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A coherent optical processor for diphying a signal's ambiguity function is described. The required time 
delay is r e a l i d  by 45' mtationa of two identical input transparencies end the Dopplershift by a l -D Fourier 
transformation. The entire ambiguity function is displayed in the output (Doppler shift-time delay) plane. 
Exam~les of the o~tically m m ~ u t e d  ambiguity function for sinale and double pulse signals areshom to be . . . 
in exeellent agreement with theory. Advantag- of this approach over other schemes and poesible extension 
to real time proeessingare also discussed. 

I. Introduction 
The ambiguity function, first introduced by Wood- 

ward,' has been applied in radar in predicting the ca- 
pability of a given signal to determine simultaneously 
the range and velocity of a target. The range is deter- 
mined by the time delay 7 and the velocity by the 
Doppler shift w. The amhiguity function for a given 
real-valued signal f ( t )  is 

In optics, Papoulis has employed the amhiguity function 
in analyzing diffraction phen~mena .~  

In this paper, we describe a rather easily implemented 
coherent processor capable of generating the ambiguity 
function in magnitude. A similar, yet somewhat more 
elaborate, scheme for generating x(v,r) in both magni- 
tude and phase is given in the Appendix. Such a 
scheme, for example, would need to be utilized when 
further coherent processing of the amhiguity function 
is required. 

Cutrona et al.X4 and Preston6 have proposed a co- 
herent ambiguity function processofi which utilizes 
multiple channels to display the amhiguity function for 
discrete values of r. The scheme of Casasent et aL7 
generates l-D slices of the amhiguity function in the 
( u , ~ )  plane. Similar l-D displays have also been elec- 
tronically p r ~ d u c e d . ~  Our method, as described in the 
following sections, (1) displays IX(u,7) 12 in a continuous 
(rather than quantized) form over the entire (u,7) plane, 
(2) has the capacity for extension to real time process- 
ing, and (3) is easily implemented. 

T. F. Krtle iswith Rose.Hulman In~tituteofTeehnology, Depan. 
meni of Electrical Enweering. Tern Haute, Indiana 47805 tk other 
authors are with ~ e i a s  ~ w h  Univeniity, Department of Electrical 
Engineering, Lubbock. Texas 79409. 

Received 2 August 1976. 

11. Geometrlcal Interpretation 
On the (t,7) plane, a function f ( t )  takes on the l-D 

nature exemplified in Fig. l(a). Upon rotating this 
function counterclockwise about the origin through an 
angle 8,  we generate the function [Fig. I(b)] 

Thus, for a rotation of 45O, we obtain f[(t + r )N2] ,  and 
for a rotation of -45', we obtain f [(t - r)/v'2]. Con- 
sider, then, multiplying these two functions [Fig. l(c)] 
and performing a Fourier transformation with respect 
t o t :  

where u ia the frequency variable associated with t. 
Upon making the variablesubstitution t' = ( t  + r)lv'2, 
Eq. (3) becomes a scaled version of the ambiguity 
function of Eq. (1): 

Thus, apart from a multiplicative phase term, we may 
generate a scaled version of the ambiguity function by 
representing the time delay by simple 45" rotations and 
the Doppler shift by an appropriate l-D Fourier 
transformation. 

Ill. Implementallon Scheme 
A processor capable of performing a l-D Fourier 

transform is given in Fig. 2. The field amplitude U(Y,T) 
in plane Pa is related to the coherently illuminated 
transmittance s ( t , r )  in plane PI by 

where X is the wavelength of the spatially coherent il- 
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Fi. I. (a) A function f( t )  in time and in the (t.7) plane. (b) By ro- 
tating f(t) counterelockwisean angle of B a h t  the originof the (t,r) 
plane, we generate f ( t  cosfl t r sin#). (c) The function 

f[(t + ~) /42] f I ( t  - rl/d21 
in the (t,,) plane. 

Fig. 2. A mherent processor for ambiguity function display. Both 
the lenses have focal length I. Fourier transformation is performed 

in the horizontal direction and imaging in the vertical direction. 

lumination, f is the focal length of both lenses L1 and 
Lz, and the spatial frequency v is related to the hori- 
zontal displacement x z  on plane Pz by9 

v = zzlXf. (6) 

Consider, then, placing two identical 1-D transpar- 
encies of f ( t )  in plane P t ,  each rotated 45O in such a 
manner as to form the product 

. - 

The corresponding field amplitude in plane P2 [from 
Eq. (5)) is then given by 

U(u.r) - 

where, as before, we have made the change of variable 
t' = (t + r)/v'2. The intensity distribution associated 
with Eq. (8) is immediately recognized as a scaled ver- 
sion of the squared modulus of the ambiguity func- 
tion? 

where 

Fig. 3. A single puke (a) in time. (b) in the (t.r) plane. (c) rotated 
45' on the (t ,rl  plane to form fI(t + r)Id21, (d) the pmduct of 

two pulses rotated 45' and -45' on the (t,r) plane to form 
f l u  + .)/d211l(t - 7,/d2]. 

IV. Experlmenlal R e w H s  
To evaluate the performance of the proposed pro- 

cessor, the ambiguity functions for a single and double 
pulse signal are evaluated analytically and compared 
to the corresponding optical system outputs. In prac- 
tice, the processor output is magnified by conventional 
means for observation and photographic purposes. 

A. Single Pulse 
For a single pulse [Fig. 3(a)], we may write 

f(t) - rect(t/zn, (10) 

where 2 T  is the pulse duration, and 

The geometric interp~etations of f(t), f [ ( t  + .r)lv'2], and 
f[(t + . r ) / d Z ] f [ ( t  - + ) / d 2 1  are shown in Fi.  3(b), 3(c), 
and 3(d), respectively. 

Substituting Eq. (10) into Eq. (1) followed by evalu- 
ation yields the ambiguity function 

sincr (sinst.)lau. 

The corresponding output intensity is 

For purposes of identification, it is instructive to 
examine the locus of points where the ambiguity func- 
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tion is identically zero. From Eq. (12). this zero locus 
may easily be shown to be 

s - nl(2T- Irl); J r J  8 2T. (13) 

when, n ia any nonzero integer. The piecewise hyper- 
bolic nature of these curves is shown in Fig. 4. (a )  

The ambiguity function for a single pulse is generated 
by appropriately rotating two identical thin slits in 
plane P I  of the coherent optical processor of Fig. 2. The 
result is shown in Fig. 5. As can be seen, the coherent 
processor output compares quite nicely with the theo- 
retical result in Fig. 4. A 3-D computer graph of the 
corresponding ambiguity function modulus may be 
found in Fig. 6.6 of Rihanek.ll 

8. For a Double Pulse 
For a double pulse [Fig. 6(a)], we write 

f ( t )  - mct((r + 2T)/2Tl+ rect[(t - ZT)/ZTj, (14) 
(b) 

where, for convenience, the pulse separation 2 T  has 
been chosen to be equal b e a c h  pulse width. The geo- Fig. 6. (a) A double pulse. (b) The mrresponding function 
metrical interpretation of f[(t - r ) ld2]f[ ( t  + +) /d2]  f ( ( t  + rt/d2]/1(t - r)/d2] in the (t.7) plane. 
is shown in Fig. 6(b). The ambiguity function associ- 
ated with the double pulse is 

2(2T - Irl) aincv(2T- JrJ) cos(4sTv) exp(-jnrv); Irl 4 2T 
(;(2T -:TI) sincd2T- 171) exp(-,s~~); 2 T C l r l 4 4 T  

x('*')- (6T - lrltsincv(6T- Jrlt exp(-jrru): 4 T 4  ( r l 6 6 T  (15) 

lr1 6T. 

The corresponding output intensity is 

The equations describing the zero-value loci are easily 
shown to be - (2m + 1)/8T; (rl  S 2T, 

u = n/(JrJ - 2Tt; irl < 4T. 
I 

r =  nI(6T- IrJ);4T< 171 86T.  (17) 
Fig. 4. Zem loma plot of the ambiguity function of a single pulse. where m is any integer, and, as before, n is any nonzero 

integer. An illustration of these zero-value loci is of- 
fered in Fig. 7. 

Fig. 6. The embiguity function (modulus s q u e d )  digpley for s 
single pulse, as generated by the coherent processar of Fig. 2. Fig. 7. Zem I- plot of the ambiguity function of a dwble pulse. 

748 APRlED WNCS / VD1.18, No. 3 / MBTCh 1977 



v. Comluslons 
We have demonstrated a rather easily implemented 

coherent optical processor capable of computing a sig- 
nal's ambiguity function. The required time delayed 
signal results from 45' rotations of the transmitted 
signal. The Doppler shift variable is obtained by an 
appropriate l - D  Fourier transformation. The entire 
(u .7)  plane is displayed a t  once, and no motion is re- 
quired. The processor output demonstrates good 
agreement with theoretical results. 

The ambiauity function processor could easily be 
extended to;eal time by uiilizing two synchronized 
(1 -D)  electrical-to-optical transducers to generate the 
two required identical radar signals. 

As a final note, we observe that the scheme we pro- 
pose assumes that f ( t )  is real valued. If, in fad,  f ( t )  is 
complex, we need to generate f*( t  - r )  in the integrand 
of Eq. (1) in order to generate x(u.7)  properly. Some 

The authors express their appreciation to Steven V. 
Bell; Gary Froehlich, Richard W. Thomas, Jr., John A. 
Vincent, and Kingsley Wong for their assistance in the 
preparation of this paper. 

This research was supported by the Air Force Office 
rr of Scientific Research, Air Force Systems Command, 

USAF, under grant AFOSR-75-2855A. 
I - t t 4 t t f a + f * t f . T f a T T f * j  
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Fig. 9. Coherent p m e m r  for generating the ambiguity function 
in phase and amplitude. Scaling lensen Li and L? have a f d  length 

relation f l  = 42f2..  

Fig. LO. The product f(t)f(t - rl in the (t.rl plane for thesingle pulse 
of Fig. 3(a). 

By appropriately placing two identical double slits 
in plane PI of the coherent processor, the ambiguity 
function for the double pulse is generated. The result, 
shown in Fig. 8, again compares quite favorably with the 
theory. 

A coherent processor capable of computing x(v,z) in 
both phase and amplitude to within a proportionality 
constant is shown in Fig. 9. In plane P I ,  we place the 
transmittance f [ ( r  - t ) l d 2 ]  which is formed by the 
previously discussed 45' rotation of f ( t ) ,  followed by 
coordinate reversal (rotating f [ ( t  - r ) / d 2 ]  180 degrees 
about both the t  and r  axes). The scaling lenses L1 and 
L2 have respective focal lengths related by f 1  = d2f2. 
The field amplitude incident on the left of plane P2,is 
the desired f ( t  - r ) .  This will multiply the transmit- 
tance f ( t )  in plane P2 to give immediately to the right 
of Pa the field amplitude f ( t ) f ( t  - 7 ) .  The geometrical 
interpretation of this product in the ( t , r )  plane, for the 
case of a single pulse, is shown in Fig. 10. 

With reference to Eq. (I) ,  it remains to perform a 
Fourier transformation with respect to t .  This is ac- 
complished with cylindrical lenses L., Lb, and L, which 
have respective focal lengths of 

One sees that, from plane Pz to P3, imaging is performed 
in the vertical direction by La and L, while Fourier 
transformation is independently performed in the 
horizontal direction by Lb. Thus, the field amplitude, 
U ( Y , T ) ,  in plane P:3 is a scaled version of the ambiguity 
function 

where r is related to the horizontal displacement x3 in 
P3 by Y = x3 /Xf .  
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Fig. 8. The ambiguity function (modulus squared) diaplay for a 
double pulse ss generated by the coherent prmessor of Fig. 2. 

Fig. 9. Coherent pmemor for generating the ambiguity function 
in phase and amplitude. Sraling lensen LI end L? have a f d  length 

relation fl = 42f.2.. 

Fig. LO. The ~roduct f(t)f(t - r) in the(t.r) plane forthesingle pulse 
of Fig. 3(a). 

By appropriately placing two identical double slits 
in plane PI of the coherent processor, the ambiguity 
function for the double pulse is generated. The result, 
shown in Fig. 8, again compare6 quite favorably with the 
theorv. 

We have demonstrated a rather easily implemented 
coherent optical processor capable of computing a sig- 
nal's ambiguity function. The required time delayed 
signal results from 45' rotations of the transmitted 
signal. The Doppler shift variable is obtained by an 
appropriate l - D  Fourier transformation. The entire 
(u,r) plane is displayed a t  once, and no motion is re- 
quired. The processor output demonstrates good 
agreement with theoretical results. 

The ambiguity function processor could easily be 
extended t o  real time by utilizing two synchronized 
(1-D) electrical-to-optical transducers to generate the 
two required identical radar signals. 

As a final note, we observe that the scheme we pro- 
pose assumes that f ( t )  is real valued. If, in fact, f ( t )  is 
complex, we need to generate f*(t  - r )  in the integrand 
of Eq. (1) in order to generate x(u.7)  properly. Some 
additional work appears needed for the case of a general 
complex-valued f ( t ) .  

The authors express their appreciation to Steven V. 
Bell; Gary Froehlich, Richard W. Thomas, Jr., John A. 
Vincent, and Kingsley Wong for their assistance in the 
preparation of this paper. 

This research was supported by the Air Force Office 
of Scientific Research, Air Force Systems Command, 
USAF, under grant AFOSR-75-2855A. 

Appendlx 
A coherent processor capable of computing ,y(v,z) in 

both phase and amplitude to within a proportionality 
constant is shown in Fig. 9. In plane PI, we place the 
transmittance f [ ( r  - t ) / d 2 ]  which is formed by the 
previously discussed 45' rotation of f ( t ) ,  followed by 
coordinate reversal (rotating f[(t  - r ) / d 2 ]  180 degrees 
about both the t  and r  axes). The scaling lenses L1 and 
L2 have respective focal lengths related by f ,  = d 2 f 2 .  
The field amplitude incident on the left of plane P2,is 
the desired f(t - r ) .  This will multiply the transmit- 
tance f ( t )  in plane P2 to give immediately to the right 
of Pa the field amplitude f( t )f( t  - r ) .  The geometrical 
interpretation of this product in the ( t , r )  plane, for the 
case of a single pulse, is shown in Fig. 10. 

With reference to Eq. ( I ) ,  i t  remains to perform a 
Fourier transformation with respect t o t .  This is ac- 
complished with cylindrical lenses L., La, and L, which 
have respective focal lengths of 

One sees that, from plane Pz to P3, imaging is performed 
in the vertical direction by La and L, while Fourier 
transformation is independently performed in the 
horizontal direction by Lb. Thus, the field amplitude, 
U(Y,T) ,  in plane P:3 is a scaled version of the ambiguity 
function 

where r is related to the horizontal displacement xa in 
Pa by v = xdX,. 
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This ambiguity function processor, which is more 
elaborate than that shown in Fig. 2, need be used only 
when the ambiguity function's phase is required in ad- 
dition to its magnitude. 
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