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A coherent optical -:cessor for displaying a
signal's ambiguity funcii:~ is described. Tha re-
quired time delay is simu’:ted by 45 degrez rota-
tions of two identics:l in:.f transparenciss, and the
dopoler shift by a subszc.zat one-dimensional Feurier -
transformation., The an ambiguity funczion is dis-
piayed in the outpu: (doc:"er shift-time delay) plane.

xampies of the optically :zomputed ambiguity function
for single and doudble pul:z signals are shown to be in
excallent agresment with T-eory. Advantagss of this
aporoach over other scherss, and possible zxtznsicn to
real time processing, ars 2iso discussad.

Introducion

The ambiquity functic~, first introduzz2 by YWead-
quily ’ Y

ward], has been applied in radar in predicting the ca-
pability of a given signal o simultaneously Zztzrmine
the range and velocity of 2 target. The ranz2 is de-
termined by the time delay, t, and the velccity by the
doppier shift, v. The ambizuity function for 2 given
signal, f(t), is

x(v,7) = 12 F(t)F{t - )exz{-j2nrut) dt (1)

'n optics, Papoulis has emzioyed the ambiguity function

in analyzing diffraction p“enomenaz.

In this paper, we describe a rather easily imple-
mented coherznt processor cidable of gensrating the
asdigquity function in magnizude. A similar, yet sorma-
what more elaborate, schzmz for generating x(v,t) in
both magnitude and phase is alsn presented,

Such a scheme, For examole, would need to be utilized
when further coherent precassing of the ambicuity func-
tion is required.
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Cutrona et.al, and Preston” have proposed a

coherant ambigully function processor6 which utilizes
multiple chanrels to display the ambiguity functicn
for discrete values of t. The scheme of Casasant et.

a1.7 gererates one-dimensional “slices™ of the ambigu-
ity function in the (v,t) plane. Similar one-dimen-
sional displays have .also been electronically
produceda. Our methcd, as described in the following
sections, (1) displays Ix(v,r)lz in a continuous
(rather than quantized) form over the entire {v,t)
plana, (2) has the capacity for extension to real time
processing, and (3) {s easily implemented.

Implementation Scheme

The coherent processor capable of dispiaying the
amdiguity function (in magnitude) is pictured in Fig 1.
The field amplitude, U{v,t), in plane Py js related

to the coherently {lluminated transparency, S(t,r) in
plane pl by a one-dimensional Fourier transform:

ulv,7) = exp(-ijvaZ) {: s{t,-z)exp(-j2nut) dt (2)

wnere X is the wavelength of the spatially coherent
{1lumination, f {s the focal length of both lenses L]

titute of Technoloay
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and LZ’ and the spatial frequency v is related to the
horizontal dispiacement, X5, ON plane P2 by9

v = xz/xf (3)

By an appropriate choice of an inpou%, this coherent
processor will be shown to have the capability of ambi-
guity function display.

Consider, then, the one dimensional temooral
sigral f(t) in Fig. 2a and its representation on the
(t,r) plane [Fig.2bl. By rotating this function coun-
terclockwise about the origin an angle of 8 [Fig.2c],
we generate the function

f(tcoss + tsins]

Thus, for a rotation of 45 degrees, we obtain

f{(t + 1)//2}, and_for a rotation of -45 degrees, we
obtain f{{t - t)/¥2}. If we cascade transparencies of
these two functions, in the input plane of the proces-
sor of Fig.l so as to form the product

f(t + <)/72] f{t - <)//2], then, from Eq.2, the resul-
ting output is

Ulv,7) = expl-§2srfvl)

o ft-v] . (t 4 ;
o [ Fl—— f |———|exp(~j2xvt) dt
= {/EJ [rz] g

/2 exp[-i2xv{c + Afv)] (4)

"

[0 (L) (e - /Zx)exp[-j2x(/2v)t'] dt’

where we have made the change of variable

tn=t+1‘
2

The intensity distribution associated with £q.4 is im-
mediately recognized as a scaled version of the

squared modulus of the ambiguity function:]o
2
I{v,1) = [U(v,7)]

- 2|5 (B, 2N (5)

Experimental Results

To evaluate the performance of the proposed pro-
cessor, the ambiguity functions for a single and doub-
Te pulse signal are evaluated analytically and com-
pared to the corresponding optical system outputs. In
practice, the processor output is magnified by conven-
tional means for observation and photographic purpgses.

Fof a Single Pulse

For a single pulse, (Fig.3a), we may write

f(t) = rect (%z/2T) (6)



where 2T is the pulse duration and

1t] € 172
> 1/2

rect (t) 2
v 0: %

t+x

The ceomatric interpretation of f(t), f{ }, and

f((t + r)}f{(t -
/2 V2
respectively,
Substituting Ec.6 into Eg.1 followad by evaluation
“yields the ambiguity function

x)y are shown i Fige.3b, 3¢ and 3d

f

x(v,7) =< (2T = falisinc v(2T - Jx|)exo(-J=vi);lcle2T
1° b2t

(7)

where sinc v y {sin zv)/=v. The corresponding output

intensity is

lX(V»T)iz =ﬁ2T - lT])zsinczv(ZvT - Jel) s el g 2T

0 s 1=l 3 21 (8)

For purpouse of identification, 1£ -3
to examine the locus of points where thes 2
function is identically zero. From Eq.§&,trd
ve locus may easily be shown to be

is irsiructive
iguity
s zero val-

n .
e e [<] ¢ 21 (9)
where nois any non-zero integer. The piecewise hyper-

tiolic nature of these curves is shown in Fig.4.

The ambiguity function for a single pulce is gen-
erated by appropriately rotating two identical thin
siits in plane P] of the coherent opticel processor of
Fig.2. The result is shown in Fic.5. As cen be seen,
the coherent processor output compares quite nicely
with the theoretical result in Fig.4. A thres-dimen-
sicnal computer graph of the correspunding embiguity
function modulus may be found in Fig. 6.6 of Rihac-

‘GL.]]

For a Double Pulse

For a double pulse, (Fig.6a), we write

f(t) = rect{{t + 2T)/2T} + rect{(t-2T)/2T} (10)
where, for convenience, the pulse separation, 2T, has
heen chesen to be ecual to each of the pulse widths,
The geometrical interpretation of

frifs D (b ¢ o)y
72 A

function associated with

is shown in Fie.6b. The anmbiguity

the double pulse is

x{v,1) -{Z(ZT - jedsinc v{2T - lrl)
"cos{&rTv)expl-jezv) 3 Jt] < 2T
(27 = |t])sinc v(2T - |7 lexp(-3x1v)
s 27 % |v] ¢ 4T
exp(-jriv)
3 4T ¢ 1]

0 3 ri

(6T - Jz{)sinc v(6T - j1|) ()

67
6T

WA

The corresponding output intensity is

]x(u,‘r)lz ={4(2T - Iil)zsinczv(ZT - 11

cosi(4wTv) il s 2T
(21 - |1]) sinc v(ZT - 1D
s |t} < 4T
(6T -]<]) sinczv(ST - <D (12)
H s <} <67
LO 3 lx] 2 6T

The eguations describina the zero-value loci are easily
shown to be

v=(2m+1)/8T 5 |1] €27
v=n/(lx] -21) ; |1] s 47 (13)
v = n/(6T - [x]) 5 4T < |<| < 67

where m is any integer and, as before, n is any non-
zero integer. An illustration of these zero-value loct
is presented in Fia.7.

By appropriately placing two identical double
slits in planes P] and P2 of the coherent processor,

the embiguity function for the double pulse is gener-
ated, The result, shown in Fig.B, 2gain compares quite
favorably with the theory.

An Alternate Scheme

The coherent processor just discussed, is capable
of dispiayinq the ambiguity function only in magnitude.
That is, quadratic and linear phase factors are present
on the output plane [see Eq.4].

A procecsor canable of generating the ambiguity
function both in magnitude and phase is presented in
Fig.9. 1In plane P], we place the transparency

ff(’/p t)} which is formed by the previously discussed
45 degree rotation of f(t), followed by coordinate re-

T)) 180 degrees zbout the t and
The scaling ienses L] and L2 have respective

versal (rotating f((t

1 axes).
focal lengths related by

1™ /2 fz (14)

The field ampliiude incicent on the left of plane P2 is

the desired f(t - t). This will multiply the transmit-
tence f(t) in plane P2 to give immediately to the right

of P2 the field amplitude f(t)f(t - <).

interpretation of this product in the (t,t) plane, for
the case of 2 single pulse, is shown in Fig.10.

KWith reference to Eq.1, it remains te perform a
Fourier transformetion with respect to t. This is ac-
complished with cylindirical lenses La‘ Lb‘ and LC which

The qeometrical

have respective focal lengths of

2f, = 2f (15)

Ty

plane P, te Py, fiaging is perform-

24

Orie sees that, from
ed in th2 vertical direction by La &nd Lc while Fourier
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n is indzz2a2engiy performed in the heri-
jon by L.. Thus, the field ampiituds,
ane P3 is~ a scaled versina of ths ambigu-

transformatio
zoatal dirzc
U(v,<), inp

ity function:
4

>
hl
t

Ulv,t) = /7 f(t)f(t - t)exp(-J2avt) dt (16)
= x{v,t)

whare v 1s relatad to the horfzontal displacz-ent, X3,

in P3 by

v = x3/kf (17)

This ambiguity functien processor, which is mere
elahorate than thet shown in Fi19.2, ne=d be used only
when the ambiguity function's magnitude and phasa are
required. :

As a final notas, we observe that the scherz we
proposa assumas that T{t) is real valued, If, in
fact, f(t) is complex, than we nesd to generz:z
f*{t - t)in the integrand of Eq.1 in ordar to croperly
generate x(v,t). Some additionzl work agpzirs neszded
for the case of a general complex-valusd tit).
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Fig.1. A coherent processor for ambiguity functicn
display. Both the lensas have focal length f.
fourier transformation {s performed in the
herizontal direction and imaqing in the verti-
cal direction.
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Fig.2. (a) A function F(t) in time and (b) on the
(t,x) plane. (c) By rotating f(t) counterclock-
wise zn angle of 8 about the origin of the

(t,t) plane, we generate f(tcess + wsins). (d)
The function f{(t/*.‘ )f{(_%,i__‘)-) in the (t,7)
plane. .
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: © (d:
Fig.3. A single pulse, () in time, (b) on the (t,t)
plane, (c) rotated 45 degrees on the (t,<)
e T)I, (d) the product of

two pulses rotated 45 degrzes and -45 degrees
on the (t,t) plane to form f{££7§—ilf(£§7%_£lg.

plane to form f{



Fig.4, Zero locus plot of the armbiguity function of a

single puise,

Fig.5, The ambiguity function (modulus sguarsd) dis-
play for a single pulse, as genesratsd by the

coharent processor of Fig.2.

Fig.6. (a) A double pulse. (b) The corresponding func-
ion f{££7§rll}f{127%r124 on the (t,t) plane.

Fig.7. Zero locus plot of the ambiguity function of a
double pulse,
Fig.8. The amnfguity function (modulus sguared) dis-

pley for & double pulse as genarated by the co-
herent processor of Fig.2,
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Fig.9. Coherent processor for gznerating the ambigu-
fty function in phase and amplitude. Scaling

lenses L] and L2 have a focal length relation
f, = /2f,.

Fig.10. The product f(t)f(t - 1) on the (t,1) plane

for the single pulse of Fig.3a,





