That is 

For each isoplanatically modeled patch, we must some- 

how choose a single space-invariant line spread function. 

If our parent space-variant system has line spread function 

h(x - 5; E , ) !  it follows that a reasonable choice of the 

isoplanatic patch line spread function would be h(x-Sn;S,) 

where 

< V gn I En - n * ( 2 - 3 3 )  

This is, our descriptive space-invariant Pine spread func- 

tion should correspond to the system response to an input 

Dirac delta function placed somewhere within the isopla- 

natic patch. 

Suppose then, we have knowledge of 

for each isoplanatic patch. We must now divide our in- 

put, f(E,), into isoplanatic patches. Thus, let 



where 

The output of our piecewise isoplanatically modeled 

system can now be determined by operating on the input 

with our linear system operator in Eq. 2-1. We can ex- 

tract the summation sign due to the homogeneity property 

of Eq. 2.2 to give 

We place the " - "  over g to denote that our computed out- 

put is a PIA of the true output. Over each segment of 

the input lying within an isoplanatic patch, the system 

operator is space-invariant and can thus be expressed 

via the convolution integral in Eq. 2-10. Our desired 

line spread function is given by Eq. 2-34. Thus: 

where " * "  denotes convolution. Substituting this result 

into Eq. 2-37 gives 

Using the shift theorem and the linearity of the Fourier 



operatorr2* we can write the Fourier transform of the PIA 

as 

We now inverse transform, this time grouping the complex 

exponential with the system transfer function. Doing 

this changes the shift from the input to the line spread 

function: 

This is the desired final form of the PIA. Mote that we 

have here approximated our superposition integral as a 

summation of convolutions. Equivalently, we can interpret 

the PIA as a number of outputs of isoplanatic systems 

which, when superimposed, give an approximate output to 

the parent space-variant system. 

To further compare the PIA output to the true out- 

put, we substitute Eq. 2-36 into Eq. 2-41 and express 

our convobutional operation in integral form. The re- 

sult is 

Consider then, the system output given by the superposi- 

tion integral in Eq. 2-21. We can break up our range of 



integration from -m to into those regions we have modeled 

as isoplanatic and write: 

One sees that as each isoplanatic patch width narrows 

around En (matched by a corresponding increase in patch 

density), the PIA in Eq. 2-42 approaches the true output 

given by the superposition integral in Eq. 2-43. 

Let us now discuss some of the properties of the PIA. 

First of all, as promised, the number of required system 

responses has been reduced from the continuum number re- 

quired by the superposition integral to a countable number. 

That is, for the PIA, we need only one defining system re- 

lationship per isoplanatic patch. For inputs with finite 

support (space limited inputs), the PIA will require only 

a finite number of defining relationships. The price we 

pay lies in the work "approximation." How good an approxi- 

mation is the PIA? For the general ease, this is a dif- 

ficult question to answer. The development and use of 

the PIA is simply intuitively pleasing. For some specific 

example systems, the reader is referred to the work of 

Marks and  rile' who have shown that the PIA gives "good" 
results when applied to the magnifier and Fouzier trans- 

former. It should be noted also that when applied to 

invariant systems, the PIA and true outputs are identical 



since invariant systems can be thought of as a special 

class of piecewise isoplanatic systems. 

An important aspect of the PIA scheme is its charac- 

teristic of being essentially input independent. That 

is, the manner in which our line spread function changes 

shape as an input Dirac delta shifts is determined solely 

by the system. If the line spread function changes shape 

only slightly corresponding to an input interval, then 

we can model that interval as an isoplanatic patch. The 

act of input plane patch calibration is therefore inde- 

pendent of the input we choose. 

As a final note in this section, we should note that 

the PIA can also be applied to the input frequency domain 

using the system frequency response instead of the line 

spread function. Although the concept of a "piecewise 

frequency-invariant*" system requires a different physical 

interpretation, the mathematical development is identical 

to that of the PIA. One merely divides up the input 

spectrum into frequency-invariant (instead of isoplanatic) 

patches and utilizes a sample frequency response (instead 

of line spread function) from somewhere within each patch. 

*Frequency-invariant systems are defined rigourously in 

Appendix A. 



2.4. Discrete Orthonormal Basis Set Response (DBR) Charac- 

terization 

2.4.1. General 

The piecewise isoplanatic approximation is a method 

by which the required number of defining input-output re- 

lationships of a system can be reduced to a countable set. 

Another method of performing such a reduction uses a method 

somewhat similar to the previously discussed continuum 

orthonormal basis set response characterization. The only 

difference is that the orthonormal basis set is now dis- 

crete. Whereas the PIA is primarily system dependent, the 
a 

discrete orthonormal basis set response characterization 8 

(DBR for short) will be seen to be primarily dependent 

on the system input. 

In order to reduce our required number of defining 

input-output relations to a countable set, it is always 

necessary to make a restrictive assumption. In the PIA, 

we assumed the space-variant system was piecewise isopla- 

natic. For the DBR characterization, our restrictive 

assumption is that the class of allowable inputs can be 

expressed in terms of a specified orthonormal basis set. 

As we will see, the system can then be completely charac- 

terized by knowledge of the system response to each ele- 

ment in the given discrete orthonormal basis set. 



Before developing the DBR characterization of a linear 

system, it is instructive to review the concepts of the 

discrete orthonormal basis set. A set of functions, {$n(y)l, 

is said to be orthonormal in the discrete sense, if 

where 6nm is the Kronecker delta: 

1 ; n=rn 
6 = nm (2-45) 

O ; n f m .  

A discrete orthonormal basis set is said to be complete 30 

A signal, f ( y ) ,  can be expressed in terms of a complete 

discrete orthonormal basis set by the expansion 

where the coefficients, a are found from the inner pro- n' 

duct 
m * 

a = ! f (Y) qn (y)dy. n (2-48) 
-m 

We can prove the validity of this expansion as fol- 

lows. First, substitute Eq. 2-48 into Eq. 2-47 and ex- 

change orders of summation and integration. Utilizing 

the completeness property in Eq. 2-46 and the sifting 



property of the Dirac delta in Eq. 2-5 then reduces the 

relationship to the identity f (y) = f (y) . 
The DBR characterization of a linear system is found 

by substituting the orthonormal expansion in Eq, 2-47 

into the linear system operator of Eq. 2-1. We can extract 

the summation sign from the system operator due to the 

superposition property in Eq. 2-2. The coefficients may 

be factored out by using the homogeneity property of Eq. 

2-3. The result is 

Thus, we can express the output to the linear system with 

knowledge of the system's response to each element in the 

discrete orthonormal basis set. Let us denote this re- 

sponse by 

Thus, our expansion for the system output in Eq. 2-48 

becomes 

We can relate the response set elements in terms of the 

system line spread function by 



Note that the DBR set, {$,(x) 1 ,  is in general not ortho- 

gonal. 

2.4.2. The Sinc and Rect Response Characterizations 

With the general concept of the DBR characterization 

of linear systems established, we now specifically address 

two classes of inputs commonly encountered in signal pro- 

cessing. The first is the bandlimited whose 

expansion coefficients are simply the signal" sampled 

values for an appropriately chosen basis set, The second 

class are those inputs with finite support which can be 

expressed in the familiar Fourier series expansion. 

A bandlimited signal is, by definition, a signal 

whose Fourier transform has finite support. We will here 

specifically consider that class of low-pass signals, 

f(S)! whose Fourier transform is identically zero outside 

the interval ] v l  - < W. As such, we can write 

Such signals can be expressed via the  hitt taker^^ - Shan- 
sampling theorem23: 

where 



and 

sinrx sinc x A 
7TX 

The uniformly converging36 sampling theorem expansion in 

Eq. 2-54 can be considered as a special case of a dis- 

crete orthonormal expansion, Here, our basis set ele- 

ments are 

+,(y) = sinc 2W(y - 5,). 12-56) 

The expansion coefficients are simply the signal's sample 

values : 

'n 
= I f ( < )  sinc 2W ( <  - <,) d<. (2-57) 

-w . 

Utilizing Parseval's theorem gives 

1 - w 
v a n = F (~)exp(j2rv<~)rect(~)dv 

-CO 

To characterize a linear system for the class of 

bandlimited inputs, we need knowledge of the system re- 

sponse to all elements in the sinc basis set of Eq. 2-56. 

In accordance with Eqs. 2-50 and 2-58, our system output 

can be written as 



g ( x )  = f (En) S [sine 2W(y - 5,) 1 . (2-59) 
n 

This " s inc - r e sponse ' hha rac t e r i za t i on  has quite nice im- 

plementation properties as far as coherent processing is 

concerned. First of all, the sinc function is one that 

can be generated by quite straightforward optical means. 

We will dwell on this facet further in Chapter IV. Secondly, 

the expansion coefficients are simply the sample values 

of the signal. As such, no inner product computation, 

such as in Eq. 2-48, is required. Again the sinc response 

linear system characterization is valid only for the class 

of bandlimited inputs. 

A second input class consists of those inputs of fin- 

ite support. This class may be considered the Fourier dual 

of the bandlimited signal whose Fourier transform has fin- 

ite support. In the bandlimited case, sampling is per- 

formed in the spatial domain. For the class to now be 

considered, sampling will be performed in the frequency 

domain. 

We here consider only those inputs that are identically 

zero outside the interval 151 - < T. That is 

2 4  Such signals can be expressed in a Fourier series expan- 

sion: 



5 1 F (f n) exp (j 2nf .S) rect (x) f ( S )  = 
n 

where fn = n/2T. The rect term merely retains the zeroth 

order term of the periodic expansion which is our input. 

The Fourier series is also a special case of a discrete 

orthonormal expansion. The nth orthonormal basis function 

for the Fourier series is 

1 - 
Y $n(y) = LE ejZnfnY rect(=). (2-62) 

The expansion coefficients are thus sample values of the 

input's Fourier transform: 

In this computation, we have included the finite support 

of the input by virtue of Eq. 2-60. 

To characterize a linear system for the specified 

class of finite support (or space-limited) inputs, we 

require knowledge of the system response to all elements 

of the form of Eq. 2-62. With reference to Eqs. 2-50 

and 2-63, our system output is 



As with the sinc-response characterization, this "rect- 

response" characterization has quite nice implementation 

properties when applied to coherent processing. The re- 

quired orthonormal basis set elements can be generated 

straightforwardly and the expansion coefficients are simply 

the sample values of the input's Fourier transform. 

The sinc and rect responses are only two examples of 

orthonormal basis sets that can be applied to the charac- 

terization of a linear system. They do, however, utilize 

elements that, as we shall see, are easily generated by 

coherent optical techniques. Note also that, in general, 

DBR characterizations of linear systems places restriction 

only on the permissable class of inputs and is thus system 

independent. 

2.5. Sampling Theorem Representations 

In the previous section, we have seen that the class 

of bandlimited signals can be expressed via the Whittaker- 

Shannon sampling theorem. For certain systems, the sampl- 

ing theorem can also be applied to the line spread func- 

tion. We will here look at two cases. The first is when 

the line spread function, h(x; S ) ,  is bandlimited in x. 

In this case, we can express the system output an expansion 

utilizing samples of the line spread function of the form 

h(xn; 5)  This scheme is essentially input independent 



and thus can be grouped with the PIA in this regard. The 

second case where the sampling theorem is applicable to 

system characterization is when the line spread function, 

h (xi €,) , is bandlimited in 5. In order to apply the 

sampling theorem to this class of systems, the system in- 

put must also be bandlimited. Thus, unlike any other 

method thus far discussed, this scheme is both input and 

system dependent. 

The class of linear systems to which the two sampling 

theorems are applicable can be enlarged by considering the 

system frequency response instead of the line spread func- 

tion. For example, if h(x; 5)  is not bandlimited in x or 

€,, it might be possible that the corresponding k(x - cv; v )  

might be bandlimited with respect to one of its variable. 

For both of the sampling theorems considered, the 

system output is shown to be bandlimited and, as such, 

can be expressed by a conventional Whittaker-Shannon 

sampling theorem expansion. The required sample values 

of the output are shown to be the product of infinite 

matrices the components of which are the sample values 

of the system line spread function and input. A great 

simplification occurs for those systems falling into both 

classes for which the sampling theorems are applicable, 

that is, for line spread functions, h(x; € , I ,  that are 

bandlimited in both x and 5.  



2.5.1. Line Spread Function Bandlimited in x 

When we say a line spread function, h(x; < ) ,  is band- 

limited in x, we simply mean that the generalized transfer 

function, Hx(fx; 5 )  as defined in Eq. 2-26, has finite 

support in fx for all 5.  Let us consider only the low 

pass case where Hx(fx; 5 )  is identically zero for all 

Ifx[ > Wx. That is 

This relation is satisfied if our output Line spread 

function is bandlimited irrespective of the location of 

our input Dirac delta. We would thus expect that, regard- 

less of our input, our output would be bandlimited. We 

can show this by substituting Eq. 2-65 into the output 

frequency relationship in Eq. 2-27: 

Thus, irrespective of our input, the corresponding spectrum 

(Fourier transform) of the output will be identically zero 

for all /fxl > Wx. As such, we can express the system out- 

put by the following sampling theorem expansion: 

g (x) = 1 g (xn) sinc 2Wx (x - x n )  (2-67) 
n 

The output sample coefficients of this expansion are given 



We will later give alternate more computationally prone 

expressions of the sample output. The system line spread 

function can also be expressed in sampling theorem form: 25 

h(x; 5 )  = 1 h (xn; 5 )  sinc 2Wx(x - x,) 
n (2 -6  9) 

Substituting this,, result into the output frequency rela- 

tionship in Eq. 2-25 gives 

where, in the second step, we have recognized that 

I 1 X f [sinc 2Wx(x-xn) 1 = - exp (-32nf x rect(~tj;;). x 2Wx x n 

(2-71) 

Utilizing the similarity in definition between Fx(e) and 

f ( 0 )  as given in Eqs. 2-23 and 2-24, we can rewrite Eq. 5 

Inverse Fourier transformation then gives 



g (x) = 1 [f (x)h(xn; x) 1 *sinc 2Wx(x - xn) 
n ( 2 - 7 3 )  

where, again, "*"  denotes convolution. Note that in this 

expression we have expressed the system output as a sum- 

mation of convolutions. Thus, in effect, the space-variant 

system is represented by a number of isoplanatie systems 

each with an input-output relationship dictated by a con- 

volution operation. 

In our sampling theorem expression in Eq. 2-73 we 

are using sample line spread functions of the form h(xn;<) 

as exemplified in Figure 2-4. We physically measure these 

sample functions by placing on our output plane an array 

of detectors spaced as xn = n/2Wx. These detectors meas- 

ure the system output for an input 6(y). As the input 

Dirac delta moves to 6 ( y  - < ) ,  our corresponding output 

is h(x - 5 ;  5 ) .  In order for the nth detector to meas- 

ure h(xn; < ) ,  we must also shift our entire output array 

to be centered at x = 5. The output measured by the n th 

detector as a function of 5 is the desired h(x,: 5 ) -  

It is also possible, however, to measure our sample 

line spread function using an array that does not shift 

in accordance with the location of our input Dirac delta, 

This follows from the observation that if h(x; 5) is 

bandlimited in x, then so is h(x - 5 ;  6 ) .  That is from 

the shift theorem 28  



Figure 2.4 A result of sampling the line spread 
f u n c t i o n  in Figure 2.lb in x. 



Our measurement scheme here utilizes the same detector 

array as before but with no shifting of the detectors. 

As the input Dirac delta is positioned at different values 

of 5 ,  the nth output detector will measure h (xn - 6 :  5 )  . 
Note that through use of this sampling scheme, we cannot 

regain the functional form h (x,; 5) . 

2.5.2. Line Spread Function Bandlimited in 5 

In the previous section, we described a sampling 

theorem for linear space-variant systems with line spread 

functions that are bandlimited in x. That is, the s9stem 

transfer function, H x ( f x ;  5 ) .  has finite support in f for 
X 

all 5. An alternate sampling theorem exists when the 

line spread function h(x; < ) ,  is bandlimited in 5 for all 

x. To facilitate definition of the corresponding band- 

width, we define the system "variation spectrum" as 

Note the similarity between the definitions of the system 

variation spectrum and the system transfer function repeated 

here from Eq. 2-26: 



The function, H (x;v), is called the variation spec- 5 
trum because its support is a measure of how the system 

line spread function changes shape when 5 is varied. The 

system is said to be variation limited if H6(x; v )  has 

finite support in v for all x. We will here consider the 

low pass case where 

The quantity 2Wv is appropriately called the variation 

bandwidth. 

To illustrate the application of the variation band- 

width to measure the spatial variance of a system, con-- 

sider the case where the system is isoplanatic. That is 

h (x; 5 )  + h (x) . In this case, the correspondin? varia- 

tion spectrum is H,(x; v)  = h(x) 6 ( v )  . The corresponding 
5 

variation bandwidth is zero. Thus, we can conclude, as 

expected, that an isoplanatic system is indeed space-in- 

variant. 

Returning now to the sampling theorem derivation, 

we inspect the computational form of the output frequency 

relationship in Eq. 2-25 which is repeated here: 

A sufficient condition for the product f (6) h(x; 5 )  to be 



bandlimited in 5 is that our input, f(c), be bandlimited 

and that our system be variation limited with a variation 

bandwidth of, say, 2Wv Let the bandwidth of our input be 

2Wf where 

v , = F ( v )  rect (-), 
2Wf 

Multiplication in the spatial (5) domain corresponds to 

convolution in the frequency ( v )  domain. If two functions 

have finite support, then the support of the convolution 

of the two functions is upper bounded by the sun of the 

supports of the component functions. Thus, we conclude 

that the upper bound for the bandwidth of the product 

f(<)h(x;<) in 5 is given by the sum of the component band- 

widths. That is 

where the bandwidth sum, 2Ws, is given by 

We can immediately express the product f ( S )  h (x;  <)  in a 

sampling theorem expansion: 



where 

Substituting E q .  2-81 into E q .  2-77 and utilizing the 

Fourier transform relationship in E q .  2-71 gives 

1 f 
- - -  X 1 f (Sn)Hx(fx' 5,) exp (-j2nf 5 rect (-1, 
2Ws n x n 2ws 

Here, we have used the system transfer function notation 

in E q .  2-26. Inverse Fourier transformation gives the 

final result: 

As with the case where h(x; 5 )  was bandlimited in x, 

we have here reduced our system characterization to a 

summation of convolutions or, equivalently, the output 

of our space-variant system is given by the superposition 

of the outputs of a number of isop1anati.c systems. In 

Eq.  2-84, however, the input as well as the line spread 

function is sampled in contrast to the previous scheme 

of E q .  2-72 where only the line spread function is sampled. 

Thus, this scheme is both input and system dependent. 

In a sense we have oversampled in the expression in E q .  

2-84. That is, the minimum allowable sampling rate for 



our input is 2Wf and the line spread function requires 

a sampling rate of only 2W . But we have sampled both the 
V 

input and line spread function at a rate of 2Ws = 2Wf + 

2Wv. As is shown in Appendix B ,  however, sampling at the 

minimum allowable rates results in an expression that is 

highly unattractive in a computational sense when compared 

to the intuitively pleasing form of Eq. 2-84. 

The physical interpretation of sampling h(x; 5) in 5 

is much different than sampling it in x. In the latter 

case, we have seen that an array of output detectors is 

required which records the system line spread function as 

the input d(y-5) explores the continuum values of 5.  When 

sampling h (x; 5) in 4, however, it is necessary to record 

the entire output field. An input b(y-5,) appears at the 

output as h(x - 5,; 5,) which is a sample line spread 

function. The Dirac delta is then translated by a samp- 

ling interval corresponding to the next value of n and 

the process is repeated. An example of a line spread 

function sampled in this manner is in Fig. 2.5. It is 

important to note that the condition that h(x; 5) is band- 

limited in 5 does not necessarily imply that h(x-6; 5) is 

bandlimited in 5. This point will be discussed shortly. 

Consider, next, the implementation of Eq:2-84. Again, 

our space-variant system is represented as the sum of a 

number of isoplanatic systems. The nth component isopla- 



Figure 2.5 A result of sampling the line spread 
function in Figure 2.lb in 6 .  



natic system has a line spread function h(x - en; 5,) and 

is fed a sample value of the input of the form f(<n)6(y-< 1 .  n 

The outputs from the component systems are added and then 

passed through a low pass filter of bandwidth 2Ws which 

supplies the required convolution sinc in Eq. 2-84. 

2 . 5 . 3 .  Discrete (Matrix) Representations 

We have discussed two space-variant sampling theorems; 

one when h(x; 5 )  is bandlimited in x and the other when 

both h(x; 5) and f ( 5 )  are bandlimited in 5. In both cases, 

the corresponding system outputs are bandlimited and thus 

can also be expressed in a sampling theorem expansion. In 

this section, we will be concerned with directly determin- 

ing these sample values of the system output under various 

conditions. 

Consider first the case where the input is bandlimited 

and h(x; 5) is bandlimited in 5. Prom the rect term in 

Eq. 2-83, we conclude the system output is bandlimited 

with bandwidth 2Ws. As such, we can express the output 

in the following sampling theorem expansion: 

g(x1 = lg (xm) sinc 2wS ( x  - xm) 
m 

where here 

We now define the low-pass line spread function 



A 

The coefficient 2WS is used to assure that both h(-,a) and 

h(-,*) have identical units. Using the low-pass line 

spread function, the sampling theorem expression in Eq. 

2-84 can be written 

The expression for our output sample values follows immed- 

iately as 

This relationship can be viewed as a discrete version of 

the superposition integral in Eq. 2-8. The computational 

form is that of an infinite matrix. That is, an infinite 

vector composed of the sample input values multiplies an 

infinite matrix of the sample line spread function values 

to give an infinite vector composed of the corresponding 

output sample values. 

Let's now investigate the corresponding case when 

the system line spread function is bandlimited in x. From 

the rect term in Eq. 2-71, the system output is bandlimited 

in x with bandwidth 2Wx and can thus be expressed in the 

sampling theorem expansion in Eq. 2-85. But it is neces- 

sary to redefine xm in this relationship as 



In order to determine the output sample values in this 

case, we rewrite Eq. 2-72 in integral form: 

It follows that 

= 1 [f (x) h(xn; x) 1 *sine 2Wxx i (2-91) 
n x = x  - X .  m n 

As can be seen, the discrete treatment for this case does 

ma- not in general result in the computational attractiv, 

trix form encountered in Eq. 2-88. 

Computational simplifications occur in the discrete 

treatment for systems in which 1) the input is bandlin- 

ited and 2) the line spread function is bandlimited in 

both x and 6. Consider first the spectrum of the convo- 

lution term in Eq. 2-91: 

Consider then the case where,from Eq. 2 - 7 9 ,  h(x;() and 



f ( 5 )  are also bandlimited in 5 :  

If Ws < Wx, then the rect(fx/2Wx) tern in E q .  2-92 serves 

no purpose. That is, the term does not chop off higher 

frequencies simply because there are no frequencies great- 

er than W < Wx. For this condition, we conclude that s 

Thus, our sampling theorem expression in Eq. 2-91 becomes 

1 
g(xm) = - 1 f(xm - xn)h(xn; xrn -X n 1 ;  Ws < wX . 

2Wx n 
(2-94) 

Making the index change 3 = m - n gives the final desired 

relationship for this case: 

We have again arrived at an infinite matrix relationship. 

Note that we are again oversampling but in a different 

manner. Before sampling was performed at a rate of 2W s 

in the 5  direction. In Eq. 2-95, sampling is performed 

at a rate Wx > Ws in the 5  direction so that sampling 

indexes will match. 

Let us now apply a similar approach to the expansion 

in Eq. 2-88 in which the input is bandlimited and h(x;<) 



is bandlimited in 5. Consider the low-pass line spread 

function as defined in Eq. 2-86 for the case where Wx<W . 
S 

Employing arguments identical to those just used, we con- 

clude that 

in which case, Eq. 2-88 becomes 

When f (5) and h(x;S) are bandlimited in both x and 

E 1  either the expression in Eq. 2-95 or in Eq. 2-97 applies 

depending on which bandwidth. Ws or Wx, is larger. We can 

combine these two relations into a single expression by 

writing 

where 

and 

W = max [Wx Ws 1. (2-100) 

In all cases of Eq. 2-98, we are oversampling. Sup- 

pose that we wished to sample at the minimum allowable 

rate. That is, sample f(E) at a rate of 2Wf and sample 



h(x; 5) at a rate of 2Wx in x and 2Wy in 5. As is shown 

in Appendix B, the sample value of the output is given 

in this case by 

P r q g (xm) = '2 1 1 f (-1 h (-----I I 
2Wf 2Wx' 2Wv pqr 2W 

r P q  

where 

I (x) = [sinc(2Wfx - p) sinc(21vx - q)l*sinc (2Wxx - r). 
Pqr 

(2-102) 

Clearly, the discrete superposition in Eq. 2-98 is compu- 

tationally much simpler than the above triple sum of con- 

tinuous convolutions. The price we pay for this reduction 

in compQexity, however, is the increased sampling rate. 

2.5.4. Alternate Sampling Theorems 

We have developed two basic sampling theorems appli- 

cable to two classes of linear systems. The first is 

applicable to systems in which h(x; 5) (and thus h(x-E;<)) 

is bandlimited in x. The second is for variation limited 

systems with a bandlimited input. Clearly, these two 

linear system classes form only two small subsets of the 

set of all linear systems. 

It is possible, however, to widen this class by 

utilization of various forms of the system line spread 

function which might be bandlimited in one or more vari- 

ables. For example, if h(x - 5; 6) has finite support 



in 5 for all x, it follows that its Fourier transform 

with respect to 5 will be bandlimited in v for all x. 

The Fourier transform of the line spread function, as is 

given in Eq. 2-22, is simply the system frequency re- 

sponse. Thus we can utilize the frequency response char- 

acterization in Eq. 2-20 and develop a corresponding 

sampling theorem. For another system, h(x - <; 5 )  might 

be bandlimited in 5. Note that, from Fig. 2.1, the con- 

dition of h(x; < )  being bandlimited in < does not neces- 
sarily assure that h(x - <; 6) is bandlimited in <. At 
any rate this is a condition not yet discussed for which 

a sampling theorem can be easily derived. 

In this section, we will present a brief rundown of 

these and other possible input/system conditions where 

the sampling theorem is applicable. The list is in no 

way meant to be exhaustive. There are forms of the line 

spread function that we here have not even considered 

yet.25 The expressions to be listed are rather meant to 

illustrate the relative ease in application of sampling 

theorem concepts to the system process. For the purpose 

of completeness, the two sampling theorems previously 

discussed are included. In stating these sampling theorems, 

we use various forms of the system line spreaa function 

such as the frequency response, transfer function, varia- 

tion spectrum, etc. Throughout, we use the notation 



F ( v )  = F5 [f ( 5 )  1 . All of these sampling theorems are 

special cases of the superposition integral: 

1) For the case where h(x; 5)  is bandlimited in x, we 

rewrite from Eq. 2-65: 

This relation is a sufficient condition for the sampling 

theorem expansion in Eq. 2-73 repeated here: 

where xn = n/2Wx. 

2) The Fourier dual of the above occurs when 

I 
X = K~ (fx; V )  rect (-1. 

2Wx 

Note that this condition is equivalent to that in Eq. 2-104. 

That is, if h (x; E )  has bandwidth 2Wx in x, then so does 

k ( x ;  6). Under the condition of Eq. 2-106, our sampling 

theorem expansion is simply the Fourier dual sf Eq. 2-105: 

where, again, x = n/2Wx. n 



3) For the case where both f(5) and h ( x ;  5) are band- 

limited in <, our conditions are 

v  
HE (x; v )  = HE (x; v )  rect (-) 2W (2-108) 

and 

v  
F ( v )  = F ( v )  rect (-), (2-109) 

2Wf 

From Eq. 2-84,  our corresponding sampling theorem expres- 

sion is 

where Ws = W + Wf and tn = n/2Ws v  

4 )  The conditions for the Fourier dual of the above 

sampling theorem expansion are 

and 

It follows that the Fourier dual of Eq. 2-110 is then 

where Ts = Tv + Tf and v n  = n/2~< 



5) We here consider the case where hlx - 5; 5) is band- 
limited in 5. Since the frequency response is the Fourier 

transform of h(x - 5; 5), it follows that this condition 
is satisfied when 

V k(x - cv; V) = k(x - cv; v)rect(-), (2-114) 
2Wh 

We must also restrict the input to be bandlimited: 

F (v) = F (v) rect (v/2Wh). (2-115) 

It then follows from previous arguments that the product 

f(<)h(x - 5; 5) has bandwidth 2Wt = 2W i 2Wf. Thus, we k 

can write : 

where 5, = n/2Wt. Integrating over all 5 yields 

This is the desired sampling theorem expansion for the 

conditions in Eqs. 2-114 and 2-115. 

6) The conditions for the Fourier dual of the above samp- 

ling theorem expansion are 



5 h (x-5; 5) = h (x-<; 5) rect (----I 
2Th 

and 

The Fourier dual of Eq. 2-117 follows immediately as 

where T - - Th + T~ and vn = n/2Tt. t 

2.6. Characterization 

In this chapter, we have explored various methods by 

which a linear system can be characterized. In all cases, 

this characterization is performed by probing the system 

with various inputs and observing the corresponding system 

response. Under certain system and/or input class con- 

straints, the set of sufficient conditions required to 

completely characterize the system performance varies. 

For the general linear system with no restriction 

on the input class, cataloging the system response to all 

elements in a continuum orthonormal basis set sufficies for 

complete system characterization. Special cases of this 

scheme include use of the Dirac delta orth8fiormal basis 

set in which case the system is characterized by the super- 

position integral. The system response to each element 

in the Dirac delta class is termed the system line spread 



function. Another orthonornal basis set consists of the 

complex exponential whose input into the system results 

in the system frequency response. By appropriate manipu- 

lations of the frequency response and line spread function 

characterizations with Fourier transform operations, it 

was shown that the output spectrum in each case could be 

directly expressed. The ease in performing these manipu- 

lations was due primarily to our particular choice of 

line spread function and frequency response notation. 

Three characterization schemes in which restrictions 

were placed on the system and/or input were also discus- 

sed in this chapter. These consisted of the discrete 

orthonormal basis set response (DBX) characterization, 

the piecewise isoplanatic approximation (PIA) , and the 

sampling theorem characterizations. In each case, the 

continuum number of system responses required in the gen- 

eral case was reduced to a countable number. In certain 

instances, the system characterization reduced to the 

superposition of a number of invariant systems. Each of 

the three schemes is characterized by distinct properties 

that we shall now review and contrast, 

The DBR characterization scheme places a restriction 

on the class of allowable system inputs. That is, system 

inputs are restricted to those signals which can be ex- 

pressed in an orthonormal series expansion for a given 



orthonormal basis set. The scheme is thus only input de- 

pendent and can be utilized for any linear system. The 

system is completely characterized with knowledge of the 

system response due to each element in the discrete ortho- 

normal basis set. 

The PIA is a scheme that is input independent. That 

is, the restrictive assumption concerns only the system. 

The system line spread function is assumed to have suffi- 

ciently negligible variation with respect to its second 

variable over an input patch. The system can be then 

approximated as piecewise isoplanatic. In order to com- 

pletely characterize a piecewise isoplanatic system, we 

need knowledge of the system line spread functions cor- 

responding to an input Dirac delta placed within each of 

the input isoplanatic patches. The resulting system char- 

acterization consists of a countable n 

systems whose outputs are summed to give the approximated 

output of the parent linear variant system. 

The final method discussed for characterizing linear 

variant systems utilized application of the sampling 

theorem. One sampling theorem requires a bandlimiting 

assumption on the system line spread function and is 

thus input independent. The second sampling theorem re- 

quires that the system is variation limited and that the 

system input be bandlimited. This latter scheme is thus 



both input and system dependent. 

All of the system characterizations discussed will 

be applied in one degree or another, to the design of 

coherent optical processors for performing general space- 

variant operations although they can be applied to any 

linear system. The continuum orthonormal basis set re- 

sponse characterization will be utilized in the next 

chapter for design of one-dimensional space-variant pro- 

cessors. The PIA, DBR, and sampling theorem character- 

ization are used in Chapter IV to extend generalized 

space-variant processing to two dimensions, 

We note finally that the derivations of the system 

characterizations here were formal. That is, they lack 

mathematical rigor. Such treatment was used for reasons 

of continuity and clarity of presentation, The manipu- 

lations used however, are relatively standard 2,23,24,28, 

4 0 r 6 4 f  66 and can be shown to be valid under certain 

physical realizability criteria which, as witnessed by 

the experimental results in Chapter 111, are character- 

istic of coherent optical processors. 



CHAPTER 111 

3. ONE-DIMENSIONAL SPACE-VARIANT PROCESSORS 

In this chapter we shall utilize the continuum ortho- 

normal basis set response characterizations of linear 

systems to develop coherent optical processors capable of 

performing a wide class of one-dimensional (l-D) space- 

variant operations. Recognition of the capability of 

coherent processors to perform general linear integral 

type of operations can probably be credited to Cutrona 

et.al. More recent schemes in one-dimensional process- 

ing in~lude those of Rhodes et.al., 3 7 - 3 8  whose work pri- 

marily was concerned with frequency-variant processing. 

The bulk of the one-dimensional processing schemes 

in this chapter are due to the work of Marks et.al.14 and 

also follow closely the independent work of Goodman et.al. 13 

We begin this chapter with a presentation of two basic 

coherent processing schemes capable of performing a wide 

class of 1-D space-variant operations. The first, called 

the direct output display method, performs a one-dimensional 

space-variant operation and displays the system output 

along a line in the output plane of the coherent processor. 

The second scheme, termed the output spectrm display 

method does essentially the same thing, except the Fourier 

transform (or spectrum) of the system output is displayed. 



Both schemes utilize a line spread function mask on which 

the system line spread function is recorded. Thin lenses 

are utilized to perform appropriate Fourier transforma- 

tion and imaging operations. Numerous examples and experi- 

mental results are presented for various forms of these 

processors. 

Due to the limited dynamic range of photographic 

tran~parencies~the line spread function masks correspond- 

ing to certain linear operations might possibly not be 

implementable. It might be possible, however, to record 

the corresponding frequency response of the operation 

may be able to be recorded on a mask. Thus, it is in- 

structive to consider the Fourier duals of the previous 

two processors thereby increasing the class of space-var- 

iant systems to which the processor techniques are appli- 

cable. 

3.1. Direct Output Display (DOD) Method 

The direct output display (DOD) method for space- 

variant processing directly evaluates the superposition 

integral which we repeat here from Eq. 2-8: 

A coherent processor capable of evaluating the superposi- 

tion integral is shown in Figure 3-1. The one-dimensional 



Figure 3.1 A coherent optical processor for performing 
l - D  space-variant operations. The desired 
processor output lies along the x axis on 
plane P2. 



input f(5) is placed in plane P1 directly adjacent to a 

mask on which the system line spread function h(x - 5; 5) 
is recorded. Note that f ( E )  covers the entire ( x ,  5 )  

plane with no variation in the x direction. Cylindrical 

lenses El, L2 and L3 have respective focal lengths of 

Thus, when plane P1 is illuminated from the left with a 

coherent plane wave, Fourier transformation is performed 

in the 5 direction, and imaging is performed in.the x 

direction. l1 The field amplitude go (x, v ) on the output 
* 

plane P2 is then given by 

where the spatial frequency v is related to the actual 

horizontal distance x2 on plane P 2  by 

Here, A is the wavelength of the spatially coherent illum- 

ination. 

*Here and henceforth, constant multiplicative factors 
associated with field amplitude relations will be omitted 
since it is the functional interelations we are actually 
interested in. 



Comparing the superposition integral in Eq. 3-1 with 

the processor output [Eq. 3-33, we find that 

That is, the 1-D output, corresponding to the input and 

line spread function mask, appears in the processor out- 

put plane along the x axis. The desired space-variant 

operation has thus been performed. For later reference, 

this processing scheme, or modifications thereof, will 

be referred to as the direct output display or DOD method. 

An alternate and somewhat simpler scheme for perform- 

ing 1-D Fourier transformation is pictured in Fig. 3-2. 

As shown, spherical and cylindrical lenses, placed back 

to back, replace the three cylindrical lenses in Fig. 3-1. 

If we assign a focal length of f to both the spherical 

and cylindrical lens, this processor's output intensity 

distribution is the same as in Fig. 3-1 with v=x2/hf. 11 

The primary limitation of this processor is the 

allowable dynamic range of our line spread function mask. 

If a holographic mask is used then we must require that 

the values of h(x - t i t )  lie within the unit circle on 

the complex plane.23 As we shall see in our first example, 

however, this limitation can sometimes be overcome by 

clever design. 



Figure 3.2 Another coherent processor for performing 
1-D space-variant operations. The intensity 
distribution on P 2  is identical to that in 
Figure 1. 



3.1.1, One-Dimensional Magnification 

As our first example for specific application of 

the DOD processor, we consider the ideal magnifier which 

is characterized by the input-output relationship 

where M is the magnification. From the sifting property 

of the Dirac delta in Eq. 2-5, we write 

The corresponding line spread function is thus 

On the (x, 5 )  plane, we interpret this relation as a Dirac 

delta sheet along the line x = M<. The magnification is 

simply the line's slope. 

We may implement the DOD magnifier as shown in Fig. 

3-3. The Dirac delta sheet is formed by focusing a plane 

wave with a cylindrical lens mounted on a rotatable 

assembly. We can change the slope of this sheet, and 

thus the resulting magnification, by simply rotating the 

lens. Note here, that by appropriate design, we have gen- 

erated our line spread function without the use of a mask 

and thus have avoided the fundamental limitation of a 



Figure 3.3 DOD processor for performing 1 - D  
magnification. The magnification - 

is equal to the slope of lens Lm 
which is mounted on a rotatable 
assembly. 



mask's dynamic range i n  which a  Dirac d e l t a  obviously does 

no t  f a l l .  

In  Fig.  3-3, a t  t h e  l e n s '  back f o c a l  plane, we p lace  

t h e  inpu t  £ ( E l .  A s  before,  Four ier  t ransformation i s  per- 

formed i n  t h e  5 d i r e c t i o n  by c y l i n d r i c a l  l enses  ?, E 2 ,  

-and Lg. The d e s i r e d  ou tpu t ,  ( l / M )  f (x/M),  appears on 

plane P2 along t h e  x a x i s .  For t h e  case  of a double 

pulse inpu t ,  experimental  r e s u l t s  using t h i s  se tup  a r e  

shown i n  Fig.  3-4 f o r  va r ious  M. Note t h a t ,  al though 

2-D magnif icat ion i s  o p t i c a l l y  t r i v i a l 2 3  no conventional 

scheme can c o n t r o l  t h e  magnif icat ion parameter from a 

s i n g l e  plane a s  it i s  done here .  

3.1.2. Coordinate D i s t o r t i o n  

The magnifier scheme may be genera l ized  t o  l i n e a r  

systems w i t h  input-output r e l a t i o n s h i p s  of t h e  form 

where we s h a l l  r e f e r  t o  D(x) a s  t h e  d i s t o r t i o n  funct ion .  

From t h e  s i f t i n g  property of t h e  Birac d e l t a ,  we can 

w r i t e  

The l i n e  spread funct ion  assoc ia ted  with Eq. 3-9 i s  thus  



Figure 3.4 The output of the DOD processor 
in Fig. 3 to a double square pulse 
input. The magnifications are (a) 
M = 1/2, (b) M = 1, ( c )  M = 3. 



Our Dirac delta sheet is nuw bent along the locus 6 = ~ ( x )  

on the (x, 5 )  plane. Such a bent Dirac delta may be crudely 

generated by an appropriately bent glass rod which acts as 

a curved cylindrical lens. Experimental results, using a 

glass rod with a single bend, are shown in Fig. 3-5. The 

resulting lens slopes, as shown in Fig, 3-6(a), constitute 

different magnifications for 5 > 0 and 5 < 0. The DOD 

processor output for the input pulse configuration in Fig. 

3-6 (b) is shown in Fig. 3-5. 

An alternate form of distortion, used by Rhodes, 37 

employs the line spread function 

Here, the system output is a distorted version of the in- 

put" spectrum 

where F(v) is the Fourier transform of the input 



Figure 3.5 Output of a piecewise magnifier distortion 
processor corresponding to the inputs 
pictured in Fig. 3.6. The larger pulse is 
roughly three times the length of the 
smaller. 



Figure 3.6 Inputs for piecewise magnification coordinate 
distortion DOD processor: (a) The distortion 
function D(x). For 5 > 0, we have magnifica- 
tion of tan 70° - 3. For 5 < 0, tan 4S0 = 1. 
(b) Double square pulse input. 



I?hodes3' uses such a system for generating a log-frequency 

display of the input by utilizing a distortion function 

proportional to In ( x )  . 

3.1.3. Convolution and Correlation 

The convolution operation is a special case of the 

superposition integral that arises when the linear system 

is space-invariant (or isoplanatic). From Eq. 2-10, the 

one-dimensional convolution integral is 

= f (x) *h (XI. (3-15) 

The capability of conventional coherent processors to per- 

form - two-dimensional convolution is well known.23 All of 

these schemes, however, either necessitate that the 

Fourier transform of the line spread function (system 

transfer function) be recorded on an amplitude transmit- 

tance or require motion. These requirements inhibit real 

time application. As we will show, 1-D convolution can 

be performed with a variation of the DQD processor with 

no requirement of motion or Fourier encoding. 

Before presenting the DQD processors capable of per- 

forming convolution and correlation, we digress briefly 

for a discussion of the geometrical interpretations of 

the spatial shift encountered in Eq. 3-15. Consider the 



I-D function r ( c )  in the (x, 5 )  plane as pictured in Fig. 

3-7(a). If we rotate this transparency about the origin 

through an angle of 8 in the clockwise sense [Fig. 3-7(b)I, 

the resulting 2-D function is described by 

For the case of a 45' rotation, we obtain r[(< - x ) / n  1 .  

To eliminate the factor, scaling can be trivially accom- 

plished by a conventional ( 2 - 0 )  imaging system with mag- 

nification M = 1/c. Consider next physically rotating 

the transparency in Fig. 3-7(b) 180" about both its x and 

5 axes. This constitutes coordinate reversal. For the 

case of €? = 45", the result would be the transmittance 

r ( (x - <)/c] , which is the scaled shift required by 
the convolution integral. Various other rotations could 

of course be employed to obtain a number of such shifts 

and scalings. 

Consider, then, the DOD convolution processor as pic- 

tured in Fig. 3-8. In plane P.,, we place the transparency 

representing h ( 5 )  with the 45' rotation shown. This func- 

tion, hi(( - x)/cl is scaled and inverted by lenses La 
and Lb which have respective focal lengths of 



cos 8-  x sin 8 

c 

Figure 3.7 (a) A 1-D function r(<) on the (x,S)  
plane. (b) The transmittance in (a) 
rotated clockwise about the origin 
and angle of 0. (c) The transmittance 
in (b) for 0 = 45'  with a coordinate 
reversal formed by physically rotating 
(b) about its 5 and x axes. 
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Incident on plane P2 is the desired h(x - 5) which multi- 
plies the input transmittance f(<). The product is then 

processed as before by the three cylindrical lenses. The 

output (f * h) appears along the x axis in plane P3. 

A primary drawback to this processing scheme is find- 

ing two lenses which have a focal length ratio of n. An 

alternate DOD processor exists, however, that does not 

require the use of these scaling lenses. We will illus- 

trate such a processor that performs the correlation 

operation * : 

where " + "  denotes correlation. Comparison with Eq. 3-15 

reveals similar computational forms for convolution and 

correlation. 

Consider, then, placing the 1-D transmittances, f(<) 

and h(<), in plane P1 of the DOD processor in Fig. 3-1 

each rotated 4S0 in such a manner as to form the product 

The field amplitude in plane P a ,  after the 1-D Fourier 

transformation [Eq. 3-31 , is 

*For complex signals, h(-) is complex conjugated in this 
integral relation. 



where we have made the variable substitution 5 '  = (ti-x) /n. 
Along the x axis, we obtain the output 

This relationship is recognized as a scaled version of 

the correlation integral and is thus the desired result. 

Convolution can of course be performed in a similar man- 

ner by choosing appropriate orientations of the 1-D input 

transparencies. 

3.2. Entire Output Plane Utilization 

The purpose of the DOD processor is to compute one- 

dimensional linear integral operations, The solution 

appears along a line in the processor output plane. There 

do exist some computational manipulations, however, in which 

the entire output plane can be utilized. These cases are 

serendipities of the DOD processor scheme. We briefly 

consider here two cases: Laplace transform and ambiguity 

function display. 



3.2.1. Laplace Transform Display 

For the Laplace transform scheme, our line spread 

function mask is 

h(a - 5; 5) = exp(-aS)~(S) (3-22) 

where ~ ( 5 )  is the unit step function: 

The DOD processor output in Eq. 3-3 becomes 

where 

6 = 2 r v ,  

Equation 3-23 is immediately recognized as the one-sided 

Laplace transform of f(5) with frequency variable 

For this case, the (a, 6) output plane of the DOD processor 

may be interpreted as the complex s plane encountered in 

Laplace transform theory.28 A discussion of this specific 

DOD processor is given by Mueller and Carlson. 3 9  

3 .2 .2 .  Ambiguity Function Display 

The ambiguity function, first introduced by Woodward, 4 0  



has been applied in radar in predicting the capability of 

a given signal to determine simultaneously the range and 

velocity of a target. The range is determined by the time 

delay x and the velocity by the Doppler shift v ,  The ambi- 

guity function for a given real-valued signal f(xJ is 

In optics, Papoulis has employed the ambiguity function 

41 in analyzing diffraction phenomena. Cutrona et-al. 1,12 

and  resto on* have proposed a coherent ambiguity function 
processor that utilizes multiple channels to display the 

ambiguity function for discrete values of x. The scheme 

of Casasent et. generates 1-D slices of the ambiguity 

function in the ( v , x )  plane. Similar I-B displays have 

also been electronically produced.43 Use of the DOD pro- 

cessing scheme, initially reported by Said and Cooper 15 

and also independently discovered by Marks, Walkup, and 

 rile,'^ 1) displays / x ( v  ,x) 1 in a continuous (rather 

than quantized) form over the entire ( v , x )  plane, 2) has 

the capacity for extension to real time processing, and 

3) is easily implemented. 

Inspection of Eq. 3-27 reveals that it is the compu- 

tational. form of the output of the DOD processor in Eq. 

3-3 for an input of f (5)f ( 5  - x )  . Furthermore, the input 

is recognized as the integrand of the correlation integral 



in Eq. 3-18 for the case of - autocorrelation. Thus, when 

we compute an autocorrelation of a signal f(<) as pre- 

viously described, we are also computing the signal's 

ambiguity function. Recall, however, when the two trans- 

mittances were both appropriately rotated 4 5 "  in the input 

plane, the resulting processor output [Eq. 3-20] has a 

spatially varying phase.11 For identical inputs the out- 

put field amplitude is then given by 

In dealing with the ambiguity function, however, one is 

primarily concerned with the modulus squared of x ( * , m )  

The spatially varying phase term in Eq. 3-27 is thus of no 

concern since 

The intensity distribution on the output plane is thus a 

scaled version of the desired square modulus of the ambi- 

guity function. 

We will now evaluate the performance of the ambiguity 

function processor by comparing the processor output with 

the theoretical results for both single and docble pulse 



inputs. For a single pulse [Fig. 3-9(a)], we may write 

where 2T is the pulse duration. The geometric interpre- 

tation of f (6) , f [ (6 + x) /a] , and f [ (<+x) /a] f [ (<--x)/JZl 

are shown in Figs. 3-9 (b) , 9 (c) , and 9 (d) respectively. 
Substituting Eq. 3-29 into Eq. 3-27 followed by eval- 

uation yields the ambiguity function 

The corresponding output intensity is 

For purposes of identification, it is instructive 

to examine the locus of points where the ambiguity func- 

tion is identically zero. From Eq. 3-31, this zero locus 

may easily be shown to be 

where n is any nonzero integer. The piecewise hyperbolic 

nature of these curves is shown in Fig. 3-10. 



Figure 3 . 9  A single pulse (a) in time, (b) in the ( x , S )  
plane, (c) rotated 4 5 O  on the ( x , < )  plane to 
form f [ ( x  + 5)  / 42.1 , (d) the product of two 
pulses rotated 4 5 O  and -45'  on the ( x i < )  plane 
to form f [ ( < + x ) / 4 2 ] f  [ ( < - x ) / J 2 1 .  





The ambiguity function for a single pulse is gener- 

ated by appropriately rotating two identical thin slits 

in plane Pl of the coherent optical processor of Fig. 3-1. 

The resulting output is shown in Fig. 3-11. As can be 

seen, the coherent processor output compares quite nicely 

with the theoretical result in Pig. 3-10. A 3-D computer 

graph of the corresponding ambiguity function modulus can 

be found in Fig. 6-6 of Rihaczek. 44 

For a double pulse input [Fig. 3-12 (a) ] , we write 

2T 
E-2T1 6+2T~ + rect [ 2T f(<) = rect[- 

where, for convenience, the pulse separation 2T has been 

chosen to be equal to each pulse width. The geometrical 

interpretation of f [ (5+x) /a] f [ (6-x) /n] is shown in Fig. 
3-l2(b). The ambiguity function associated with the double 

pulse is 

2(2~-~xl)sincv(2~-~xI)cos (41~Tv)e 
- j nxv 

; I x ~ < ~ T  - 

- (2~-1x1) sincv(2T-1x1 )e -jnxv . 
; 2T< - 1x1 - <4T 

The corresponding output intensity is 

2 2 2 1~ ( v , ~ )  l 2  = 4(2T-1x1) sinc v(2~-lxl)cos (4nTv); lxl52~ 
2 2 (2~-1x1) sinc v(2~-]xl) ;2~<1x1<4~ - - 
2 2 (6~-1x1) sinc v(6T-1x1) ; 4T</x/<6T - - 



Figure 3.11 The ambiguity function (mo8ulus squared) 
display for a single pulse. 



Figure 3.12 (a) A double pulse. (b) The correspond- 
ing function f [ ( x + ~ ) / J 2 ] f [ ( x - S ) / J 2 ]  in 
the (x,E) plane. 



The equations describing the zero-value loci are easily 

shown to be 

where m is any integer, and as before, n is any nonzero 

integer. An illustration of these zero-value loci is 

offered in Fig. 3-13. 

By appropriately placing two identical double slits 

in plane PI of the coherent processor, the ambiguity func- 

tion for the double pulse is generated. The result, shown 

in Fig, 3-14 again compares quite favorably with the theory. 

One final note concerning the ambiguity function. 

If it is required to compute it without the spatially vary- 

ing phase, we can straightforwardly do so by using the 

spherical scaling lenses with focal length ratio of fi 

and three cylindrical lenses as discussed previously. 

3.3. Output Spectrum 

We now return to the topic of generalized one-dimen- 

sional space-variant processors. The DOD processor has 

been shown to compute directly the output of a 1-D linear 

space-variant system. An alternate scheme, which we shall 

call the output spectrum display or DOD method, directly 



Figure 3.13 Zero locus plot of the ambiguity function of 
a double pulse. 



Figure 3.14 The ambiguity function (modulus 
squared) display for a double pulse 



computes the Fourier transform (or spectrum) of the system 

output given by 

We have shown that this relation can be expressed as [from 

Eq. 2-25] : 

where, for a function p(x; 5) , we have defined the ~ourier 

operation: 

F [p(x: 511 = !Im p (x;<)exp (-j2nvS)dS, (3-39) 
5 

Equation 3-38 states that we may generate the output 

spectrum of a space-variant system by successive Fourier 

transformation of the product f(<)h(x;c) with respect to 

5 and x followed by evaluation along the line v = fx. 

The coherent processor capable of generating the out- 

put spectrum in Eq. 3-38 is pictured in Fig. 3-15. The 

input f ( 5 )  and the line spread function mask h(x; 5 )  are 

both placed in the front focal plane of spherical lens 

L1. In the back focal plane we obtain the familiar Four- 

ier transform relationship 23 



Figure  3.15 A coheren t  o p t i c a l  p roces so r  f o r  d i r e c t l y  
d i s p l a y i n g  t h e  o u t p u t  spectrum of a  space- 
v a r i a n t  system. 



where the spatial frequencies are related to the horizontal 

(x0) and vertical (yo) distances in the output plane by 

Note that we may write Eq. 3-40 as 

Comparing with Eq. 3-38, we conclude that 

That is, the desired 1-D output of the OSD processor in 

Fig. 3-15 lies on the 45'  line v = fx in plane P2. Re- 

markably, this familiar Fourier transform configuration 

thus has the capability of potentially performing a wide 

nunber of space-variant operations of the form of Eq. 3-38. 

When one is interested only in the magnitude of the 

output of the OSD processor, the Fourier transforming lens 

may be placed in the same plane as the input and line 

spread function mask. 23  One may furthermore completely 

discard the lens by simply including the lens' phase trans- 

mittance in the line spread function mask. In this case, 



we may perform 1-D space-variant processing with an input, 

a mask, and a few centimeters of free space. Also, note 

that vignetting would be eliminated by such a scheme. 

We now present some specific applications of the OSD 

processor, 

3.3.1. Magnifier Spectrum Display 

A straightforward application of the OSD processor is 

in displaying the spectrurn of an ideal magnifier. We be- 

gin by rewriting the magnifier's line spread function 

from Eq. 3-8 as 

As before, we may generate the required Dirac delta sheet 

with a cylindrical lens. The slope, however, is now equal 

to M - I. The OSD processor for spectrum magnification 

is pictured in Fig. 3-16. 

Experimental results displaying the spectrum of a 

magnified rectangular pulse are in Fig, 3-17. As shown, 

the resulting sinc functions are inversely magnified due 

to the scaling theorem of Fourier transform theory. 28  

Note that, for M = 0 (corresponding to a -45'  delta sheet 

input), the magnified pulse is a Dirac delta,,the spectrum 

of which is uniform. 



Figure 3-16 The OSD processor for displaying the 
spectrum of a magnified input. The 
slope of the Dirac delta sheet on 
plane PA is equal to M - 1. 



Figure 3-17 The output of the OSD processor in Fig. 3.16 
for a single square pulse input. The 
spectrum displays correspond to pulse mag- 
nification of (a) M = 2, (b) M = 3 / 2 ,  ( c )  
p j l =  1, (a)  P/1 = 2 / 3 ,  and (e) PI = 0. 



3.3.2. Cross Power S p e c t r a l  Density Display 

The c r o s s  power s p e c t r a l  d e n s i t y  funct ion  of two 

s i g n a l s ,  f (x)  and h (x)  , i s  def ined  a s  t h e  Four ier  t r a n s -  

form of t h e i r  c ross -cor re la t ion :  
2 9  

Consider,  then ,  p lac ing  two t r ansparenc ies  of f  (x )  and 

s ( x )  i n  plane Pl of Fig.  3-15 i n  such a manner a s  t o  form 

t h e  product f  (x) h ( < )  . From Eq.  3-40, t h e  processor  out -  

put  i s  

Go ( fx :  v)  = Jm ..am /Irn£ (x)  h (<)exp[-j2rr ( fxx  + v5) Idxdg. 

(3-46) 

Along t h e  45' l i n e  v = f  t h i s  becomes x 

where w e  have made t h e  v a r i a b l e  s u b s t i t u t i o n  5" 5 + x. 

W e  may r e w r i t e  Eq.  2-47 a s  

which i s  t h e  d e s i r e d  r e s u l t .  



3.4. Fourier Duals of the DOD and OSD Processors ----- 
The two processors thus far presented utilize line 

spread function masks. The BOD processor uses a mask of 

h (x - 5 ;  6) to compute g (x) while the OSD processor -uses 

an h(x; 5 )  mask to compute G(fx). It is also possible to 

use frequency response masks in one-dimensional processor 

design. The proeessors utilizing such masks can be con- 

sidered Fourier duals of their spatial domain counterparts. 

We investigate use of the frequency response mask for 

two basic reasons. First, it widens the ways in which a 

given space-variant operation can be performed and thus 

allows us to choose from a number of possible schemes that 

one which is most easily implemented. Secondly, due to 

the fundamental dynamic range limitation of photosensitive 

media, it might be possible that a given space-variant 

system line spread function mask might not be implementable 

whereas the corresponding frequency response mask might. 

Thus, the number of possible space-variant operations which 

can be performed by the one-dimensional processors is in- 

creased. 

3.4.1. The FDOD Processor 

The Fourier dual of the direct output dis'play (FDOD) 

processor is pictured in Fig. 3-18. This processor com- 

putes the frequency response characterization repeated 





here from Eq, 2-20: 

g(x) = F(v)k(x - cv; v)dv. (3-49) 

On plane P1 of the processor, we place our one-dimensional 

input, f(5). Cylindrical lens LC performs a one-dimens- 
* 

ional Fourier transform so that we have F(v) incident 

on plane P2. Also placed in this plane is the frequency 

response mask so that the field amplitude immediately to 

the right of P2 is 

F(v)k(x - cv; v), 13-50) 

As in the DOD processor, cylindrical lenses L1, L2 and 

L perform a one-dimensional Fourier transform. The field 
3 

amplitude on plane P3 is thus 

gob; 5) = F(v)k(x - cv; v)exp(-j2nvf)dv. 
(3-51) 

Comparison with Eq. 3-49 reveals that 

That is, our desired output lies along the x axis in the 

processor output plane. 

3.4.2. The FOSD Processor 

The Fourier dual to the output spectrum display (FOSD) 

*A single cylindrical lens ca be used due to the fact 
that f ( 5 )  is one-dimensional. ?l 



processor is shown in Pig. 3-19. This processor directly 

displays the Fourier transform of the space-variant system 

output according to Eq. 2-28 which we repeat here: 

On plane PI, we place our input f(<) which is again Four- 

ier transformed by the single cylindrical lens LC. The 

input spectrum, F ( v ) ,  multiplies the frequency response 

mask placed in plane P2 so that the field amplitude imed- 

iately to the right of P2 is 

Spherical lens Ls then performs a two-dimensional Fourier 

transform on this product. The field amplitude incident 

on plane Pj is thus 

Comparison with Eq. 3-53 reveals that 





Thus, our desired output appears in plane P along the line 3 

5 = cfx. 

In summary, we see that the Fourier dual FDOD and 

FOSD processors differ from the corresponding Fourier 

dual DOD and OSD processors in only two respects. First, 

a frequency response mask is used instead of a line spread 

function mask. Secondly, the system input is Fourier 

transformed before being processed. In all other respects, 

the processors are implemented identically. 

3.5. Alternate Interpretations --- of the 1-D Processors 

In presenting the OSD and FOSD processors, it was 

stated that they directly computed the Fourier transform 

of the system output. We can however, ascribe a quite 

different interpretation to their operation.45 Consider 

first Eq. 3-38 which we rewrite here in integral form: 

The system transfer function, Hx(-.*), was defined in Eq. 

2-26 as the Fourier transform of the line spread function 

in x.  Let us now define 

where the constant b retains dimensional consistancy 

between f x  and 5. Substituting into Eq. 3-57 gives a / 



linear integral relation akin to the superposition inte- 

gral: 

Thus, we can interpret the OSD processor operation as one 

that 1) directly computes the output spectrum of the lin- 

ear operation corresponding to h(x - t; 5) or 2) computes 
the output of the linear operation corresponding to 

h(O) (fx - bc: 5) In the latter case, we can compute the 

required mask transmittance from Eq. 3-58 for a desired 

linear operation corresponding to ( * .  * ) : 

The mask h(x; 51,  is the one which is actually utilized 

in the OSD processor. 

As with the OSD processor, an alternate interpre- 

tatfon can be ascribed to the FOSB processor. Here, we 

let 

where, as defined in Eq. 2-106, Kx ( , e l  is the Fourier 

transform of the frequency response with respect to x. 



We now can rewrite Eq. 3-53 as 

This integral relationship is akin to the frequency re- 

sponse characterization in Eq. 3-49. Thus, we can alter- 

nately interpret the output of the F O S D  processor as cor- 

responding to a frequency response characterization of a 

linear system with frequency response k(~) ( .  , * ) . Note 

that k (o) ( * ,  a ) and h'~) ( * , - ) are Fourier transform pairs : 

This relationship follows from Eqs. 3-59 and 3-62 and Par-- 

seval's theorem. 24  

An obvious question now arises. Can the DOD and FDOD 

processors be alternately interpreted as displaying the 

output spectrum corresponding to some linear operation? 

The answer is yes. The derivation of the alternate system 

line spread function in both cases is straightforwardly 

derived in the above indicated spirit. D u e  to the fact 

that we are primarily concerned with the output rather 

than the output spectrum, we will not further dwell on 

these alternate interpretations. 



3.6. Lensless Processing 

When initially presented, it was noted that if one 

is interested only in the OSD processor output intensity, 

it was possible to place the 1-D input and line spread 

function mask directly adjacent the spherical lens. Be- 

sides illiminating vingnetting, this scheme also allows 

the lens transmittance to also be included in the mask 

transmittance. With the alternate interpretation of the 

OSD processor presented in the previous section, we arrive 

at the rather amazing conclusion that a 1-D space-variant 

system's output magnitude can be displayed utilizing only 

an input, a mask, and a few centimeters of free space. 

Such physical characteristics are desireable, of course, 

when one is primarily concerned with processor weight, 

physical stability, and real space compactness. It is 

difficult, in fact, to imagine a processor in a more com- 

pact form. In this section, we present some example appli- 

cations and experimental results for two such I-D lens- 

less processors. 4 6  

3.6-1. Unit Magnifier 

Even though it is doubtful that the lensless unit 

magnifier will find wide spread use, its analysis reveals 

some rather fascinating aspects of lensless 1-D process- 

ing. The input-output relationship for our system is de- 

fined as 



where Af corresponds to the familiar wave length-focal 

length product. The line spread function corresponding 

to this operation is 

h (01 
(£x -b5: 5 )  = 6 [fx - 5/AfI. (3-65) 

From Eq. 3-58, it follows that 

5 Hx(fx: 5 )  = 6 ifx - ElexpIj2n5fxl. ( 3 - 6 6 )  

Thus 

Therefore, we can write: 

The mask transmittance, t(x; < ) ,  required for lensless 

processing is the product of Eq. 3-68 with the transmittance 

of a spherical lens. Choosing the lensYocal length to 

be f, we have 

Remarkably, this expression is recognized as the trans- 

mittance of a cylindrical lens with focal length f = f/2 
C 



rotated 4 5 O  in the (x; 5 )  plane. The mask required for 

unit magnification consists of a cylindrical lens, or 

equivalently, a cylindrical "hololens." A hololens is 

simply a hologram of a lens transmittance. 47-48 

In the implementation of this processor, the cylin- 

drical hololens was recorded as shown in Fig. 3-20(a). 

The cylindrical lens has focal length fc = lOcm and is 

illuminated from the left by a coherent plane wave. The 

photosensitive medium, as shown, is placed a distance 2fc 

from the cylindrical lens and is illuminated with a coherent 

plane wave reference beam 8. The reference beam's propa- 

gation direction is perpendicular to the x axis and is 

incident at an angle of 8 = 30°. 

The lensless 1-D unit magnifier is shown in Fig. 

3-20(b). For an input, we use the double pulse shown in 

Pig. 3-21(a). This transmittance is placed directly in 

front of the cylindrical hololens and is illuminated from 

the left by a coherent plane wave propagating in the con- 

jugate direction to that of the reference wave used in 

the recording geometry. In Fig. 3-21, we show the re- 

sulting field amplitude square modulus perpendicular to 

the z axis at various values of z ,  Figure 3-21(a) is for 

z = 0 and is thus the double pulse input. Figure 3-21 (b) 

is the field amplitude square modulus for a point between 

z = 0 and fc. Note that a rotation of sorts is beginning 



Figure 3.20 Lensless processor for unit magnification 
a) Recording the cylindrical hololens 
b) The lensless processor. 



Figure 3.21 Output of the lensless processor in 
Figure 3.20bl for a) z = 0 b) z between 
0 and f c) z between fc and 2fc and 
d)  2 = 4fc  



to take place. The field amplitude square modulus at a 

point between z = fc and 2fc is shown in Fig. 3-21(c). 

Lastly, our desired processor output appears at z = 2fc 

as is shown in Fig. 3-21(d). The l-D output, taken along 

the vertical axis, as predicted, is a unit magnified ver- 

sion of our l-D input. 

3.6.2. Lensless Convolution 

For this example, we rewrite the convolution integral 

of Eq. 3-15 as 

(3-70) 

Note that the unit magnifier discussed in the previous 

(0 1 example is a special case of this relation for h (fx - 
</hf) = 6 (fx - E/Af). 

To determine the required mask for this processor, 

we write from Eq. 3-58 

From this relation, we can easily show that 

where 



To find the transmittance of the desired mask for our lens- 

less processor, it remains to multiply Eq. 3-72 by the 

transmittance of a spherical lens whose focal length we 

shall choose to be f. The result is 

The complex exponential term is again recognized as a 

cylindrical lens of focal length fc = f / 2  rotated 45O 

on the (x, < )  plane. Thus, 1-D convolution can be per- 

formed by placing the 1-D transmittances, H (o) (x) and f ( < )  

back to back adjacent a rotated cylindrical lens. The 

desired processor output appears at a distance 2fc from 

this optical sandwich. 

For an experimental implementation, two pairs of double 

pulses [Fig. 3-22 (a) 1 were convolved [Fig. 3-22 (b) 1 .  A 

hologram was made of the 1-D Fourier transform of the 

one-dimensional transmittance corresponding to h ( ~ )  ( 5 )  

using a single cylindrical lens with a focal length of 20 

cm. This hologram served as the transmittance H (O) (fx) 

shown in the processor in Fig. 3-23. The input trans- 

mittance f ( < )  was placed as shown adjacent H'O! (fx) and 

a rotated cylindrical lens. Since a 20 cm cylindrical 

lens was used to transform h'~) ( 5 )  we require that the 



Figure  3,22 a )  A p a i r  of double  p u l s e s  and 
b) t h e i r  convolu t ion .  



Figure  3 . 2 3  A 1-D processor for convolution. 



rotated cylindrical lens have half that focal length. 

That is, 

The processor was illuminated from the left with a co- 

herent plane wave with wavelength 51458. The processor 

output appearing a distance 2fc = 20cm to the right of 

the rotated lens is shown in Fig. 3-24. (The processor 

output was magnified by conventional means for this pic- 

ture.) Although the structure of the vertical axis eom- 

ponent of this picture is not readily apparent, the over- 

lapping portions compare quite favorably with the convolu- 
0 

tion result in Fig. 3-22 (b) . 

3.7. Design Considerations 

We have presented four basic schemes for l-D signal 

processing: DOD, OSD, FDOD, and FOSD. In this section, 

we address two basic questions: 1) for a given space- 

variant operation, which scheme is most easily implement- 

able and 2) if a linear operation cannot be implemented 

in its obvious form, can we massage it into an alternate 

implementable form? We will illustrate these design chal- 

lenges respectively with the one-dimensional linear oper- 

ations of magnification and inverse Abel transformation. 



Figure 3.24 The output of the processor in Fig. 3.23. 



3.7.1, Magnifier Design Considerations 

The DOD processor for one-dimensional magnification 

was previously presented and is pictured in Fig, 3-3. 

The line spread function 

is generated by focusing an incident plane wave to a line 

source which in turn is incident on the 1-D input, Let 

us now consider three possible alternate one-dimensional 

magnifier processor designs. 

Consider, first, the FDOD processor for the magnifier. 

From Eq. 2-22, our required frequency response mask must 

have the transmittance 

Implementation of this mask is possible by holographic 

means. Compared with the DOD processor, however, this 

scheme is obviously suboptimal in terms of ease of imple- 

mentation. 

Next,,we inspect the OSD and FOSD magnifier processor 

for which we must restate our input-output relationship 

as 



* 
Thus 

h(~)(f x - 5; 5) = 6(fx - Me). (3 -79 )  

From Eq. 3-58, it follows that 

Hx(fx; 5) = 6 (fx - ME) exp ( j2nSfx) 

2 
= 6(fx - MS)exp(jZnMS ) .  (3-80) 

The line spread function mask which is required in the OSD 

processor is then 

Again, our mask is a complex sinusoid and, again, the DOD 

processor scheme is superior as far as ease of implemen- 

tation. 

Lastly, we consider the FOSD magnification processor. 

From Eqs. 3-63 and 3-79: 

do) (X - Cv; V) = ,rmm~(fx -M<)exp(j2~vS)d< 

1 = - exp ( j  2af x v / ~ )  . M 

From Eq. 3-61: 

* 
Here, b = P [see Eq. 3-581 



Inverse transforming gives the required mask transmittance: 

Here, as in the DOD processor, our "mask" is a Dirac delta 

sheet. In the FOSD processor, however, we cannot use a 

cylindrical lens to generate the Dirac delta sheet unless 

we use the input spectrum F ( v )  , rather than f ( S )  , as the 

processor input. Under the assumption that we do, in 

fact, favor f(E) as our processor input, the BOD scheme 

is again superior. 

The magnifier, as we have seen, is a relatively easy 

linear system to evaluate. In general, processor analysis 

in the manner just presented becomes rather analytically 

intractable, The potential use of such an approach, 

however, is obvious. 

3 . 7 . 2 .  Inverse Abel Transform 

As has been shown, the Laplace and Fourier transform 

can both be relatively straightforwardly evaluated by co- 

herent optical means. The Mellin transform can also be 

thus evaluated. 49-50 ~ l l  integral transforms are, in fact, 

special cases of the superposition integral. The kernels 



(line spread functions) corresponding to many such trans- 

forms, however, lie outside the unit circle on the complex 

plane and thus cannot be directly represented by a hologram. 

An example of such a transform is the inverse Abel trans- 

form defined by: 14,28 

where y(*) is the unit step function. The transform kernel 

The kernel's dynamic range extends from zero to infinity. 

This, and the fact that the kernel contains a derivative 

operator, precludes holographic representation. Thus, 

the DOD processor cannot be directly utilized. 

Let us then investigate the required transmittance 

for the FDOD processor, We utilize Parseval's theorem 28  

and rewrite Eq. 3-86 as 

x [ -  j 2nvF (v) ] dv 



where we have recognized that 

Our frequency response here is thus given by 

where the derivative operation is here included in the 

multiplicative v term. From Gradshteyn and Ryzhik 51 

[Eqs. 3-771-7and 3-721-91, this integral reduces to 

where Jo(e) and No(*) are zeroth order Bessel functions of 

the first and second kind respectively. Although vNo(v) 

is well behaved about the origin, (No ( * )  is not52) , we 

would prefer a mask that is strictly real. Equation 3-90 

obviously does not conform to this preference. 

It is possible to utilize a variation of the DOD pro- 

cessor to compute the inverse Abel transform where the 

required mask transmittance is purely real. This proces- 

sor, pictured in Fig. 3-25, has a transmittance of Jo(2~vx) 

placed in plane Pl. The three cylindrical lenses, Ll, L2 

and L3, then perform a one-dimensional Fourier transform 

with respect to v. Thus the field amplitude 





is incident on plane P2. Since Jo(e) is an even function, 

we can rewrite Eq. 3-91 as 

J~ (2nxv) cos (2nCv) dv 

= 21; Jo(2nlxlv)cos (2n5v)du 

where we have used Eq. 6.671.2 of Gradsteyn and Ryzhik. 51  

The values of the function Jo(*) lie within the unit circle 

on the complex plane and thus, in principle, can be re- 

presented hoiographically. The form of the relation in 

Eq. 3-92 looks similar to that in Eq. 3-86 except that 

the polarities are opposite. That is, Eq. 3-84 requires 

that 5 > 1x1 while Eq. 3-92 is nonzero only for 5 1x1. 

We can, however, rectify this situation by performing the 
A 

variable substitution 5 = -5 in Eq. 3-85 to give: 

Here, our integration interval covers the desired range 

of 5 < 1x1. 

d Returning now to our processor, we generate =f(-C) 

electronically with the op-amp differentiator shown. This 

is fed into a one-dimensional electro-optical transducer 



whose output transmittance multiplies Eq. 3-92. The field 

amplitude immediately to the right of plane P2 is thus 

This product is Fourier transformed with respect to 6 by 

lenses L4, &5 and L6 so that incident on plane P3 is the 
8 

field amplitude: 

For v = 0, this relation reduces to that in Eq. 3-93. Our 

desired inverse Abel transform corresponding to an input, 

thus appears in plane P3 along the x axis. 

The inverse Abel transform processor cannot be clas- 

sified into any of the processor classes thusfar consid- 

ered. The ideas leading to its design, however, parallel 

closely those considered previously. We thus conclude 

that, given a space-variant operation, attention should 

not be restricted only to the DOD, OSD, FDOD, and FOSD 

processors, since augmentation and perturbations of funda- 

mental underlying concepts can be utilized to yield a de- 

sign which is more highly implementable. 

3.8. Conclusion 

In this chapter, we have presented numerous coherent 

optical processors that are capable of performing a wide 



class of one-dimensional operations. All of the proces- 

sors require a mask, possibly holographic if the kernel 

is bipolar or complex, and a one-dimensional input trans- 

mittance. The DOD and OSD processors utilize a line spread 

function mask and respectively display the output and out- 

put spectrum. The FDOD and FGSD processors do likewise, 

but utilize a frequency response mask. In all of these pro- 

cessors, the 1-D system output is viewed along a line in 

the processor output plane. The Laplace transform and 

ambiguity function operations were shown to be two special 

cases where the entire output plane could be utilized. 

The OSD and FOSD processors were shown to be able to 

be interpreted as displaying the output (instead of output 

spectrum) corresponding to a linear operation that could 

be deduced from the system line spread function. Along 

with the DOD and FDOD processors, there are thus four 

general schemes for direct one-dimensional processing 

each of which require different masks. For a given linear 

operation, we can thus, in principle, derive four separate 

expressions for possible masks for use in an appropriate 

1-D processor. This allows for a degree of flexibility 

in processor design. Using these alternative schemes in 

design considerations was exemplified in the case of the 

1-D magnifier. As was shown for the case of the inverse 

Abel transformer, however, attention should not be re- 



stricted to the four basic processors, but rather to the 

fundamental concepts by which they were conceived. 



CHAPTER IV 

4, TWO-DImNSIONAL SPACE-VARIANT PROCESSORS 

In the previous chapter, the two-dimensional nature 

of coherent optical processors was utilized to perform one- 

dimensional operations. This chapter, on the other hand, 

describes various possible schemes for performing general 

two-dimensional operations with coherent optical processors. 

There are a n er of specific 2-D linear space-var- 

iant operations that can be performed by coherent proces- 

sors. The thin lens, for example, performs a 2-D Fourier 

transformation which is a linear space-variant operation. 

The astigmatic processors encohntered in the previous 

chapter, wherein orthogonal Fourier transformation and 

imaging are performed, are also space-variant. The oper- 

ations of Laplace transform and ambiguity function display 

can be considered as special cases of two-dimensional 

space-variant astigmatic processing. The elementary act 

of non-unity magnification imaging, also, must rigorously 

be considered ~~ace-variant.~~ Besides an input trans- 

mittance, the Fourier transform, astigmatic, and imaging 

processors consist only of two basic elements: lenses 

and free space. Positioning of lenses in vahious other 

locations will of course result in other space-variant 

operations. The class of possible operations, however, is 



somewhat limited. Rather general treatment of such multi- 

plane optical processors is given by Carlson. 54 

An alternate treatment of generalized 2-43 space-var- 

iant processing has been developed by Bryndahl et.al. 55-57 

Inherent in his development is the assumption of a "slowly 

varying" input. Both Bryndahl's and C~arlson's methods, 

as well as other space-variant processing schemes, are 

discussed by Goodman. 58 

Our treatment of the design of space-variant processors, 

on the other hand, will be considered from the systems view- 

point. In 1-D processor design, the continuum orthonormal 

basis set response characterization of linear systems was 

used. In 2-D processor design, we will use the character- 

izations developed in Chapter II where limiting assump- 

tions or approximations were made concerning the system 

and/or the class of allowable inputs. These include the 

piecewise isoplanatic approximation ( P I A ) ,  discrete ortho- 

normal basis set response (DBR), and sampling theorem char- 

acterizations. 

In the treatment of 2-D processors, two views are 

possible. The first is that we have an actual physical 

coherent processor which, for reasons of real space com- 

pactness and stability, we wish to characterize holo- 

graphically. For this case, we need to physically probe 

the system with an appropriate set of signals. The cor- 



responding system responses must then somehow be holographi- 

cally cataloged in a straightforwardly accessable manner. 

The volume hologram approach to be discussed is a scheme 

based on this view. 

The second manner in which 2-B space-variant design 

can be viewed is similar to the 1-D processor concept. 

That is, instead of optically recording a required mask, 

the mask transmittance is generated by alternate means 

such as computer generated  hologram^.^^ All schemes in 
this chapter, except the volume hologram treatment, can 

be implemented, in principle, by either the direct re- 

cording method or the computer generated mask methods. 

Three basic schemes for general two-dimensional 

space-variant processing will be considered. The first 

scheme involves composite holograms and is a direct appli- 

cation of a space-variant system sampling theorem developed 

in Chapter 11. The constraints on system input and line 

spread here impose severe limitations on allowable opera- 

tions. The second scheme utilizes the volume hologram in 

which system responses are angle multiplexed within a thick 

medium. This scheme was first suggested by Burton, @teal. 19 

Application of the PIA characterization to the volume 

hologram was investigated by Marks. The sampling theorem 

approach was similarly applied by Deen et.al. 20-21 Other 

results have been reported by Walkup and ~agler~' and Marks 

et.al. 8 



The third method of two-dimensional space-variant pro- 

cessing, proposed by Krile et. a1. ,22 makes use of phase 

coded reference beams. An effect inherent in this method 

is the smearing of unwanted crosstalk terms into diffuse 

background noise. 

Since this chapter deals with two-dimensional space- 

variant processing, all previous linear system character- 

izations, which had a 1-D favor, must be generalized to 

two dimensions. For example, the 2-D superposition inte- 

gral is written as 

The kernel, h(*,e:e,e), for obvious reasons, is now re- 

ferred to as the system point spread function. As will 

become clear in the development to follow, mathematical 

and conceptual generalization from one to two-dimensional 

treatment is trivally straightforward. 

We should point out that the line spread function 

does have meaning in the context of 2-D system character- 

ization. In this chapter, however, we will concern 

ourselves only with the 2-D system's point spread func- 

tion. 

4.1. System Response Generation 

In the system characterizations developed in Chapter 

11. it was necessary to catalog the system responses to a 



class of inputs which were specified by a limiting assump- 

tion placed on the allowable input class and/or system. 

Both the piecewise isoplanatic approximation (PPA) and 

the sampling theorem characterizations require knowledge 

of the system response to Dirac deltas placed at certain 

points at the system input. An alternate sampling theorem 

required sampling be performed at the system output. The 

Fourier duals of the sampling theorems require that the 

frequency response be sampled in either the input or output 

domain. For the discrete orthonormal basis set response 

(DBR) characterization, we need to catalog the system re- 

sponse to inputs consisting of each element in the basis 

set. 

In this section, we explore physically generating 

these responses. That is, given an actual linear coherent 

optical system with input and output planes, how do we 

physically generate the required catalog of system re- 

sponses? Once the desired responses are generated, it re- 

mains only to find a method by which to optically catalog 

the response (on a hologram for example) in such a manner 

as to be retrievable for system representation. These 

methods include the volume hologram and phase coded ref- 

erence beam schemes which will be presented shortly. We 

present the response generation techniques in a separate 

section for the simple reason that certain cataloging methods 



can,  i n  p r i n c i p l e ,  u t i l i z e  more than one of t h e  r e -  

sponse c h a r a c t e r i z a t i o n s  i n  t h e i r  implementation. We 

should a l s o  keep i n  mind t h a t ,  except  f o r  t h e  volume holo- 

gram approach, t h e  requi red  system response masks can e i t h e r  

be computer generated o r  o p t i c a l l y  recorded. 

4 . 1 .  Impulse Response 

I n  t h e  sampling theorem and P I A  system charac te r i za -  

t i o n s ,  we r e q u i r e  genera t ion  of t h e  system po in t  spread 

funct ion .  For an a r b i t r a r y  coherent  o p t i c a l  system, t h i s  

can be performed as shown i n  Fig.  4-1 .  An inc iden t  co- 

herent  p lane  wave is  focused t o  t h e  po in t  ( 6 , n )  on t h e  

system inpu t  plane.  Since t h e  s p h e r i c a l  l e n s  i s  c i r c u l a r  

with r ad ius  A ,  t h i s  "poin t"  i s  b e t t e r  descr ibed by t h e  

Four ier  t ransform of a  c i r c l e  funct ion:  2 3  

where 

c i r c  r a - 4 

and J,(*) i s  t h e  f i r s t  o rde r  Bessel  func t ion  of t h e  f i r s t  
J. 

kind. One poss ib le  expression f o r  2-D Dirac d e l t a  i s  2 3  





6 (xi, yi) = lim 5 JL ( 2 n A p ) .  
A"00 P 

Thus, we conclude that for a sufficiently large lens radius, 

A, our field amplitude on the system input plane is well 

approximated by a Dirac delta. We can move the location 

of the delta to the coordinates (xi,yi) = (6.q) simply 

through an appropriate lens translation. The correspond- 

ing field amplitude distribution on the system output plane 

is then the system point spread function corresponding to 

the input point ( E  , q )  . Physically, this corresponds to a 

sample point spread function. We stress this by letting 

the coordinates ( 5 , ~ )  correspond to the specific point 

n , m ) .  Then the field amplitude distribution on the 

system output plane is . 

In this expression, xo and yo are our spatial variables 

while 5, and " can be considered as indexes. Thus, we 

can generate the sample point spread function h(xo,yo;cn,q,) 

by simply translating the origin of the (xo,yo) plane to 

the point (Sn,nm). 

Suppose, now, we wish to generate forms of the system 

point spread function sampled in x and y rather than in 5 

and ll. Consider, again, Fig. 4-1 with attention restricted 



this time to the point (xo,yo) = ,y ) on the output plane. 
( X ~  9 

As the input point source explores various values of (E,Q), 

the corresponding field amplitude at the output point (x ,y ) 
P 9 

is h(x P -5ryq-~i5,n) - 
To holographically record a transmittance of the out- 

put sampled point spread function, we must translate a 

photosensitive medium placed in the (x,,y0) plane. Imagine 

first, a point source input at (6, r ~ )  = (0,O) and the pho- 

tosensitive medium in the (xory0) plane. Immediately 

in front of the medium we place an opaque mask that passes 

- light only at the point (xo,yo) - (xp,yq). Then, as though 
rigidly connected, the input point source and photosensi- 

tive medium translate through all values of (5,n). Dur- 

ing this translation, the opaque mask remains stationary. 

Some reflection on the reader's part reveals that the 

transmittance recorded utilizing this procedure is h(x 
P" 

yq:Ern) * 

4 . 1 - 2 .  Frequency Response Sampling 

As with the impulse response, we wish to formulate 

methods by which the sample frequency responses of a co- 

herent processor can be directly recorded both in the in- 

put and output domains. In two dimensions, the frequency 

response is defined as 



where the constants cx and c retain dimensional consis- 
Y 

tency. In coherent optics, the complex exponential re- 

quired for our system input is interpreted as a tilted 

plane wave. This can probably be most easily seen from 

the geometry of Fig. 4-2. 

A Dirac delta (point source) is placed in the ( a e @ )  

plane at the coordinates (a,b). The thin lens performs 

a Fourier transform so that the field amplitude incident 

on the (xi,yi ) plane-is 

From geometrical optics, we see that Eq. 4-8 describes a 

tilted plane wave incident on the (xi,yi) plane.63 Compar- 

ing with the argument of the system operator in Eq. 4-7, 

we have 

In an actual laboratory situation, generating tilted 

plane waves in the manner shown in Fig. 4-2 would probably 

not be used. Rather, we would generate the plane waves in 

accordance with the direction cosines, cosex and cose 
Y - 

From the geometry in Fig. 4-2, these are given by 





where 

In general, a and b will be much smaller than f so that 

r f. Using this approximation and Eq. 4-9, we can then 

rewrite Eq. 4-10 as 

These are the desired glane wave propagation angles cor- 

responding to the input frequencies 
'd S and v " - 

To generate a coherent optical system's freeqency re- 

sponse, we simply feed a tilted plane wave into the system 

input. If the input frequencies are v and v then the 
5, ", 

corresponding field amplitude distribution on the system 

output plane is the sample frequency response given by 

k(xo - cx I Yo - c v ; v , v 1 ,  This corresponds 
En "m En qm 

to input sampling. 

For output sampling, we can utilize a scheme similar 

to that used for output sampling of the system point spread 

function. We first choose our sample coordinate in the 

output plane, (xPryq) - Then, as we sweep the various fre- 

quencies at the system input, our output photosensitive 

medium translates accordingly. For input frequencies of 

v and v our photosensitive medi 
5 origin is located, 

rl 

in the output plane at coordinates ( c  V ,c lJ ) In this 
x 6, Y '1, 



manner, we generated the sample frequency response k(x P' 

4.1.3. Sinc and Rect Response Generation 

In the development of the discrete orthonormal element 

basis set response (DBR) characterization of linear systems 

in Chapter 11, we investigated specifically the sinc and 

rect orthonormal basis sets. Here, we explore the gener- 

ation of these responses in coherent optical systems. 

First consider the two-dimensional (n,m) th element 

of the rect basis set here generalized from ~ q .  2-62: 

1 i x rect (-) rect (-1 
2Tx 2T 

Y 

where v = n/2Txr V q  = m/2T and where we have restrict- 
'n m Y' 

ed our input to be identically zero for /xi/ > T, and I Y i /  
> T The form of Eq. 4-13 is identical to that of the 

Y '  
input sampled frequency response except for the rect terms. 

Thus, we can generate the system rect response in the same 

manner as we generated the system frequency response: by 

probing the system input with tilted plane waves. The 

rect terms can be included by simply making the input plane 

opaque outside of the rectangular region /x./ < Tx and 
1 - 

lyil 5 Ty. From Eq. 4-12, the angular propagation direc- 



tions for the (n,m) th input plane wave are 

Xv -1 nX ex = cos = co's - 
n 5, 2Tx 

hv 
-1 mX 9 = cos = cos - 

'rn '1, 
2T * 
Y 

The system sinc response is also straightforwardly 

generated. The two-dimensional (n ,m) th element of the sinc 

basis set is generalized from Eq, 2-57 as 

sinc 2Wx (xi-xn) sinc 2W (yi-ym) (4-15) 
Y 

where 2Wx and 2W are the allowable bandwidths of the in- 
Y 

put in xi and yi respectively and xn = n/2Wx and ym = m/21 Y' 

The sine basis set elements can be generated as shown 

in Fig. 4-3. A rectangular pupil is placed on the (a,$) 

plane and is described by 

where f is the focal length of the lens. On the (xi,yi) 

plane appears the Fourier transform of this pupil evalu- 

ated at the frequency components (xi/Xf, yi/hf) and trans- 
- 

lated to the coordinates (xntym) Outside of the propor- 

tionality terms, this field amplitude is identical to Eq. 

4-15. We can generate other elements in the sinc basis 

set simply by translating the rectangular pupil and thin 



Figure 4.3 Generation of the input for the sinc response 
characterization of a linear system. 



lens while leaving the (xi,yi) plane stationary. These 

elements serves as the input to our system and the cor- 

responding field amplitude at the system output is the 

desired system sinc response. 

4-1.4. Discussion 

The system characterizations considered in Chapter I1 

all utilized the principle of probing the input with var- 

ious signals and cataloging the corresponding system fre- 

quency response. As has been shown, this response gener- 

ation can be performed straightforwardly in coherent opti- 

cal systems. It remains to develop some schemes for cata- 

loging. This is the topic of the remainder of this chap- 

ter. 

4.2. A - 
In Chapter 11, we developed a sampling theorem for 

space-variant systems whose line spread function was band- 

limited in x. From Eq. 2-73, the two-dimensional gener- 

alization of this expansion is 

* [sinc2Wx (x-xn) sinc 2W (y-ym) J 
47 

where xn = n/2Wx,y, = m/2W and 2Wx and 2W are the (low- 
Y' Y 

pass) bandwidths of h(x,y; 6 , q )  respectively in the x and 

y directions. This relationship can alternately be writ- 

ten as 



* [sinc (2wxx) sinc (lWyy) I . (4-48) 

We can interpret Eq. 4-18 as follows: The input, 

f (x,y) is shifted to the coordinates (xn,ym) on the (x,y) 

plane whereupon it is multiplied by a corresponding sample 

point spread function, This process is repeated for all 

sample coordinate pairs, (xn,ym) * All resulting products 

are then surnmed and passed through an appropriate 2-D low 

pass filter which gives rise to the required convolving 

sincs in Eq. 4-18. Note that no assumptions concerning 

the input have yet been made. 

Suppose, now, we wish to simultaneously perform all 

shifted sample-input point spread function multiplication 

on a single plane. In order to assure that no overlapping 

of terms occurs, (i.e., no crosstalk), we must require for 

each n and m that the product, f(x-xn,y-ym) h(x,,y,:x-xn, 

y-y,), is identically zero outside the rectangle defined 

or, .equivalently 



This can occur in two ways: 1) Our input is identically 

zero for - < 1/4 W, and I n  / - < 1/4 W or 2) the point 
Y 

spread function h(x,y;<,n) is identically zero outside 

the interval I t /  - < 1/4 W, and 1 - < 1/4 Wy. Thus, in 

order to perform all required multiplication on a single 

plane, severe compact support constraints must either be 

placed on either input or point spread function. This 

is in addition to the constraint that h(~,y;5~n) be band- 

limited in both x and y. 

A coherent processor capable of carrying out the 

sampling theorem in Eq. 4-3 under the discussed constraints 

is pictured in Fig. 4-4. In plane Pl, we place our input, 

f(5,n)- If the compact support constraint falls on the 

line spread function rather than the input, it is neces- 

sary to mask that region of plane P 1 lying outside the 

rectangle 15 1 - < 1/4 W,, 1'1 I 5 1/4 Wy. This is without 

loss of information since the system we are characterizing 

sees the input only over these intervals. 

Spherical lens, L1, performs a two-dimensional Four- 

ier transformation on the input. The field amplitude 

incident on plane P2 is thus 



I). 



Placed in plane P2 is a pin hole mask the transmittance 

of which can be modeled as 

S v - comb comb (+&--I 
- 4W W * Y Y 

where the comb function is defined by 

The field amplitude immediately to the right of P2 is then 

given by 

5 
V 

1 v ) comb (-1 comb Ti - . 
4W W 
x Y 

F p S #  ri 2Wx 
Y 

This product is again Fourier transformed by lens L2 to 

give incident on plane P3 the field amplitude 

v 
5 

v 
F-l -1 Ti comb (-) comb (Ztj-) I [~(v~,i~)l*F, 14W 

cVn E n  X Y  2Wx Y 

where 



Using the scaling theorem and the fact that 
2 3  

F E  [comb ( S )  1 = comb ( v )  

reduces Eq. 4-25 to 

where xn = n/2Wx and ym = m/2W Y . Our input is thus re- 

plicated over plane P3. Due to the compact support of 

the input and our choice of spacing in the pin hole mask, 

these replications do not overlap. We stress this by re- 

" writing Eq. 4-28 as 

rect [2Wx (x-x,) I rect [2Wy (Y-Y,) I . (4-29)  

Placed in plane P3 is a mask of sample point spread func- 

tions. The transmittance of this mask is 

rect [2 Wx (x-xn) 1 rect [2Wy (Y-Ym) 1 . (4-30) 

If the transmittance is not non-negative real, we require 

a holographic mask. The placement of a number of holo- 



grams side by side on a plane results in what is termed 

a composite hologram. 6 4  The mask can either be directly 

recorded or a computer generated transmittance. The mask 

is multiplied by Eq. 4-29 to give immediately to the right 

of plane P3 the field amplitude 

where we have now suppressed the rect terms. Comparing 

this with Eq. 4-18, we see that now only low pass filtering 

is required. This is performed by lenses L4 and L5 and 

the rectangular pupil on plane P4.  Our desired output 

then appears on plane P5 and our space-variant operation 

has been performed. 

Again, the class of space-variant operations that 

can be performed using this "composite hologram approach" 

is somewhat limited. Our constraint is that either the 

point spread function in 5 and Q and/or the input have 

compact support not exceeding the reciprical bandwidths 

of h(x,y;E,n) in x and y respectively. 

To illustrate application of this processor to a 

specific operation, we will now consider a Fourier trans- 

form operation defined by 



where a and b are positive spatial constants and r, with 

dimension of frequency squared, retains the required di- 

mensionless nature of the exponent. The point spread 

function corresponding to this operation is 

5 rl rect rect ( = I .  14-33)  

It follows that 

5 rl rect rect . (4 -34)  

The two-dimensional transfer function for this system is 

then 

H (fxff ;5,~) = F  Ih(x,y;Srri)I 
XY Y XY 

= 6 (fx-r5) 6 (f -rq-r) 
Y 

2 e~p[-j2nr(<~ + q ) I  

5 ri rect (-) rect . (4 -35 )  2a 

Due to the multiplicative Dirac delta terms, we can make 

the substitutions 5 = fx/r and TI = fy/r This gives 

H (fx,fy;C,q) = 6 (fx-r5)6 (fy-rn) 
XY 

(4 -36 )  
fx f v  exp [ -  G ( f 2  + f 2, ] rect (-) rect ( ~ 1 .  

Y 2ra 



Clearly, the point spread function is bandlimited in both 

x and y with 

w = rb. 
Y 

Note also from Eq. 4 - 3 4 ,  that h(x,y;<,r~) is zero outside 

of the interval 151 5 1/4 Wx, I q 1  - < 11'4 Wh if we impose 

the inequalities 

or, equivalently, since r > 0, 

If these inequalities are assumed, no compact support 

assumptions for the input need be made. 

To this point, we have only established that the 

sampling theorem in Eq. 4-33 can be applied. The next 

step is to compute the required transmittance of the sample 

point spread function mask. From Eq. 4-34, we can write 

x 
rect rect (3) , 



~t follows that 

= exp [ -  j2nr{ (x-xn) x + (y-ym) y} 3 
X-Xn 

rect (- Y-Ym] 
2a ) rect (- 2b 

2 2 X-X 
= exp[-j2~r(x + y ) ]rect(------ 2a n, rect (- Y-Ym) 2b 

This is our composite hologram mask transmittance. Note 

2 that the expi-j2nr(x2 + y ) I  term can be interpreted as 

the transmittance of a thin convex lens with focal length 

f determined by the relation 23 

where X is the wavelength of the spatially coherent illumi- 

nation. From the inequalities in Eq. 4-39, the focal length 

must satisfy 

For visible light, X << max[a,b] . 
The composite hologram approach just presented ob- 

viously has a Fourier dual. The 2-D system frequency 

response is used instead of the point spread function 

characterization. The system constraints have, for the 

most part, different physical interpretations. A con- 



straint which is identical in both schemes is the band- 

limiting assumption on the first variables of the fre- 

quency response, That is, if the point spread function 

is bandlimited in x and y, then so is the system frequency 

response. The different interpretations appear in the 

constraints on the system input and last two variables 

of the frequency response. For the point spread function 

characterization, we required the input to have a compact 

support not exceeding the reciprocal bandwidths of the 

point spread function in its first two variables. In the 

frequency response characterization, we require the input 

spectrum have finite support. That is, the input must be 

bandlimited. W similar constraint applies to the frequency 

response with respect to its second variable. 

The coherent processor capable of performing the fre- 

quency response sampling theorem is identical in form so 

that in Fig. 4-4 except that plane PI and lens L1 are 

omitted. The bandlimited input is placed directly on 

plane P2 directly adjacent to the pin hole mask. Plane 

P 3  contains the appropriate frequency response mask. Lenses 

L 3  and L4 and the rectangular pupil in plane P 4  perform the 

required low pass filtering. Our output appears on plane 



4.3. Volume Hologram Approach 

The composite hologram scheme just presented cata- 

logs sample point spread functions side by side on a holo- 

graphic transmittance, It requires, however, rather strin- 

gent compact support constraints on the system input and 

point spread function. An alternate cataloging scheme, 

not requiring these constraints, makes use of the angular 

sensitivity of the volume hologram. Here, the system re- 

sponses are angle multiplexed within a thick medium. As 

we will see, however, the scheme does not straightforwardly 

generalize to two dimensions. It is presented here with 

the thought of possible utilization in a hybrid processing 

scheme. This topic is in need of further investigation. 

4-3.1. Diffraction Efficiency of the Volume Hologram 

The diffraction efficiency performance of the volume 

hologram has been treated admirably with the coupled wave 

theory of Kogelnik. 6 5  Kogelnik's general theory can be 

found in many optics texts 6 4 f 6 6  and is presented via an 

alternate derivation by Alferness. 67 Kogelnik' s theory 

has also been applied to specific media. 68-70  

In our treatment of volume h~lo~ram'diffraction effi- 

ciency, however, we shall use the one-dimensional scalar 

optics model of which follows from the pioneering 

work of van Heerden. We use the scalar optics model 



primarily due to its relative analytic simplicity in com- 

parison with coupled wave theory. The scalar optics 

treatment also remains consistant with the other scalar 

optics models used in this thesis. 

An understanding of the basic diffraction efficiency 

phenomena of the volume hologram can best be qualitatively 

understood by inspection of Fig. 4-5. In Fig. 4-5a, a 

thick photosens4.tive recording medium of width t and re- 

fractive index n is illuninated with two coherent plane 

waves of wavelength A. The plane waves are incident at 

angles 8, and Bo where the subscripts respectively denote 

reference and object waves. The thick media is exposed 

and processed to form a volume hologram. We illuminate 

the hologram, as shown in Fig. 4-5b, with a plane wave 

incident at an angle of 9 4 In general, three plane 
P' 

waves will exit the hologram. The beam bt is the zeroth 

order non-diffracted component and b c is the conjugate or 

"twin image" beam. The plane wave of interest is bo, 

since, if 9 = 8 then bo will propagate in the same 
P r ' 

direction as our original object beam. The diffraction 

efficiency with respect to bo is the ratio of the energy 

of the field amplitude of bo to the energy of -he 

field amplitude of the incident playback beam, Heur- 

istically and in fact, the diffraction efficiency is maxi- 

mum when the playback beam is in the same direction as 



Figure 4.5 Recording two incident plane wave5 in a volume 
medium (a) The recording geometry ( b )  Playback 
geometry ( c f  The resulting Bragg and extinction 
cones. 



our initial reference beam. That is, AS 0 de- 
P 

viates from 3 r say in the clockwise direction, the dif- 

fraction efficiency is reduced. The angular deviation 

of 0 from 0, required to achieve zero diffraction effic- 
P 

iency is appropriately termed the extinction angle. Through 

scalar optics treatment, the extinction angle, Ae, is given 

by the expression 6,20 

2 
X n2 - sin a. - - 
t 

( 4 - 4 4 )  

We assume that either a clockwise or counter clockwise 

deviation of A8 from 0, will extinguish the, diffracted 

beam, bo. While in practice, this null actually occurs, 

rotation of the playback beam beyond the extinction angle 

results in a finite diffraction efficiency. For our pur- 

poses, this second order effect can be safely ignored and 

we can treat the angular interval 

as that in which playback can be achieved with finite 

diffraction efficiency. Note that a playback beam at 

the angle 0, will also result in maximum diffraction 

efficiency. In future treatment however, we will avoid 

this angular'playback region so that additional unwanted 

diffracted terms will not be generated. 



Note that the analysis to this point has been one- 

dimensional. An obvious question arises: What if the 

playback beam in Fig. 4-5b was incident on the volume 

hologram in a direction not lying in the plane defined 

by two recorded beams? The diffraction mechanism in 

this more general case can be best understood with the 

geometry of Fig. 4-56. Using the recording beam direc- 

tions indicated kn Fig. 4-5a, we form the "Bragg cone" 

shown.64 Next, visualize any plane passing through that 

line corresponding to the intersection of the volume 

hologram plane and the plane defined by the two recording 

beams. For all possible illuminating plane waves with 
9 

propagation directions lying on this plane, the relative 

maximum diffraction efficiency occurs for those two propa- 

gation directions on the Bragg cone. Still on this plane, 

we can extinguish the diffracted beam by rotating the 

incident beam an angular interval corresponding in concept 

to the extinction angle. Thus, in a first order analysis, 

we can speak of "extinction cones" which, as shown by the 

dotted lines in Fig. 4-5c, lie within and without the 

Bragg cone, As we shall see, this generalized view of the 

extinction angle concept is the very mechanism that pro- 

hibits two-dimensional generalization of the space-variant 

processing schemes to be presented. 



4.3.2. Space-Variant System Representation 

We can utilize the extinction angle phenomenon in- 

herent in volume holography to implement space-variant 

systems. Representation of space-variant systems with 

volume holograms using the piecewise isoplanatic approxi- 

mation (PIA) was earlier investigated by Marks. Here, 

we will outline the implementation of a sampling theorem 

characterization presented in Chapter 11. 20-21 ~mplemen- 

tation of a discrete orthonormal basis set response (DBR) 

characterization using the system sinc response is also 

presented. 

The sampling theorem for variation limited systems 

with bandlimited. input is repeated here from Eq. 2-84: 

A scheme for implementing this sampling theorem is pic- 

tured in Fig. 4-6. We excite our variation limited 

system with a Dirac delta placed at input coordinate 

F - - En, The corresponding field amplitude on the system 

output plane is thus h(x-<,;S,). Also placed on the system 

output plane is a Dirac delta placed at x = Sn + a. The 

desired value of a, as we shall see, is determined by the 

spatial extent of the sample line spread function. 

The field amplitude on the x axis in Fig. 4-6' is 





given by 

This is Fourier transformed by the thin lens to give a 

field amplitude incident on the thick photosensitive re- 

cording medium of 

where fx is the spatial dimension of the thick media's 

plane divided by A f  and Hx(fx:5) is the system transfer 

function defined in Eq, 2-26, The photosensitive medium 

records the squared modulus of Eq. 4-48:  

where "*"  denotes complex conjugation, It is the first 

term in this expression which is of interest, 

Suppose, now, we performed a n er of individual 

sequential exposures of this kind for various values of 

n. The resulting volume hologram would then have a trans- 

mittance of 



~ i ~ ~ r o u s l y ,  a scale factor should be included in this 

expression so that I(fx) is less than or equal to unity 

for all fx. We omit it here with no loss in generality. 

With the volume hologram transmittance in Eq, 4-50, 

we can implement the sampling theorem with the processor 

pictured in Fig. 4-7. Our (bandlimited) input, f ( < )  , is 

placed in plane Pl. Also placed in this plane is a pin 

hole mask calibrated in accordance with the positioning 

of the reference Dirac deltas used in the system recording 

scheme. If we illuminate plane PI from the left with a 

normally incident plane wave, the field amplitude immedi- 

ately to the right of plane P1 can be modeled by 

This is Fourier transformed by lens L2 to give incident 

on the volume hologram the field amplitude 





Now, if the hologram in plane P2 were - not volume, the field 

amplitude immediately to the right of plane P2 would be 

given by the product of Eqs. 4-52 and 4-50. Since the 

hologram is thick, however, angularly sensitive diffraction 

efficiency effects take place. Comparing the recording and 

playback geometries in Figs. 4-6 and 4-7 we see that only the 

nth reference Dirac delta and the nth input sample result 

in plane waves that are incident on the volume medium at 

identical angles. If we require that the angular incidence 

corresponding to adjacent samples lie outside the equiva- 

lent extinction angle, it then follows that the only dif- 

fracted term corresponding to f (<,) exp [-j2iifx (5, + a) 1 is 

Hx(fx;<,)exp(j2nfXa). Thus, we have angle multiplexed our 

sample transfer functions within the emulsion of the vol- 

ume hologram in such a manner that they will be accessed 

only by appropriately incident plane waves. It follows, 

then, that the field amplitude exiting the volume holo- 

gram is 

Also in plane P2, we place a rectangular pupil, rect(fx/2Ws). 

The field amplitude immediately to the right of plane P2 

is then recognized as the Fourier transform of the sampling 



theorem expression in Eq. 4-46 :  

L 
X 

x rect (-----I . 
2WX 

Lens L2 performs a Fourier transform on this expression. 

Equation 4-46  then describes the field amplitude on plane 

P3 and our space-variant operation has been performed. 

There are a n er of fundamental limitations to this 

scheme that should be pointed out. First of all, with 

reference again to Fig. 4-6, note that there can be no 

overlapping of the Dixac delta reference region and the 

sample line spread function regions for all n. This 

must be assured to avoid unwanted crosstalk on playback. 

Thus, the system line spread function must be "single sided" 

for all 5.  The system input must likewise be single sided. 

But we have assumed the input to be bandlimited and no 

single sided signal can be rigorously bandlimited. This 

seeming inconsistancy can be overcome by appealing to the 

concept of the 'essentially' bandlimited signal, 72 a term 

coined by those applying sampling theorem concepts to 

causal (temporal single sided) signals. A second funda- 

mental limitation of this scheme is its inherent one- 

dimensional nature. That is, the scheme cannot be~directly 

extended into two dimensions since the required diffrac- 



tion efficiency mechanism does not generalize to two di- 

mensions. Instead, we are confronted by the previously 

discussed Bragg cones. 

Another disadvantage, in a mathematical sense, is 

oversampling. In accordance with our treatment in Chapter 

11, we are sampling the input at a rate 2Ws = 2Wv + 2Wf 

where 2Wv is the system variation bandwidth and 2Wf is 

the bandwidth of the input. The actual minimum sampling 

rate for the input is 2Wf We can, however, utilize the 

minimum allowable (Nyquist) rate for the input if we angle 

multiplex the system's sinc response instead of its saanple 

line spread function. Recall, from Eq. 2-59, that a linear 

system can be characterized by 

A A  

where, now, = n/2Wf. This relation is computationally 

similar to the sampling theorem expression in Eq. 4-46 

except for the fact that the interpolation functions here 

are sinc responses instead of low-passed sample line spread 

functions. In fact, the recording and playback schemes 

in Figs. 4-6 and 4-7 can be used to implement the sinc re- 

sponse characterization with only two minor modifications. 

First, we need to excite the system with sinc2Wf(5-5 ) in- n 

stead of 6(5-5,) The sincs can easily be generated in the 



manner previously discussed. The second modification is 

removal of the rectangular pupil on the hologram plane 

in the playback geometry. 

Implementation of the sinc response characterization 

has the same fundamental limitations as the sampling 

theorem characterization implementation. There are, how- 

ever, certain distinct advantages. First of all, the 

class of representable systems is increased. That is, 

the sampling theorem requires a variation limited system 

while the DBR characterization, of which the sine response 

characterization is a special case, is essentially inde- 

pendent of the system's parameters. Secondly, since 

sampling is performed at a lower rate in the sinc response 

characterization, we would expect to require fewer holo- 

gram exposures for a given degree of output accuracy. 

The primary disadvantage of the volume hologram im- 

plementation of both the sinc response and sampling 

theorem characterizations is the resulting one-dimensional 

resolution capability. It is possible, however, that they 

could be used as an element in either a hybrid or more 

elaborate processing scheme. 

4.4. Phase Coded Reference Beam Approach 
P 

Phase-coded reference beams have been used for color 

holography 6 4  73 and for multiplexing point source objects 



for digital storage. " Krile et. al. 22 ' 75 have applied the 

phase coded reference beam idea to two-dimensional space- 

variant system characterization. The result is the smear- 

ing out of unwanted crosstalk terms into diffuse background 

noise, This is in contrast to the volume hologram approach 

where unwanted crosstalk terms were filtered by the volume 

hologram's angular bandpass. An overwhelming advantage of 

the phase-coded reference beam approach over the volume 

hologram approach, however, is its capability of two-dimen- 

sional system representation. 

We will here illustrate utilization of phase coded 

reference beams in implementing the sampling theorem of 

Eq. 2-84. As we shall see, mathematical relations describ- 

ing its operation became quite lengthy. For this reason, 

analysis will be performed in one dimension although the 

results are straightforwardly extended into two dimensions. 

The recording geometry for this scheme is pictured in 

Fig. 4-8 and closely resembles the structure of the vol- 

ume hologram recording scheme of Fig. 4-6. The syster. 

is excited with a displaced Dirac delta. The sample line 

spread function, h(x-<,;5,), appears at the system output. 

Placed on this same plane is a random diffuser with trans- 

mittance d(x) which is displaced clear of the system out- 

put plane. We illuminate the diffuser from the left with 

a coherent plane wave over the interval <,+a-T<x<S,+a+T 





where a denotes the displacement of the diffuser and 2T is 

the interval width. The field amplitude in the front focal 

plane of lens L1 is thus 

where 

This is Fourier transformed by the thin lens to give in- 

cident on the photosensitive media the field amplitude 

where D, (fx) = F x  [dn (x) I . The transmittance of the re- 

sulting hologram is the squared modulus of this expres- 

sion: 

It is the first term in this expression, of course, which 

is of interest. 

Suppose, then, that a number of such exposures were 

recorded on the same media for various values of n; The 

resulting hologram transmittance is then 



Note that, in order for the same portion of the diffuser 

not to be used in more than one of these exposures, that 

we must require 5n+1-<n22T. Let us assume adjoined pat- 

ches so that 5n+1-5n = 2T for all n. 

Consider next the playback geometry in Fig. 4-9. 

The diffuser, lens L1, and the hologram are left in the 

same position as in Fig. 4 - 8 .  To the left of the diffuser 

an input transmittance, £ ( < I  is sandwiched between two 

flys eye lens arrays. Each lenslet is assumed to have 

width 2T. The left most lenslet is illuminated from the 

left by a coherent plane wave. Thus, incident on our 

input transmittance is the field amplitude. 

That is, each of the lenslets in the left most array is 

assumed to focus the plane wave incident on its pupil to 

a point source. Equation 4-61 then follows as a result 

of the discussion on Dirac delta generation discussed 

previously in this chapter. 

Equation 4-61 now multiplies the input transparency 

to give 





Each weighted Dirac delta in this sum is then laterally 

transformed by the right most flys eye array to yield a 

series of parallel weighted plane waves. Thus, the field 

amplitude incident on the diffuser is 

Thus, in the front focal plane of lens L1 is the distribu- 

tion 

This is Fourier transformed by lens L1 to give the field 

amplitude incident on the hologram plane: 

where we have placed a rectangular pupil in the hologram 

plane for low pass filtering. This multiplies the holo- 

gram transmittance in Eq. 4-60 to give immediately to the 

right of the hologram the distribution 
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Consider, then, the effect of lens L2 which performs 

a Fourier transform on T (f ) to give the amplitude tl(x) 1 x 

on the processor output plane. 

Here we have made use of the convolution and autocorrela- 

tion theorems of Fourier transform theory. 28 

To this point, we have made no comment concerning the 

character of the diffuser. Comparison of Eq. 4-68 with 

the sampling theorem expansion in Eq. 2-84, however, makes 

clear the desired property of diffuser, Specifically, with 

1/2T = 2Ws, we would like 

where 6m is the Kronecker delta. That is. for n = m, 

the autocorrelation of a single patch of the diffuser 

should be peaked like a Dirac delta. Otherwise, for n f m, 

the crosscorrelation of two diffuser patches should ideally 

be zero, If this condition could be met, then Eq. 4-68 

would reduce to 

Outside of a proportionality constant, this is the ex- 



pression for the sampling theorem in Eq. 2-84 for 2Wx=1/2T. 

Thus, our space-variant operation has been performed and 

Unfortunately, implementing a diffuser which has the 

property of Eq. 4-69 is obviously not rigorously possible. 

Thus, we must settle for a diffuser which exhibits this 

property to a good approximation. Such a diffuser would 

exhibit peaked autocorrelation for all patches and a broad 

low level crosscorrelation for each unequal patch pair, A 

direct consequence of a latter characteristic is the occur- 

ence of cross talk terms in Eq. 4-68. These terms, however, 

will be smeared out into diffuse background noise. An 

investigation into various diffusers for use in the phase 

coded reference beam scheme is presently being undertaken 

by Krile et,al. 7 6  

As a final note in this section, we again stress that, 

unlike the volume hologram scheme, the phase coded ref- 

erence beam approach can be implemented in two dimensions 

and thus, in this regard, is much more powerful. 

4.5. Discussion 

In this chapter, we have discussed system response 

generation and two-dimensional space-variant system repre- 

sentation. Certain types of system responses were shown 

to be straightfomardly performed. These include the 



system sinc and rect responses. The system point spread 

function was also shown to be easily generated for both 

input and output sampling cases. 

Three methods of 2-D system representation were pre- 

sented. Let us briefly contrast the advantages and dis- 

advantages of each. 

The composite hologram implementation for systems 

whose point spread functions are bandlimited in their 

output variables is probably the most straightforwardly 

implementable of the three schemes. The required mask can, 

in principle, either be obtained through direct optical 

recording or from computer generated hologram. The pri- 

mary drawback of this scheme, however, is the extremely 

narrow allowable class of systems and inputs to which 

the scheme can be applied. 

The volume hologram approach, although containing a 

two-dimensional flavor, permits straightforward represen- 

tation only of one-dimensional systems. In this regard, 

the one-dimensional processors in Chapter 1x1 would seem 

to be superior. Another fundamental drawback is the 

necessity of direct optical recording. That is, no scheme 

for computer generated volume holograms has been formu- 

lated to date. The beauty of the volume hologram approach, 

however, is the clean manner in which it filters out un- 

wanted crosstalk terms. Utilization of the volume holo- 



gram in future hybrid two-dimensional space-variant pro- 

cessors is a distinct possibility. Its use in supressing 

part of the crosstalk in the phase coded reference beam 

approach has also been suggested. 22  

In terms of application to the widest class of 2-D 

systems, the phase coded reference beam approach seems 

to be the best of the three schemes. The required holo- 

graphic mask can be either directly recorded or obtained 

from a computer generated hologram. The primary disad- 

vantage of the scheme is the appearance of crosstalk terms 

in the form of diffuse background noise. This problem, 

however, can be minimized by construction of more optimal 
1) 

diffusers. 



CHAPTER V 

5. CONCLUSIONS 

In this thesis we have introduced new views on linear 

system characterization theory and have proposed various 

schemes for coherent linear space-variant processing. A 

recap of these results and reflections on possible future 

work are in order. 

The continuum orthonormal response system characteri- 

zation introduced in Chapter I1 offers a generalized view 

of linear system description. The familiar line spread 

function and frequency response characterizations were 

shown to be special cases. Of more practical interest 

are the three system characterizations wherein constraints 

are placed on the system and/or input. The piecewise 

isoplanatic approximation (PIA) is such a case. The con- 

straint here is that the system line spread function 

change "slowly" in shape over an isoplanatically modeled 

interval. 

Additional investigation of the PIA could be per- 

formed in several areas. One as of yet unsolved problems 

is the convergence of the PIA to the true system output as 

each patch grows arbitrarily small and the patch density 

becomes arbitrarily large. Interestingly, the energy 

(integral of the modulus squared) of the PIA and true 

outputs, for certain systems even in the limit is not 



equal.7 More drastically, the PIA of a finite energy output 

might have an infinite energy. It is this author's conjec- 

ture that only very loose constraints can be placed on 

the convergence of the PIA for the most general case. 

Possibly tighter bounds can be placed on a specific system 

or system class. A similar area of investigation would 

be the study of filtering the PIA output to improve con- 

vergence. 

A second interesting yet unsolved area of investigation 

concerning the PIA is definition of the isoplanatic patch. 

Lohman and have offered such a definition which, 

unfortunately, seems limited in application to imaging 

systems. Arsenault and ~rousseau~' have also noted defic- 

iencies in the Lohman-Paris definition. We can conclude 

from Lohman and Paris, however, that a definition of the 

isoplanatic patch need be only system dependent (and thus 

input independent). Possibly the concept of the variation 

spectrum introduced in this thesis offers the basis for a 

new more universal definition of the isoplanatic patch. 

A second constrained system characterization pre- 

sented in Chapter I1 was the discrete orthonormal basis 

element response (DBR) characterization. Here, the system 

is completely defined for an input class by cataloging 

the system response to each element in an orthonormal 

basis set. The inputs are limited to that class spanned by 



the basis set. The sinc and rect responses were shown to 

be particularly straightforwardly implementable in coherent 

processor applications respectively for band- and space- 

limited inputs. Due to vignetting and finite pupil effects, 

only bandlimited and space-limited signals are present 

within any space-variant processor78 (within the treatment 

of scalar optics7'). 

As with the PIA, an interesting study of the DBR 

characterization is convergence. A given input conver- 

gence does not necessitate a given output Convergence. 

For example, as our system, consider a Fourier transformer 

with bandlimited input. Using the sinc basis set, our 

input is reconstructed via the conventional Whittaker- 

Shannon sampling theorem which displays uniform converg- 

ence. 3 6  The system output, which will be reconstructed 

via a Fourier series, displays Gibbs phenomena24 and 

thus does - not uniformly converge (convergence is in the 

mean). Thus the input and output display different con- 

vergence properties. The converse holds for a Fourier 

transformer with space-limited input using the rect basis 

elements. It would seem that for "physically realizable 

systems" with finite energy inputs that, if our input 

space were spanned, then so would our output space, We 

could then expect, it seems, at least mean square converg- 

ence. 



Another possible area of investigation of the DBR is 

the best choice of a basis set. A criteria on which the 

basis set could be chosen is output convergence. That is, 

for a given allowable output error, we would want to choose 

that basis set whose expansion converged quickest on the 

output with fewest terms. Fabrication and use of ortho- 

normal element masks for characterization of coherent pro- 

cessors would also Se an interesting undertaking. 

The final constrained system characterizations pre- 

sented in Chapter PI were the sampling theorems. The 

sampling theorems, in principle, seem to be the most di- 

rectly applicable to coherent processor implementation. 

The system sinc response, herein denoted as a DBR char- 

acterization, could also be argued to belong to the 

sampling theorem class. 

Besides direct application to coherent processing, 

the sampling theorems are also useful in other areas. 

In circuit theory, they give rise to methods of time- 

variant filter synthesis. lo Also, in treatment of linear 

systems on the digital computer, the sampling theorem 

results give an idea of the sampling rate required for 

good approximation. Although such sampling rates have 

been discussed elsewhere in a somewhat more limited scope, 80 

no analytic expressions for the resulting system charac- 

terization have been previously presented. 



A curious question arises concerning utilization of 

the proposed sampling rates. As is discussed in the main 

text, sampling is performed on all members at a rate above 

the minimum allowable sampling rate for each member indi- 

vidually. Seemingly, we gain by this oversampling a 

simple computational form that is a direct discrete case 

of the superposition integral. If sampling of each member 

is performed at its corresponding minimum sampling rate, 

the resulting expressions are vastly more complex. How- 

ever, in actual digital implementation, this manner of 

sampling would seem to require less memory for a given 

degree of allowable error. Thus, a tradeoff between the 

two sampling schemes seems to be simplicity vs. required 

computer memory. A more definitive study of .this tradeoff 

in term of space-bandlimited products would be an inter- 

esting undertaking. 

There are also other possible avenues of investigation. 

One is effects of trunctation. It would seem that this 

would be a straightforward extension of work already per- 

formed on truncation effects in the conventional Whittker- 

Shannon sampling theorem, *I-** Another interesting topic 

would be a study of the effects of jitters3 (irregularly 

spaced sample points). 

All of the constrained system characterizations in 

Chapter I1 are deterministic and, in principle, should 



hold relatively true in the presence of low level noise. 

One can, however, envision cases where an intermediate noise 

level would give rise to non-negligible error. The allow- 

ance of this occurance uncovers an entire new area of pos- 

sible study. For space-variant systems that are essentially 

deterministic, however, the system characterizations as 

presented in Chapter II offer a new wealth of both analytic 

and practical treatment. 

Let us now move on to Chapter III in which numerous 

schemes for one-dimensional space-variant processing were 

presented. All processors considered make use of either 

an astigmatic or Fourier transform type processor. The 
* 

class of space-variant operations that can be performed 

by these processors is extremely broad being fundamentally 

limited only by mask implementability. Even in this re- 

gard, we have a degree of flexibility. That is, if a mask 

for a given operation is not implementable for a given 

processor, it might be implementable for an alternate 

processor. As was shown, the one-dimensional space-var- 

iant processors have a variety of applications includ- 

ing coordinate distortion, integral transform display, 

convolution, correlation, and cross-spectral density dis- 

play. There were also two serendipities of the processor 

schemes wherein the entire processor output plane was 

utilized. These were the Laplace transform and ambiguity 



function display schemes. The simplicity of the ambiguity 

function processor has allowed for its inclusion in a col- 

lection of projects designed to introduce the undergrad- 

uate Electrical Engineer to coherent optical processing. 84-85 

A major result of 1-D processor study is the lensless 

processor. Here, the space-variant operation is performed 

by a single mask directly adjacent to which we place our 

1-D input. It is hard to imagine a coherent processor in 

a less compact form. 

Despite the diversity already demonstrated for the 

1-D processors group, a n er of fundamental investiga- 

tions remain. At best, our treatment of the processors 

was only first order. We completely neglected such fun- 

damental parameters such as finite pupil size and vignet- 

ting which in certain instances can cause significant 

degradation in processor performance. Mueller and Carlson 39 

for example have shown that bandlimiting effects of the 

astigmatic processor impose fundamental limitations on 

the performance of the Laplace transform processor. As 

such, it would be instructive to perform a general inves- 

tigation on the first order degrative effects of the var- 

ious 1-D processors. 

Mask fabrication is another fundamental area in need 

of further research. Three possibilities are 1) optically 



holographically recorded masks, 2) masks generated by CRT 

display3' and 3) computer generated holograms. A combi- 

nation of these methods might also be employed. 

One of the possible potential uses of the 1-D pro- 

cessors is in filtering of temporal signals. For example, 

1-D processors have distinct advantages over the conven- 

tional 2-D convolution/correlation coherent processors 

where movement or Fourier encoding is required. Utiliz- 

ing one-dimensional electro-optical transducers to provide 

the 1-D processor input, such operations could be performed 

in near real time. 

Of more fundamental importance in temporal signal 

processing is the concept of "time-variant filtering.'' 

Through discussions with colleques and inspection of the 

literature, it is this author's opinion that this topic 

has not yet even begun to be investigated. There are 

even recent publications in which rather elementary 

time-variant filters are being analysed let alone 

applied in signal processing. As such, it would seem 

that application of the 1-D processor to temporal signal 

processing can be applied to time-variant filtering only 

when the advantages and applications of such filters are 

known. We should here stress that these comments apply 

only to use of the term "time-variant filtering" as a 

generalization of the concept of time-invariant filtering 

by electric circuits. 



Lastly, let us reflect on Chapter IV wherein various 

possible schemes for general two-dimensional space-variant 

processing were presented. The first scheme (the composite 

hologram approach) was a straightforward implementation of 

a sampling theorem applicable when the system point spread 

function is bandlimited in its output variables. The method, 

however, places severe constraints on the support of the 

input and is thus applicable in only a small number of cases. 

The volume hologram scheme was discussed next and was 

shown to be fundamentally one-dimensional in its application 

to space-variant processing. The ability of the volume 

hologram to store a number of wavefronts with angular 

accessibility, however, still leaves the possibility for 

its use in a hybrid two-dimensional processor. Its use 

in partial supression of diffuse background noise in the 

phase-coded reference beam scheme is also a distinct pos- 

sibility. 

Utilization of phase-coded reference beams is, to date, 

the most promising method for two-dimensional coherent 

space-variant processing. The fundamental drawback to 

this scheme is the smearing of unwanted crosstalks terms 

into diffuse background noise. Although this effect can- 

not be totally eliminated, it can be minimized by the use 

of codes which display peaked Dirac delta type autocorre- 

lation and nearly zero crosscorrelation. An investiga- 



tion into optimizing the diffusers in this fashion is pre- 

sently underway. 75 
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APPENDIX A 

SPATIAL AND FREQUENCY INVaRIANCE 

The concept of space-invariant23 and time-invariant 24 

systems is well established. For linear space-invariant 

systems, the system line spread function takes on the 

form 

As discussed in Chapter I, 2-D linear space-invariant 

systems can be easily implemented with coherent optical 

processors. Furthermore, linear space-invariant systems 

can be straightforwardly analyzed through application of 

conventional Fourier transform theory. 

There are some linear systems whose classification as 

variant or invariant is not clear. Arsenault and Brousseau 7 7  

have discussed a class of linear systems which are invar- 

iant for a certain input class. An example of a line 

spread function for such a system is 

t, h(x-5;5) = hi(x-5)rect(z). (A-2 

Due to the rect term, this line spread function does not 

rigorously conform to the invariance criterion in Eq. A-1. 

If, however, we limit our input signal class to those 

functions identically zero outside the interval 151 < T, - 

then the rect term is superfluous. Arsenault and Brous- 



seau have termed such systems "quasi-linear" although 

"quasi-invariant" might be more appropriate. 

A second system class which has a vague classifica- 

tion contains those linear systems with line spread func- 

tions of the form 

where M is a fixed constant. Although similar in form, 

this line spread function does not rigorously conform to 

the invariance criterion in Eq. A-1. A system considered 

elsewhere in this thesis which is contained in this system 

class is the non-unity magnification imaging system [See 

Eq. 3-81. ~ o o d m a n ~ ~  classifies the magnifier as space-in- 

variant while ~ a w c h u k ~ ~  calls it "rigorously" space-variant. 

Alternate linear system classification categories 

are frequency-variant and frequency-invariant systems. A 

linear system is said to be frequency-invariant if 

k (x-cv ; v) +k (x-cv) (A-4 

where c is a constant and k(-,a) is the system frequency 

response defined in Eq, 2-19. If the frequency response 

does not conform to Eq. A-4, the system is said to be 

frequency-variant. The term "frequency" can here apply 

to either spatial or temporal frequency. 

An example of a temporal frequency-invariant system 



is a delay line whose delay time, x, is proportional to 

the applied frequency ( v ) .  An example of a spatial £re- 

quency-invariant system is the familiar thin lens Fourier 

transformer. Using ~ q .  2-22, the frequency response of 

the Fourier transformer is 

Note that the constant c is here determined by system 

parameters 

c = Xf. (43-6) 

We can easily show that a space-invariant system can 

never be frequency-invariant. Using Eq. 2-22 as applied 

to a space-invariant system, we have 

(A- 7 

where Hx (fX) = Fx [h (x) ] . Clearly, this relation can never 

confrom to the frequency invariance criterion by Eq. A-4. 

(Note that the constant c is here - not specified by any 

system parameters.) We can similarly show that a fre- 

quency-invariant system can never be space-invariant. 



In two-dimensional coherent processors, a space-invar- 

iant system can be straightforwardly be made into a fre- 

quency-invariant system (or visa-versa) simply by placing 

a thin spherical lens a focal length's distance f in front 

of the system's input plane. The input plane is rede- 

fined to be the lens' front focal plane. Then, for an 

input exp(-j2nSv), the system output is 

k (x-cv; v) = hfh (x-hfv) (A-8) 

where h(-) is the original space-invariant system's im- 

pulse response. Clearly, the augmented system is £re- 

quency-invariant with c = Xf. v 

In the definition of frequency-invariance in Eq, A-4, 

the constant c is assumed to have dimension of inverse 

frequency squared. This retains dimensional consistancy 

between the spatial frequency v and the spatial variable 

x. Inclusion of such a constant in the spatial invariance 

definition in Eq. A-1 was not required since x and 5 are 

dimensionaly. consistant. Note, however, that if we had 

included an arbitrary constant in the spatial invariance 

criterion, then we would arrive at Eq. A-3. Thus, we 

might logically adopt Eq. A-3 as a generalized definition 

of spatial invariance. 

We have here considered space-(time-) and frequency- 

invariant systems. A term used in the literature which 



can be applied collectively to all such linear systems is 

"shift-invariant. ,,lo, 8 0  



APPENDIX B 

UTILIZING MINIMUM SAMPLING RATES IN A SPACE-VARIANT ShWLING 

THEOREM 

The sampling theorem expressions in Eqs, 2-83 and 2-84 

are not optimum in the sense of utilizing maximum allowable 

sampling intervals. That is, we are sampling both the in- 

put and Pine spread function at a rate of 2W, while the 

minimum required sampling rates are 2W and 2 W v ,  respect- f 

ively. As will be shown, however, the resulting expres- 

sion employing these minimum sampling rates is rather un- 

attractive for computation and implementation purposes. 

Consider, then, the following sampling theorem ex- 

pansion of a space-variant system's line spread function: 

where 2Wv is the variation bandwidth and 6 = s j 2 W v .  One 
9 

may similarly apply the sampling theorem to the system in- 

put to give 

where 5 = p/2Wf and 2Wf is the input's bandwidth. Sub- 
P 

stituting Eqs. B-1 and B-2 into Eq. 2-25 gives 



where denotes convolution. Equation B-3 is identical 

to Eq. 2-84 yet employs larger sampling intervals. The 

above relationship, however, has the disadvatage of not 

assigning each sample input value to a single correspond- 

ing sampled line spread function. Note that the two 

convolving rects in Eq. 8-3 give an upper bound of 2Ws=2Wf 

+ 2Wv on the output spectrum's bandwidth. This is the same 

constraint contained in Eq. 2-83. 

Inverse transforming Eq. 3-3 gives 

* [sinc 2Wy (x-5 ) sinc 2WC (x-5 1 1 .  
P L 9 

This is the spatial domain sampling theorem expansion for 

minimum sampling rates. 

We now consider the version of Eq. B-4 which arises 

when the line spread function is bandlimited in x with - 
low pass bandwidth of 2Wx In this case, we can write 

(x; tq) = lh (x,; Sq) sinc 2Wx (x-x,) (B-5 1 
r 



where x = r/2Wx. Substituting into Eq. B-4 gives r 

where our interpolation function is 

I - (x) = sinc 2Wx (x-x,) 
Pqr 

(13-71 

* [sinc 2Wv(x-E )sinc 2Wf(x-5 ) 1 
P 4 

This relationship is obviously less computationally attrac- 

tive than that in Eq. 2-83. Note that evaluation of Eqs. 

B-6 and B-7 at xm 
= m/2W gives Eqs. 2-101 and 2-102. 
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