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ABSTRACT

The primary objective of this thesis is investigation
of the holographic recording of a linear optical system in
such manner that the resulting hologram displays the same
input-output relationship as the recorded system, This
proposition is defined herein through application and deri-
vation of necessary theory. Needed approximations are cited
and corresponding consequences explored,.

A basic review of the optical properties of the thin lens
and the concepts of planar holography are offered, Transition
is then made to a more rigorous treatment of the topology and
diffraction efficiency of the volume hologram, whose multiple
wavefront storage capacity offers a possible solution to
optical system recording,.

Linear system theory is then revisited. Practicality is
shown to dictate compromise, necessitating the formulation of
the piecewise isoplanatic approximation, a method by which
desired output functions may be synthesized.

The linear system and volume holography discussions merge
under recording theory., Schemes are advanced for physically
recording the response of a system, and limited implementation
results are presented, A generalization of necessary system

recording criteria is also offered.
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I) The Thin Lens

With applications ranging from simple magnification to
Fourier transformation, the thin lens is distinguished as the
most basic instrument in optical processing. Due primarily to
the extensive use of Fourier transforms in linear system theory,
and secondly, to lens’' appearance in many optical systems of
interest, a basic review of the properties of the thin lens
is in order,

In general terms, a lens may be defined as a non-attenuating
optical element which alters the phase of incident waveforms in a
non-random manner, A lens is said to be thin if a ray incident
on the lens at coordinates (x,y) emerges at the same coordinates,
Properties of the thin lens may be derived from either wave optics
or from geometrical tracing. For purely illustrative purposes,

a combination of these models is employed here to describe thin
lens operations with attention restricted to the double convex
thin lens.

A) Classical Ray Tracing

By far the most important lens parameter is the focal length.
For the double convex lens, comprised of two adjoined sphere

slices (Fig. la), the focal length is defined as (1

= n-)( Ve, v YR (1-1)
where n is the homogeneous index of refraction of the lens

media, and Ry and Rog are the spheres' radii, which are poesitive.
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The lens axis is the line defined by joining the 'spheres’
centers,

The properties of the thin lens may be illustrated through
vray tracing techniques,

1) The Ray

In ovder to determine the lens' effect on incident waveforms
we now introduce and discuss the concept of the optical ray.
The electromagnetic theory presented by Maxwell predicts the pre-
sence of electric and magnetic vector fields in light waves.
In 1890, Weiner experimentally confirmed the electric field's
nearly complete dominance over the magnetic field in the formation
of photographs. This hierarchy holds true not only for photo-
graphic emulsion, but for all photosensitive media in which holo-
grams have been formed(Z). In diffraction analysis, the electric
and magnetic fields may also be treated separately under the condi-
tion that the diffracting aperture is large in comparison to the
wavelength of the illuminating light. Under these conditions,
attention may be restricted to the electrie field component of
the electromagnetic wave,

Maxwell's equations rvelate the space and time derivatives of

the electric field ?(x,y,z,t) for propagation in free Space(3)

L §* VY. Zt)

ot

wls P . S AR
g2V (x. v, 2, b 21 Te3 (1-2)

where ¢ = 3 x 108 is the speed of light in free space and Vz,

Sec

the Lapacian operator, is given as

2 52 82 52
Vo= gy: Tk T gez (1-3)




A scalar solution to (1-2) for the case of monochromatic (single-

wavelength) light 13(4)

Vix,v.2 ¢t)= A(x,?,é)eég‘“c't/'\ (1-4)
where A is the light's wavelength, and A(x,y,z) is the complex
amplitude or phasor describing both the phase and amplitude
of the wave. Since the phase term in (1-4) is contained in
most mathematical manipulations in the study of monochromatic

wavefronts, we focus attention on
- Plx,y, 2 _
Alx,y,2)=4d(x,¥Y,2) € 4"¢ JB) (1-5)

where alx,y,z) and @(x,y,z) are respectively the magnitude and
phase of A(x,y,z).
A wavefront, or equiphase surface, is defined as the

closed three-dimensional surface at time tg for which

¢(x, ¥, 2)= P, (1-6)

(5)

where ¢G is constant After passage of a short time §¢,

the same equiphase surface may be described by

dlx.v,2)= ¢ot §¢ (1-7)
The point to point correlation of these wavefronts is estab-
lished by "rays” as illustrated in Fig. 2., The ray also gives
the direction of energy flow in the electric field.

In homogeneous isotropic materials, such as glass and air,
rays are perpendicular to the described equiphase surfaces and
may be thought of as incremental planar wavefronts, Consider,
for example, Fig., 3a, in which a point source gives rise to

spherical wavefronts at times t, and t  + 6 t. The correspond-
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ing ray representation given in Fig., 3b, consists of a family
of rays diverging from the point source, Each ray is obviously
normal to all of the spherical wavefronts generated by the point
source,

The optical ray proves to be an intuitively gratifying tool
in analysis of electromagnetic propagation in homogeneous iso-
tropic media, and is particularly useful in analysis of optical

properties of the thin lens,.

2) Ray Tracing Laws (6

Classical ray tracing is a familiar topic in elementary
optics for the case of the thin lens., With reference to Fig. 4,
the ray tracing laws for the double convex thin lens are as

follows:

a) rays propagating parallel to the lens axis are bent
by the lens to pass through the back focal point,

b) rays passing through the front focal point emerge
parallel to the leng axis,

¢) rays incident on the lens at the lens axis remain unbent.
We now venture to illustrate the magnification and Fourier
transformation properties of the thin lens employing these ray

tracing laws,
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B) Magnification
Prior to the advent of the laser, the lens was used
primarily for magnification. A foundation for magnification
theory is now offered followed by analysis of a simple one lens
magnifier,
In the 17th century, Christian Huygens formulated what is

(7}, Huygens

presently called the Huygens-Fresnel Principle
reasoned that each element of a wavefront can be considered as
a Secondary source and that the wavefront at any later instant
can be found by the superposition of the rvesulting spherical
wavelets,{Figs 51 Although not rigorous in concept, application

of the Huygens-Fresnel Principle has predicted results that agree

amazingly well with experiment,

Consider then Fig., 6 in which a two dimensional transmit-
tance function g(x,y) is illuminated by a normal unit aplitude
plane wave (i.e., a wavefront consisting of planar equi phase
surfaces propagating perpendicular to the x-y plane.,) The
Huygens-Fresnel Principle dictates that each point on the trans-

mittance acts as a secondary point source, That is
]
g(x,‘!):f ?cg,’&,} S(x-€,v-n)dg€dn a-®
=

where é(xgy), the Dirac Delta, represents a point source and

may be defined*as
2
Y 2 o ~NFTT (X3 Y )
{SCX,Y%N{;;‘; NTE (1-9)
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Equation (1-8), termed the sifting property of the Dirac
Delta, is the mathematical statement of the Huygens-Fresnel
Principle for the case at hand, The transmittance is expressed
as a superposition of secondary point sources located at
coordinates {ﬂ,?@) and weighted by g‘(ii?L)‘

Suppose the configuration in Fig. 6 is placed a distance
dy in front of a thin lens, Without loss of generality, atten-
tion is restricted to one dimension,

Consider first, the case where d,72f as illustrated in
Fig. 7a. The point at XIZi on the transmittance may be thought

of as a secondary point source given as

g‘fi}éiﬁ“§) (1-10)

From the resulting spherical wavelet, rays are chosen which
apply directly to the ray tracing laws. With reference to Fig. 7a:

a) The ray component propagating parallel to the lens
axis is bent to pass through the back focal point,

b) The ray passing through the front focal point
emerges from the lens parallel to the lens axis,

¢) The ray incident on the lens at the lens axis
remains unbent,

From the resulting geometry, each of these rays is seen to
intersect at a distance d; to the right of the lens and distance
Dﬂi below the lens axis, where M, the magnification, is the ratio
of the displacement from the lens axis of these intersecting rays
and the displacement from the lens axis to the secondary source

on the transmittance, If the intersecting rays are extended

For a wealth of limit definitions of the Dirac Delta, see
Goodman(B),
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beyond their point of intersection, they will appear to be diverg-
ing from a common point, constituting the ray representation of
a point source (Fig. 3). For this reason, the ray intersection

point may be interpreted as a secondary point source given as

g(€) & (x-MK) o1t

o

s
bl O A

s

Magnification may thus be viewed as a mapping of secondary

sources, From (1-10) and (1-11) we write
g(g) b(x-€) — g(&) §(x-Mg)

where (—=) denotes the mapping operation., To determine the
effects of the entire transmittance we need to merely sum the ef-

fects of all the secondary sources on the transmittance. That

is

175 ) bxg)dE—- [T g(a) b (x-mg)dE a2)

From a one dimensional equivalent of the Dirac Delta sifting

property given in (1-8) it follows that
g(x)w g‘OCX):}iwg(ﬁ)é(xnmé)é< (1-13)

where g},(X) represents the secondary source distribution
resulting from the mapping. To evaluate the integral in (1-13),
we must first recognize two identities of the Dirac Delts:

6 (Mx)= 'Emt%ﬁ S (%) (1-14)

and

SCx-€)7 §(£-X) (1-15)



Thus

g,b(x}:fﬁf;j_:g(ﬁ) %<§“§§§')0§€ (1-16)

or equivalently, from (1-8)
"~ [ X
gQ<x)= | M) g\ /M) (1-17)
The final mapping relationship is then expressed as

£ il g () 0w
This expression is the mathematical statement of the opera-
tion of magnification. The input function, g (x), is "squashed
down" in amplitude and "spread out" in space by a factor of M,
The above considerations are for dy,? f. Nearly identical
results come from a similar analysis of the case where d, < f
with the following differences: (compare Figs. 7a and 7b)

1) For do<:f, the extended rays intersect behind the

lens, constituting a virtual image. For djy>1f, the
image is real and may be actually imaged on a screen,.

2) For dy<< f, the image is erect. The magnification, M,
is thus positive., The inverted image resulting when
do»>f yields a negative value for M,

From the geometry of both Figs. 7a and 7b, one may derive

the following general system parameter relationships:

M= = di/’de

(1-19)

and i
T 1l
; ® éi dc

(1-20)
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where d,, the object distance, is always positive when located
to the left of the lens and

d;i > 0 if d £
i7 ’ o7 (1-21)
d; < 0 if d & f

These expressions may be employed to find the orientation,
magnitude, magnification, and location of an image given only
the focal length and object distance of the magnifier,

The ray tracing analysis of the simple one lens magnifier
predicts image formation for all d # f. We now illustrate,
through similar ray tracing techniques, the effect of equating

the object distance and focal length,

C) Fourier Transforming Properties of the Lens

When a transmittance, g (x,y) is placed in the front focal
plane®* of a double convex thin lens and illuminated with a normal
monochromatic plane wave, the distribution on the lens' back
focal plane* under certain conditions, is proportional to the
Fourier transform of g(x,y), This operation may be illustrated

through ray tracing techniques,

Consider the geometry presented in Fig. where a point
source is placed at (x,z) = (€,~ f) on the front focal plane of
a double convex thin lens., Application of the ray tracing laws

states that the ray propagating parallel to the lens axis is bent

to pass through (x,z) = (0,f) and the ray traveling through the

The front and back focal planes are defined respectively
as the planes perpendicular to the lens axis at a focal dis-
tance in front of and behind a lens.
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lens at the lens axis remains unbent., Both of these rays

lie at an angle

&, = atan (-€/%) (1-22)

with respect to the =z axis., Thus these rays are parallel,
Note that the third ray of possible interest is propagating in
the negative x direction, and consequently never incident on
the lens. It is true, however, that each ray incident on the
lens emerges at an angle of O, with respect to the lens axis.
The result is then a plane wave,

Consider Fig. 9 in which the above argument is extended
into three dimensions, A point source at (x,y,z) = ( {,?1, - 1)

is collimated into a plane wave, whose propagation direction is

uniquely specified by direction cosines

o« = cos 6, = "&/p
= ¢os Qy ==n/r (1-23)
= cos 8, = §/r
where
Pey £ n2y §7 (1-24)
and 6y, Qy, and 6, are, respectively, the angles made by the

ray with the x,y, and z axes. Note, that by definition,

o %+ B2 a}ﬁ,: i (1-25)

The expression for a unit amplitude monochromatic plane

wave propagating with direction cosines & 3 , and ¥ is given by



¥
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KT ( re)
- X D{_X*g‘f* &

Alx, ¥, 2)= € (1-26)
where A represents wavelength. The validity of the interpre-

tation of (1-26) is obvious when one equates the phase exponent

to a constant ¢$, The resulting expression is

Lx+ BY + ¥& = }‘¢°/2TT (1-27)

This relationship describes a family of parallel equiphase
planar wavefronts in space., From the previous discussion of
equ phase surfaces, equation (1-26) is thus seen to be repre-
sentative of a plane wave and is furthermore a solution to the
wave edquation E1~2)7 (1—4ﬁ(10),

Substitution of the direction cosine relationships ﬂ1~23ﬂ

into the plane wave expression ﬁ1~26ﬁ gives

eI (ex+ny-fz)

Alx, Y, &)= € (1-28)
Attention is now restricted to the case where
£ << § ; n<< (1-29)
so that
ro f (1-30)
Equation (1-28) then becomes
AT E/n AT ey amy
Alx, ¥y, z)= € “ e BYAS ) (1-31)
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The consequences of this approximation are to be discussed
shortly,.

If attention is further restricted to the back focal plane

of the lens, we have
Ulxr,¥) = A(X,Y, ;\}
x A, e HF (Exsny)

(1-32)

where

~pamd
Ao= € BRI/ N (1-33)

is a constant phase term,

Equation (1-32) gives the field distribution on the back
focal plane of a double convex thin lens resulting from a point
source, é()(v%} Y ~?&) . located on the front focal plane., As

with the magnifier, we have a mapping:

S(x-€,Y-N)— Aoewf%g“x*h” (1-34)

This relationship may be generalized employing the Huygens-
Fresnel Principle of modeling a transmittance as a continuum of
secondary sources when illuminated by a normal plane wave &1~8ﬁ.
It follows that when the transmittance, g"(x,y), is placed on the

front focal plane, the mapping becomes

sony: [T g n) bixg,v-m)dgdn

= G (%,¥) 2 f,:f_:mg(ﬁ,n‘) (1-35)

et %%“MM)OMATL
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The interpretation of G,(x,y) becomes more apparent with the

variable substitutions

Fo= 2§ . A (1-36)

so that

[ ¥

Go (x,7)
n S g e

Gy ($.,34)
e"‘é’ :“T(s)ex* 72-55&\{)
d€d4n(1-37)

i

Outside of the proportionality constant, Ay, this expression

is recognized as the Fourier transform of g”(x,y)i

G(:px' §g) = ,?:Ji:g(x,\')e‘} aﬂ{y&xd&ﬁyﬂdﬁd? (1-38)

In the more familiar one dimensional case, the Fourier transform

of g(t) is given as

-damft (1-39)

(N L gre Yy

Optically, the Fourier transform, G(fx*fy)’ appearing in
the back focal plane of a double convex thin lens, is seen to
be a superposition of planar wavelets, each originating from a
secondary point source on the transmittance g’(x,y) placed at
the front focal plane. One of the most remarkable and useful

properties of a converging lens is its inherent ability to per-

form two-dimensional Fourier transformations,



In derivation of this lens operation, the equating of r and the
focal length [(1m30j} is a rather radical approximation due to the
large value of which is on the order of 100 reciprocal meters for

lied by

the case of vwisible light, The approximstion error, mﬁiﬁin
this large number, resulls in possible errors in excess of 2 radians.
The final Fourier transform relationship, however, is in excellent
agreement with the_more rigorous wave optics derivaltion offered by
Goodman(Q).

The field ss viewed perpendicular to the z axis in Fige 6 at a
distance far exceeding the dimensional extent of the transmittance
is termed the far field, The far field may also be shown to be propor-
tional to the Fourier transform of the transmittance under a condition
titled the Fraunhcofer spproxim;tion(11>. Thourh not directly analogous
to (1-30) , this approximation also deals with an alternate expression
for r and consequently yields similar error.

The importance of this section is. illustration of the remarkable
capacity of the thin lens to perform Fourier transformations. This
operation has proved a useful tool in optics and holds prominent status

in this thesis,

15
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II) Holegraphy

In order to faithfully mimic a system’'s response, input-
cutput amplitude and phase relationships of the system need to
be known. Holography, or wavefront reconstruction, lends it-

self nicely to fulfilling these needs.

A) A General View of Holography(lg),

The wavefront reconstruction process consists of a record-
ing and a reconstruction operation. First to be examined is
the recording process,

Consider two wavefronts incident on a photosensitive
medium (Fig. 10). The wave U,(x,y) is here referred to as the
object wave and is allowed to be arbitrary in nature, The wave
Ur(x,y) is the reference beam. Both waves are monochromatic

and may be expressed in terms of phase and magnitude as

Ue (X, YD)z Vo dx,Y) @ud" Polx.¥) _
Sp b (XY (2-1)
Up (%, ¥ )3 Vo (x, ) €

The film ideally records a transmittance proportional to

the resulting intensity of incident waveforms, If a wave
- ®
VEX,¥)= VI(x,¥) € ¢ 9T (2-2)

is incident, the film records

TCx,v) o | UK, Y)
= Ulx,¥) uSix,Y)

P

= V3(x,Y¥)

ia
(2-3)
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where (& ) is read "is proportional to" and (*) denotes complex
conjugate., Here, and henceforth, the convenient proportionality

constant of unity is adopted, so that (2-3) becomes

T(x,y): Juex,931% (2-4)

Returning now to the object and reference beams, we have

incident on the film
VI, Y)Yz U, Y)Y+ Un(x,Y) (2-5)

so that the resulting intensity is given as
EZ
TOx,v)2 | Uslx,¥)+ Un(X,Y)

= {_U,(K,YQ) $ ub(x“fﬂ[UQ*CX:YE#UP*(&Y)] (2-6)

Substitution of the phase-amplitude relationships [2-1)7]

gives
b (fo- ¢e)

e‘&' <4>°‘4)P2- VQVPe (2-7)

4 @
T =Ve" + Ve + VoV,
or equivalently, from Euler's identity

L= Ve v V24 2VeVy cos (950-4),) (2-8)

Both phase and amplitude information are then contained in the
final intensity distribution. Such a recording is dubbed a

hologram, meaning a "total recording".
g . g
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Before proceeding, an examination of the interpretation
of a wave's conjugate expression is needed. In that a wave-
front may be modeled by a number of rays, attention may be re-
stricted to the plane wave with generalization to follow.

The conjugate of the plane wave expression given in (1-26) is

3T (o x v BY + ¥ )
® - Y
A¥(x,¢v,2)= € (2-9)

s e EAT [ (-a) + (-B)Y + (-¥)&]

The signs of the direction cosines are seen to be negated.
The corresponding rays describing the plane wave and its con-
jugate, illustrated in Fig. 1la, have the same magnitude but
opposite propagation directions, Generalization suggests this
same relationship holds for any wavefront,

When one is concerned with distributions on planar sur-
faces, an additional wavefront may be considered as congugate,

For the plane wave case, we have from Fig. 11D

#3T [ (-ayx+ (<67 + ¥2]

Alxy,2):€ (2-10)

Obviously

Alx,v,0): A¥(x, v, 0) (2-11)

Thus, both distributions on the x-y plane are conjugate expressions
of the distribution resulting from A(x,y,0). Generalization to
more arbitrary wavefronts may be accomplished by a mapping of
déscribing rays in this manner, With a feeling for conjugate

waveforms, we turn now to reconstruction analysis,
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Once developed, the hologram is a complex transmittance
which is described best for present purposes by (2-7)., The
first two terms, containing no phase information, turn out to
be of little consequence and are thus presently disregarded.

Consider first, the illumination of the developed film by
Up(x,y). The resulting waveform from the third term in (2-7)

would be

Us €X,¥) =z JUACK,¥)]F Ve Cx,Y) (2-12)

Suppose, for simplicity's sake, that a unit amplitude plane

wave is chosen for the reference beam, so that

27 .
2 ¢ 3 (dx+@Y) 2
Equation (2-12) then becomes

The original wavefront is thus reconstructed (Fig. 7a). If
Ur* is chosen for re-illumination, the fourth term in (2-7) be-

comes of interest and yields

2 " &
Uy = 1unl” U 2 U, (2-12)

The resulting waveform of interest is seen to be the conjugate
of the original object beam, which is physically represented
by a mirror image of U, off the system axis in the case for
iliumination as in Fig. 12.

Obviously, unit amplitude plane waves and ideal film can-
not be actually used in holography, yvet the resulting recon-
structed wavefronts in practice are attenuated and possibly

distorted versions of the original object wave.
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Upon reconstruction, terms were seemingly chosen arbi-
trarily from (2-7) in order to matech the reconstruction wave,
This is valid in implementation when the reconstructed beams
are separated in space by proper choice of a reference beam,
or when unwanted reconstructed waveforms may be successfully
suppressed. When this is not the case, the interference of
overlapping beams needs to be taken into account,

The hologram is seen to have the capacity to store both
the phase and the amplitude of a wavefront in a pure amplitude

recording. This operation proves useful in system recording.

B) Volume Holography

When the emulsion thickness of the film used in holography
is large in comparison with the illuminating light's wavelength,
the recording is termed a volume hologram, The volume holo-
gram has the capacity to store a number of wavefronts within
the emulsion of a single piece of film as opposed to the single
wavefront storage capacity of the planar hologram.

The volume hologram is presently being employed in the

field of optical computers(lg) and has been suggested as a

possible model for the brain(14),
1) The Grating
a) The three dimensional grating
To illustrate the intensity distribution within a volume

hologram, the elementary case of two beating plane waves is

now examined(l5)s More complex distributions may then be
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analyzed by Fourier techniques,
Consider two unit amplitude plane waves incident on a

film with a refractive index of unity. From (1-28) we write

e ik (lixv B, Y ey, 2)

U, (x,Y,2)= ( Bav+ ¥a2)
Pk (ota X 4 + 2 (2-13)
Ua (x,¥,2): @47 Rt me s n s
where
k= 2T/ (2-14)

The emulsion of thickness t and height 2H records the result-

ant intensity of these waves, Following the three dimensional

generalization of the intensity definition offered by (2-4),

we write

Tex, ¥, 2)z LU (Y E)+ TN g»o(xw,vm,%*%)(g__w)
puLxou, ¥ -m,2-t2) ]

where//L(x,y,z) is the three dimensional generalization of the

unit step function,

With the volume limits understood, substitution of the

plane wave expressions [(2-13)] and expansion gives

p bk [ (o, -l )X + (BB Y + (¥, -¥2) 2]

cik [latwota Yx # (8,820 +(¥,- 1) 2]
+ € (2-16)

zalarcos k{(a-ot)x+(B-B)Y + (¥,-¥a) z}]

I(x,¥,2)=2a ¢

This expression then describes the intensity distribution
within the emulsion. For greater insight into this geometry,

consider the locus of intensity maxima which occur when
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cos k[fﬁf.'da‘)x“"w»”ga}\/*“{‘“g?’)%} =1 (2-17)

or equivalently when

(ol,=ota )%+ (Bi=Ba)Y + (¥ -¥)Z =0\ (2-18)
n=0,24,%2,..,

On the x axis, these maxima occur when

(2-19)
(ot,=at) %= nA

For this reason, the x component of the spatial period and spatial

frequency are defined respectively as

A y :--L- T X -2
Tx = 9(""&2 ¢ ;x Tx A (2-202a)
Similarly
a u—?}ww ¥ ; - "‘L. s ﬁ‘“‘g&
Ty WRVR s TyETy T N (2-20h)
- A I ..%:— = Y- ¥a
27 Y-y, c 72 e A (2-20¢)

It thus becomes evident that the maximum intensity loci
is a family of parallel planes described best by the substi-

tution of the above expressions into (2-18):

fon s@vY*ﬁ*z—-n (2-21)
The case for n=1 is illustrated in Fig. 13, along with the
s
vector T descriptive of the true plane spacing. The direction

-
of T coincides with the direction of the gradient of (2-21)%
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-
V(;Pxxﬂt;,?*ﬂ%):acxr*’prj*lcsk (2-22)
where ?, j . and ? are unit vectors in the x,y, and =z
directions, respectively. The components of ? must also
satisfy (2-21) so that
I D S NS
T = xz . ;?2 + ;‘: (2-23)
Thus we may write
1 T1= L7 gyz+§§2}-*I2 (2-24)

Substitution of the frequency expressions in {%wé@?

gives
- A
LTl = et s (8 8t (V7T -
1% Ra v B2+ (Y, - %) (2-25)

Recalling that the sum of squares of a direction cosine set is

unity [(1-25)] further simplifies this relationship to

- »/NT - (2-26)
\T¥= Jﬁ.“(Qaﬂg*&;Bz*&m

The magnitude of the spatial frequency vector, defined in the

>
same direction as T, is given as

ry b @ A
FIERYIE W RN CHPRY VAL 8 2 Ry eares

The above relationships describe the intensity distribution
within the thick emulsion. A further insight into this topology

is gained through a two-dimensional analysis.



24
. . . (15
b) The two dimensional grating

Transition from three to two dimensional analysis may here

be accomplished by assuming no variation with respect to Y,
We thus set

ﬁﬁ 2 f,=0

(2-28)

This assumes the plane waves which formed the grating were
propagating normal to the Y axis,

For this case, the maximum
intensity loci are described according to (2-18) as

(ot -l )X+ (¥ =¥, )2 =nA

(2-29)
Solving for x gives

s = gi:j&l z + nA

(2-30)
o, - Ay ﬁx"qi

This relationship suggests a family of constant intensity lines

as seen from an end on view of the hologram (Fig.

14).
Two dimensional analysis allows convenient relationships
between the direction cosines,

From Fig. 15:

Y
o

[1]

oS8 ea = cogs &

(2-31)
cos ©,z=2cos(ZE-6)=sin6

From (2-30),

the constant intensity lines have slope,
dx Y, - &2 (2-32)
dz = A, = X2

Substitution of (2-31) with appropriate subscripts yields

08 QO-G.QS @1
3% = sin ©, - sin &,

(2-33)
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This can be reduced via trigonometric identities to:

e
u‘ 6,¢ ©4
dz = tan 2 (2-34)

Defining the arithmetic mean of 8; and 85 as

6.+ 82 (2-35)

¢z =3

we have
3—%: tan é (2-36)

Thus, two waves incident on a thick photosensitive medium
at angles 91 and 92 with respect to the film's normal, form a
sinusoidal grating whose constant intensity loci lie at the

bisected angle between 6; and 6,. (See Fig. 14).

The spatial frequency of the fringes for the two dimen-

sional grating is given from (2-27) as

}: ﬁ- (0‘.,«2"‘ gv?a) (2-37)
MV

Substitution of the sinusoidal assignments {(2-31)] followed by

trigonometric simplification gives

J1 - cos (6,-0,)

= (2-38)
4 % /T
Furtheyr simplification follows,
2 ¢ (9»‘92)
sin ©, = Sin @,
(2-39)

Nood (2255)

sin 8, - Sin 84
A cos ¢
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This final relationship will later prove useful in diffraction

efficiency analysis of volume holograms,

¢) The reflection analogy(14).

As in planar holography, one would expect illumination of
the developed transmittance with one of the recording plane
waves to yield a diffracted plane wave propagating in the same
dirvection as the second recorded plane waves,

Consider, then, the geometry of Figure 16a where the grat-
ing formed by two plane waves propagating at angles 0y and 85
is recorded., The volume transmittance is illuminated with a
plane wave propagating at an angle 63, Thinking of the constant
intensity fringe as a mirror, one sees that the equivalent angle

of incidence is

Y= ¢~ 8, (2-40)

The beam then is reflected at an angle of

On: ¢+ Y (2-41)

or equivalently

=20 &
©r ¢ ! (2-42)

and finally from (2-35)

erg @z (2-43)

A similar analysis gives 6 as the reflected propagation dir-
ection when the hologram is re-illuminated with a ray propagating
at an angle 65. These results are in harmony with the arguments
presented by (2-11) and Fig. 12a (in the case of planar holo-
graphy) and prove to be useful tools in intuitive analysis of

gratings.
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What, then, of the conjugate case? As previously stated,
the conjugate of a wavefront may be thought of as a reflection
of the original wavefront on the system axis. Thus, the con-
jugate of the plane wave represented by 6y would be a plane
wave propagating at an angle of - 91 with respect to the hologram
normal, As witnessed by the geometry of Fig, 16b, the reflection
analogy does not hold for conjugate illumination as the follow-
ing analysis reveals.

The angle of incidence to the mirror modeled grating in

Fig. 16b is

Ve B, (2-44)
and is thus reflected at an angle of
&.=¢+ Y (2-45)
Combining and substituting (2-35) gives:
6.2 24+ 6,
rz2f (2-46)
= 293*92

If the reflection analogy did hold we would expect
B, "61 (2-47)

A similarly distasteful result evolves when considering illumina-
tion by - Qze

The reflection analogy is thus seen to be valid only for
illumination with original wavefronts and not for the conjugate
case. Due to this limitation, care must be taken in its

application,
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2) Diffraction efficiency.

In order to efficiently store a number of wavefronts in a
volume hologram, an a priori knowledge of diffraction efficiency
is needed., Diffraction efficiency is the ratio of power in the
reconstruction and reconstructed waveforms, We are here pri-
marily concerned with diffraction efficiency as a function of
the angle of incidence of the reconstruction beam.

The scalar derivation te follow is taken closely from
Smith(lé), A more rigorous derivation yielding diffraction
efficiency amplitudes and similar angular orientation sensitivity
is derived using coupled wave theory by Collier, Burchart, and
Lin(17)s

a) Derivation

Analysis of diffraction efficiency begins with a two-
dimensional approximation of the Fresnel-Kirchhoff diffraction
integral described by the geometry of Fig. 17 which is given by

Smith¢16) 45 ‘
dk(s+r)

, e
U(P )z A CQS¢J§£}: JFs d x (2-48)

where integration is over the aperture 7. . As depicted in
Fig., 17, a,is a line source with amplitude "A" at a unit dis-
tance, and ¢ is the angle between the object and image lines
with respect to the z axis. If peint E; lies at coordinates

(xc,zc)g and P; at (Xi,zi)ﬁ then

% o ?‘.‘, =
Fo 2 Ko * Ze (2-493)

B oy 2
Sot 2Ry v ES (2-491)






The magnitude of r is similarly given as

%
th - Xe)® ¢ 2‘2

Expanding the quadratic and noting (2-49a) gives

F=sz‘zxxf*ﬁ#

or equivalently
XCK“
P r‘oﬁ - 2

The paraxial approximation states

7

Ji-a® = 1 - a%a F a<< 1

Thus, if attention is restricted such that

(2%XcX - X7) /2 441

The relationship in (2-52) becomes

AKX - % *
rsrolt- ; Fo™ l

L o ReX o ox?*
:r‘e ro 2ro

Through similar analysis

XX XE
Sx Se- %a t 25,

Another approximation which may be made under the cited

assumptions is
M

J_F_;—‘ 'L‘Jrnse
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(2-50)

(2-51)

(2-52)

(2-53)

(2-54)

(2-55)

(2-56)

(2-57)
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Substitution of the above three expressions into the Fresnel-

Kirchhoff integral [(2-48)] gives

L}(P‘e): \j-;—«-g;—v—a: eék<r SQ) QOS¢

4% - (2-58)
Lok 220 ..)S_._]
je-*k[ o "““°+ Se  25ed gy
P2
Direction cosines are now assigned the rays in Fig. {4
Loz cos G 4;=¢co0s 8
. B (2-59)
me = Sin ©e mg = SN O
or equivalent
£,2 "2/ L= /%6 (2-60)
me.= “Xe/r, m; = Xi/Se
.
The ¢ i

subscripts denote the incident ray P,Q and i the

diffracted ray 6§i° Substituting into (2-58) gives

"i 'kfi‘“af 59\)
uip;)= Aws?s V N sol e

, x: g (2-61)
- m; -me) - - A
. E e ¢’<[x( ) }
pA

Al 2 Se Cix
We now take the limit as s, and ¥, approach infinity

so that the quadratic terms in the exponential under the integral

vanish. It is also assumed that the source strength A may
be made arbitrarily large, so that
‘ ik (r, + So) (2-62)
lim Acmsé\j’}\s e = ¢
Fo""“’ ré
So—® oS
& b o

where ¢' is a complex constant, Under these assumptions,

(2-61) becomes

¢ "['(<m.{’m¢ A
Um;)s sze i ) d x (2-63)
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This expression governs Fraunhoffer's diffraction from a thin
aperture in terms of direction cosines. One is tempted to
generalize (2-63) to govern diffraction from a volume hologram
by writing

u e‘k[(m‘.-mc}x&-(ﬁ;“ﬁ(_}{}
U(.@;‘M;): C J\f€¢
Z

dxé%(Z—-éél)

This expression, though, assumes each wave incident on each
slice of dz thickness is equivalent, and thus holds only as a
first order approximation for weak diffraction. For stronger
diffraction from a spatial transmittance, a summation of all
elementary diffractions must be made., The following diffraction

integral results:

Bt k[ lmem)we (4;-4) 2]
UL, mi)= Cj G(x,z) € al dx d& (2-65)
LA

The integral limits are here defined via the step function in
(2-15).

The function G(x,z) in (2-65) is the pupil function, and is
representative of the spatial transmittance variation within the
aperture. For the case of two beating plane waves, G(x,z) may

be determined from (2-16) under the conditions of (2-28):

GC(x,2)= 2[4+ cos kﬁ(d.'@(z) %+ (Y- 3’2)2}} (2-66)

or equivalently,

Y,-¥a
G(x,%)f-z{;i" cos k(d"%‘)(x*d.'%a)] (2-67)
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For a more representative expression of the pupil function,
direction cosines are assiguned the fringes in Fig. 14&:
yA cas¢
. (2-68)
m= sin

i

j

From (2-32) and (2-36) the slope of these fringes may then be

expressed as

. mno Ya- ¥4
tan = 7= 204 (2-69)
Substituting into the pupil function [(2-67)) gives
m
GG,2)= a1+ eos k(ai-ata) (x- F2)] (2-70)
or equivalently
1.3
G(X,%)z 2 { L ¥ ces Y3 (@(.*dﬁ)fjx-mg)] (2-71)

As promised, we now recall equation (2-39),

Employing (2-31)
and (2-68) we write

P = X mKXa (2-72)
© AL

which may be expressed in angular terms as

wczg\ﬂ£°: ku}"d“’) (2-73)

Substitution into (2=71) produces the desired expression for

the pupil function formed by two beating plane waves;

Gex,2)z 2[1+ces We(Lx-mz)] (2-74)
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This relationship is now employed to give a measure of
the volume hologram's diffraction efficiency as a function

of angular incidence of the reconstruction beam,

b) Bragg condition
Expanding the sinuscidal term of the pupil function via

Euler's identity, and substituting into equation (2-65) yields

H pt/a : fx- o P
U(&-‘ m;) = C -f-n j-t/,_ LQ . e(;.wo( X mz'} e ¢ o (LX-ME 2.75)

X ewé,f(&(m;-fm‘;} e"éka(i‘t"-ﬁ=>o§ = d x

This expression divides into three integrals

fa p-pkmi-me) -3 k(8;-L
¢ 4 % 4
u(ﬁ;,m ) ﬂc‘f -f‘tfa e ¢ c;zdx

. c,)‘ J“% 3 Lkmy - lome -, £3% e'mﬁ;-kﬁc*%m]ji&x

Yo <ilkm;-kmorwed]xn . [d;~ki.- ]z
* (}L e é. =l Le=tom
Cf S € dz dx

(2-76)

Since

A -8 .
jw e sd& = 2h sinx(BA) (2-77)

where

(2-78)
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the diffraction expression becomes:

UL;, m)= HCHE sinx[‘%(kii-’kﬁcﬂ
xsing [HCkm;- kme)]

racut sink | ElkLsi- kLot @Wom)]

xsink [H (km;- kme - wod))
(2-79)

racHt sink[E(kd-kde-wem)]
xsinx [M (kmg - kme +wo L )]

This diffraction expression has strict analogy fto the com-
plex transmittance of a planar hologram offered in (2-7). The
first two terms in (2-7) correspond to the first term in (2-79)
which yields the zeroth order diffracted beam that contains no
information, and is disregarded when possible, The second and
third terms correspond respectively to the primary and conjug-
ate reconstructed object beams.

Equation (2-79) also contains information pertaining to
diffraction efficiency as a function of angular orientation,

As will be shown, the volume grating may be thought of as an
angular bandpass filter, attenuating all diffracted waves which
are not propagating in the direction of the recording beam or
in the direction of the recording beam's conjugate. This
property is analogous to Bragg's law of constructive and de-
structive interference and is appropriately called the Bragg

condition.
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¢) Extinction Angle
Since one is usually concerned with the primary dif-
fracted beam, and not the conjugate, attention is now re-

stricted to the second term in (2-79):

Va (£ m)=zacut sink [$ (kg; ~kde+ wom)]

(2-80)
xsink [HCkmg - kme -wal )]

The Bragg condition is satisfied when (2-80) is maximum, which

occurs when the arguments of the sinx function are zero,

Liie IV . C&)aﬁ
Liz Le- 5 s My = Me v = (2-81)

Substitution of (2-69) and (2-73) and simplification gives the

following equivalent expressions
Loz Ao+ ¥ -¥a 3 Mi=Metot, - Xa (2-82)
Substitution of the sinusoids assigned to each of these variables

yields the not-too-surprising conclusion that the Bragg condition

is satisfied when

@
P

W
o
»

©:= @, (2-83)

That is, the reconstruction beam is identical to a recording
beam and the diffracted beam is identical to the second record-
ing beam,.

We now define the extinction angle as the angular deviation
from maximum diffraction efficiency necessary to extinguish the
diffracted waveform., This occurs when the sinx functions in

(2~80) become zero. The first does so when
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FUncslivaly) - k(Lerol) ~wom] =TT

(2-84)
where ii

and ﬁc are chosen to meet the Bragg condition.
Substitution of (2-69) and (2-73) into (2-84) followed by

simplification, gives

Livosd; ~Le-0de+ ¥, - ¥ = Nt (2-85)

Since the Bragg condition specified by (2-82a) is met, we
may write:

Ad; —al, = Wt

(2-86)
Similarly, analysis for the second sinx function yields
A ~om, = >‘/‘/:2&-3 (2-87)
In the case where
H 27 A (2-88)
we may safely restate (2-87) as
am, -om; =0 (2-89)

If attention is restricted to small angular deviations, the
direction cosines may be estimated from the differentials of
equations (2-59)

8L.:= -sine, ae,

= "M b6 (2-90a)
L =gy . AB; ==m; AE;
8 L; sin &, . ¢ 4 (2-90b)
= cos 6, A6_= [ A8
bMe “ e < < (2-90¢)

am; = cos &, a8, = L,06;

(2-904d)
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Note that A6, is, by the previously given definition,
the extinction angle, which now needs to be solved in terms

of non-ineremented values., From (2-89), (2-90¢) and (2-90d)

le
L2 == A®
A8, A <« (2-91)

4

Substituting inte (2-90b)
4 -
AL =-m; j%A@a (2-92)
4

Subtracting (2-90a) from (2-92) and noting (2-86), we write

ad,-ad.= (mc- mi %ﬁ) L6, = N (2-93)

Solving for the extinction angle then gives

A Ewmerr] :
Ae@‘: -t mc «2) ”m"fc (2-9 )

Note that becasuse of (2-83)

(L;,m:) = (¥, ) (2-95a)

and

(Le me) = (¥a,o0ta) (2-95b)

As a function of recording parameters, the extinction angle

is then

AW de
A e I (2-96)

where for clarity the r subsecript denoting the reference beam
has replaced the 1 subscript and O denoting the object

beam has replaced the 2 subscript.



38

Substituting the trigonometric assignments to the direction
cosines {(2-31)] into the extinction angle relationship, followed

by a trigonometric simplification gives

p@. = A _cos G (2-97)
& t §EQ C@p" @Q>

The corresponding plet of Argc as a function of the reference
angle (Fig. 18) resembles a cosecant curve (which it is for

(16)

90 = () and is a generalization of that offered by Smith,

Due to the approximations made in the derivation, (2-97)
may only be ascribed the status of a first order approximation
to the extinction angle,.

As an example of interpretation of Fig. 18, consider the
case where both object and reference beam are equivalent
(i.e. 8; = 90}, The resulting hologram would record a constant
intensity, or equivalent%y a grating of zero frequency. The
resulting reconstruction process would obviously yield a "dif-
fracted" beam of unchanging intensity for all angles of recon-
struction incidence, The corresponding extinction angle may
thus be interpreted as infinite.

Note also that the extinction angle decreases as the

emulsion thickness increases, giving the volume hologram a

larger capacity for storing wavefronts,
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d) Effects of refraction

To this point all properties of the volume hologram have
been expressed in terms of parameters within the emulsion,
Due to its importance in later applications, the extinction
angle expression is now manipulated to contain only external
parameters,

We begin by stating Snell’'s law described by the geometry
of Fig., 19

. § M
sin & = nsin © (2-98)

where n is the homogeneous refractive index of the emulsion,
6' is the angle of incidence, and 8 is the angle of refraction,
Here and henceforth, primed variables denote external parameters,

An elementary manipulation of (2-98) gives
. w ks * 13
o= sin” [7sine] (2-99)
With appropriate subscripts, substitution into (2-97) yields

A cosisin' (% sin 6., )] (2-100)
t sinlsin" (% sing)-sin"' (K sine,)]

A6, =

Expanding the denominator we write

A cos [sip-' (Ksine)]
86.= cos Lsin™ (k sing; JlHsin6y)- cos[sin

(£ sin o))k sine]

(2-101)

Since

N S M - S; 18‘
cos [sin™' (Hsine)]= J 1 - 2pT (2-102)

equation (2-101) becomes

s 9 Y
Sty 60
(1 - ¥

e X

26, = %ﬁ \fi'- 5‘2’;‘@"”[%5:1@;]- ‘H‘-sin e;}(z—lo?))
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Before a final simplification, an additional substitution
is in order., If a monochromatic wave has wavelength Aq
external to the recording medivm(in air), then the wavelength A

within the mediwmis
h= M/n (2-104)

Substitution into (2-103) followed by simplification gives

n: - sin? &8, (2-105)

Ag
A6 = >y :
t /n*-sin?e, sing,-[n*-sin*6, sing,’

Let , .
= % HP- ¢ .
Lo = ¥ n*-sin2 8, . mgs sin €,
‘ , (2-106)
ﬁ: = \Un*-sin? &, : Mp= SIN e,
so that (2-103) simplifies to
‘2 ¢
2 : (2-107)

A= & Zrmi- £ md
The quantities in (2-107) may be thought of as effective
direction cosines, displaying similar computational status as
the direction cosines, (Compare (2-96) and (2-107)) but void of

direction cosines properties. Specifically
2
(£,)°+ (m)?=n#1 (2-108)

A family of extinction angle curves as a function of object
angle and discrete variation of the reference angle is offered
in Fig, 20 from (2-107). Recording parameters are for the
helium-neon laser (Aa = 6328 E) and Kodak 649F emulsion
(vt = lé/QM: nz1,5)., A general Fortran computer program allow-

ing variable parameters to generate data for similar curves is



-16°
128
Zge
T
e
e
ge
1a®
167



41

offered in the appendix.

Due to the refractive nature of the emulsion, there is an
obvious limitation placed on the angles within the medisa.

From (2-98) and (2-31)

* 4
A = Smg/ﬂ (2-109)
Since
x2e ¥z (2-110)
we may write
yo ni-sin*@' (2-111)
= 5

The relationships in (2-109) and (2-111), sketched in Fig. 21,
clearly limit extinction angle values, since the direction

cosines are limited to the intervals

let] € '/n (2-112)
and
,,ﬂ%;:k ¢\¥) €1 (2-113)

With the concept of volume holography's extinction angle
well understood, we now begin exploration of system theory to
determine how the extinction angle property might ultimately

be used to holographically record a system.
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III. Linear System Theory

Theory of holographic recording of an optical syStem stems
from classical linear systems theory and the Fourier trans-
forming properties of thin lenses, Problems of practicality
lead to approximations, the consequences of which are explored
here,

A) Linear Systems(18).

The input-output relationship of a system, as portrayed

in Fig., 22, may be modeled by the mathematical operator §E:]
= r t
go(6)= SLgee)]

where g(t) and g;(t) are respectively the system's input and
output. This operation is equivalent to the mapping technique
employed in Chapter I to analyze the magnification and Fourier
transformation properties of the thin lens,

A system is said to be linear if it obeys the properties

of homogeneity and superposition® stated respectively as
z (t)
slagw)=2a8lg ) (3-2)

and

Slgwyrf(1)) = SLged)]+ S L]

(3-3)

* In Chapter I, linearity was assumed for the operations of
magunification and Fourier transformation, specifically in
the transitions from equations (1-11) te (1-12) and (1-34)
to (1-35).
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where ¢g(t) and f(t) are arbitrary input functions and a
is a constant, These criteria may be combined into a single

necessary and sufficient condition for linearity
Slagt)sbf)]=a8lg)] + b SLFW] 5.y

where b is a constant,
1) The superposition integral
A more powerful mathematical treatment of linear systems

arises from the sifting property of the Dirac Delta restated

here after (1-8):
€'<”=5,:g<€}5<t-<)dg (3-5)

Substituting into (3-1) gives
golt)= ggf: g(i}éCf-ﬂ&ﬂ (3-6)

For linear systems, the integral may be extracted from the

operator argument due to superposition,
go0)= ) 8L geg) bee-€1dg] 5

Since the operator is only concerned with functions of t, it
views both g (&) znuici< as constant. Thus, due to the
homogeneity property of linear systems, these variables may

be extracted from the operator’s argument leaving

g (6): 2 g (8) 8[ste-0]de

The output from a Dirac Delta input is appropriately called

the system's impulse response, and is written
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hit;eY= S 6¢e-€)] (3-9)

Substituting into (3-8) yields the superposition integral
te
go(0): [ gy h(x;8)dE (3-10)

To define a general system, the output must be known for
every possible input. Assuming linearity, a system is defined
by knowledge of all possible inpulse inputs by virtue of

the superposition integral,

The infinity of knowledge required for general system
definition constitutes the highest order of infinity in-
tuitively (but not mathematically) conceivable, Assumption
of linearity reduces the order of the infinite number of
defining relationships by one. For an elementary, but
interesting discussion on such notions, see Gamov (19).



2) Invariance and convolution
By far the most powerful and most siudied subset of linear
systems are those which are invariant. For such systems the

impulse response is dependent only on the difference of its

arguments

h(t; €)= h{(t-£) (3-11)

Prime examples of such systems are those arvising in linear
circuit theory. If an input é(t) inte a linear circuit pro-
duces an output of h(t), then an input v - ty,) will pro-
duce h(t - to). Such circuits are then time-invariant,
Substitution of the invariance criterieq(3-11) into the

superposition integral (3-10) results in the convolution

integral

g.(t)= | g e  h(t-€)dE (3-12)

Thus, for an invariant linear system, a single impulse response

suffices for a complete system definition.
3 -
heeys QL 6] (3-13)

In shorter form, the convolution coperation may be expressed

as

golt)= g ()¢ hit) (3-14)

The convolution operation is commutative, associative, and

isdistributive with respect to addition(ZO)

gle) ¥ h(t)= h(t)s g(t)

(3-15)

[gers h] e F )= gedalhcorsfe)]
gty e [h@)ef0)] = glelwhie) + g(e)ef(e)

(3-17)
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Another property of the convolution operation which will later

prove useful is (with reference to (3-14))
go(t-&)= gle-g)wehie) (3-18)
= g(t)eth(t-§)

3) Fourier relationships

The power of invariant systems rests in their analysis in

the frequency domain. From (3-12), it may be shown that
G, ($)= G(E)H(S) (3-19)

where G,(f), G(f), and H(f) are the Fourier transforms of

go(t), g(t) and h(t), respectively, given by (1-39). The
Fourier transform of the system impulse response, H(f),6 is
called the system transfer function. Due to the one-to-omne
correspondence between function and transform, knowledge of H(f)
alse suffices for complete definition of an invariant linear

system, Mathematically

H(f)= Qf{_h(t)} (3-20)

where Q; denotes the Fourier transform operation, Important
Fourier theorems which will prove useful in later analysis are

given below.

(1) Linearity

- 'l Pl
APRIO bg(t)}- ag[fe)]«bllg (e)) 5oty
(2) Similarity

g[g@t;}: ?i“?Gfﬁc/a) (3-22)

(3) Shift theorem

g{_g(ﬁag):}a G($) e"émg’c (3-23)




47

{4) Recurrence

glg{g’ét)}} =g (-t) (3-24)

Proofs of these theorems (except 4) plus the convelution-

Fourier transform relationship are offered by Goodman(zl),

B) Linear Optical Systems

Linear imaging systems afford parallel processing; thus
previous notions must be extended to two dimensions and
appropriate nomenclature must be applied. Most optical
systems may be thought of as consisting of an input plane, a
system, and an output plane (see Fig. 23).

The one- and two-dimensional impulse responses of such a
system are optically called the point spread and line spread

functions, which are obtained respectively from (3-13) as
§[5(X~§,Yﬁn)3=h<x»‘f}ge'ﬁ> (3-25)

and

SLé(x-£)] = hix; €) (3-26)

The line-spread function is employed where one dimensional

analysis loses no generality.

In two dimensions, the superposition integral becomes

(from (3-10))

gg(x,'f)r—f”fg(g,%)h(&\’éiih)déd% (3-27)

bt~ ]
and convolution from (3-11) and (3-12)

Folx, 1) = fmf g(g,h)huwgﬂ_‘n‘)df dn  -20
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The two dimensional Fourier transform is here repeated from

(1-38)
G, $y) = é}?[g’(x,v}} (3-29)
. f?‘ g<£:%> enéaﬁ()c’xf*;v%)dsdn

When Fourier transforming is done with a thin double

convex lens, the spatial frequencies are given as

- Y
‘gxa‘i%‘ ;e X"f“ (3-30)

where the transform falls on the (x,,ys) plane.
(1) TIsoplanicity
Optical system invariance is called space invariance or
isoplanicity. For iscoplanatic systems, a single impulse suffices
for a complete system definition., It is indeed unfortunate
that optical systems in general are space variant.
We pause here to cite two common optical systems which
are not isoplanatic and which will henceforith be used as run-
ning examples,
Consider first a simple thin lens Fourier transformer. The
impulse response for such a system is given as:
S[4(x-£,v-n)] = Gloix-g, v-n)]
- e«ém@&z* £on)

Applying (3-30) and (3-25) we write the point spread function as:

'aéx%»(xiqe Y 7n)

h(x,?;,¢,n)= € (3-31)
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Clearly the complex argument of the exponential cannot be
manipulated to produce h(x - § ., ¥ =72.). The system is thus
not isoplanatic. It is indeed ironic that the Fourier trans-
forming operation used so widely in the study of invariant
linear systems is itself variant,

A second common variant optical system is the simple
magnifier, We here rewrite its input-output relationship from

(1-17) as N
%
g,(x,ﬂ'; M2 g«&*,%) (3-32)

Placing the point source g(xrw { . ¥ =7.) on the input plane,

we then have
h(xeY; €)= '?%i”’i &E%‘ia%“h] (3-33)
= é{;X'-N\S, Y-Mn]

Here again there exists no algebraic trickery to produce
h (x - & . V. —71) except for the trivial case of unity
magnification.

The space variant nature of these elementary optical sys-
tems suggests that most linear optical systems are indeed not

isoplanatic,
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2) Measurement of spatial variance
In previous notions, a linear system was tagged discretely
as invariant or variant. A classic paper by Lohmann and Paris(22)
introduces the idea of relative degrees of invariance to linear
systems., Without loss of generality, attention is restricted

to one-dimensional analysis. All systems are assumed linear,

We begin by redefining the line spread function as

h(x-Xe; %) = Sl 6¢x-xe)] (3-34)

(Compare with 3-25), There are two advantages to this notation.
First, when the line spread function is no longer a function

of its second argument, the system is completely isoplanatic,
Secondly, in order to extend the idea of the transfer function
from line spread functions originating from line sources not

located at the origin, We define from (3-20) and (3-34)

H(fo %)= FL h (x;xe)] (3-35)

To begin assignment of various degrees of isoplanicity to
linear systems, the cress-ccrrelation of the line spread func-
tions originating from line sources xj and X9 on the input plane
is defined as

v £ : ®/,_ & . -
C.(f;Xs,Xa‘}"‘f-m Ik(x'&m{ax”x‘)h (K 4 Xz,,,xz)
(3-36)
= C* (- € Xa, %)

The degree of space invariance is then defined as
C(x,“xa,xeaxa‘)
i
o(x, )z  [C(0, %, %) CC0 X2 Xa] 2 (3-37)
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or equivalently

2 &
THXY = L= Ihxex, ol dx L [ (e | a7 (3-38)

12 hx- S22 0) W (k- B ke ) ol

Schwarz's inequality may be written as

[JxY dgdn|*®

(3-39)
o 2
I2I XV agdn [T | Y1*dedn
-4
where X and Y are complex functions of { and 7L . Direct
comparison with (3-38) gives
Lok, vl €L (3-40)
Equality in (3-39) is achieved when
vaeX¥ (3-41)
Thus 3 value of unity is assigned Ea'(X1¢Y1)l when
(3-42)

h{x:x) = h(x;xa)
or equivalently when the system is isoplanatic in the conventional
sense. On the other hand when ¢ = 0, the system may be said to
have no trace of isoplanicity,

To include cases not covered by (3-38), we define &= ¢
if one and only one of the line spread functions is zevro, and
=1 if both are zero,

The degree of space invariance may also be expressed in
the frequency domain, in terms of transfer functions. Parseval's

theorem states:

J2 lgeal¥dx =7 163014

(3-43)



52

where

ei

G($ [g(*ﬂ (3-44)

It is evident that

j.:Eth'Xz}X;)ézéxnf_:agk(xzxi}g"ax (3-45)

and can be shown that

Jo R B2 0) h¥x - 282 0 )dx
f:a-&(gzﬁ,‘;x.‘)s-&*(@x;xzwﬁ&

(3-46)

so that (2<38) becomes

[2 H(B ) H*($a xa) dFy
KD E o g, [T TGl 44] 72

47)

It has been pointed out that the Lohmann-Paris method will

yield complete isoplanicity only if the linear system is

(zg)a For example, direct application

isoplanatic for all inputs
of the above expressions for the degree of isoplanicity to both

the simple magnifier and Fourier transformer giv65=

le(x,, Xa)l = 1 %=X (3-48)
& . xﬂ# Xz



This oeccurs due to the infinite integral limits in the fre-
quency or spatial expressions of the degree of space variance,
which in practice do not extend over the entire planes, Thus
appropriate applications of (3-38) and (3-47) are respectively

to object width limited and band limited line spread functions,
When analytical computation of line spread functions become
overly complex, an experimental method for determining the cross-
correlation function given by (3-3€) is offered by Lohmann and

Paris(22)_

We now venture to derive the isoplanicity of the systems
used herein as running examples, Consider, first, the simple
magnifier which is used solely for magnification of band-limited
functions, Redefining the magnifier's line spread function
£3-33)] in terms of (3-34) gives

§[x-mx;] (3-49)

e [ (x-%x:)- CM-1) %]

e
&
.
1
el
[
P
»
T
i

or equivalently

(3-50)
hex; %)= §Lx-(Mm-1)x]
The corresponding transfer function is then
—'zrr‘(M»;)w;?x
Hi:?x;x;): e "¢ ‘ (3-51)

Assuming that we limit the frequency of all input functions to

be zero outside the interval

“w & @x@w (3-52)

d .
and noting '@{x‘;%‘i 4

| ¢ (3-53)
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we have from (3-47)
J\w e=éﬁW{M”‘)(K.“Xg)£x
O‘CX \;( \}v W dgx
?s = el
2 Lo dd, (3-54)

Evaluvuation of this expression gives

& (x, X0z sinc[2(M-12Cx, - %) ] (3-55)
where
: sin (mx) _ _. X
sinc(x)= X = sinx (Tr} (3-56)

We note from (3-55) as before, the magnifier is completely
isoplanatic for the case of unit magnification. The isoplanicity
is also directly a function of the distance between the lines of
interest in the input plane, Note also, in the limit as &
approaches infinity, the statement made in (3-48) is verified,

Consider now the Fourier transformer, Redefining the line

spread function (3-31) via (3-34) we have
. o oadamdix
hi{x-x;:%x:)= & (3-57)

where

Fie e/ 8

or equivalently

i K o= Xy
hix; %)= € 5‘2‘1”0“’66 §amdix. (3-58)
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A1l input functions are now restricted to the interval
. & &
gexX 4 (3-59)

Substituting the line spread function into the spatial expression

for the degree of space variance{(3~38ﬁ, and manipulating gives

- . ¢ . .
g—(geixz}: 3';3“6 0‘”(3&%: ‘sza)j;e at’l'ﬁ”(:o, )eszx(g*éo)

Evaluation of (3-60) gives

2(x%, - X:z\)a] e'd'?r (%X;" ;zxz}?)—b

U(X:,Xg}’: SgﬂC.E ;\; 1)

The magnitude of the space variance of the optical Fourier
transformer is seen to change more quickly with (xy - x9) than
that of the magnifier due to the small value of Xf, which has
an order of magnitude of 10”5 meters squared for visible light,.

Note here, as always,

GCKQ,XQ\)?‘?’ i IF ngxa (3-62)

A final isoplanatic measure offered by Lohmann and Paris(zz)

assigns a3 numerical value to a system’'s space variance., The

average degree of isoplanicity is defined as

fgfa'(x,,xz)dx*dxa
= (3-63)
P L] dx, dxe

where integration is over a region of interest in the input

plane., In a fashion similar to that employed earlier in this
section, it can be shown that

ffﬁf €1 (3-64) .
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c) The piecewise isoplanatic approximation
No matter what degree of isoplanicity is assigned to a

variant linear system, an infinite number of spread functions

is needed for complete system definition, Those systems, how-
ever, whose space variance changes slowly over a small increment
in the input plane may be approximated as piecewise isoplanatic,
In essence, the space variant system is divided into a number

of isoplanatic systems, each specified by a patch on the input

(22)

plane. Lohmann and Paris ° after Fellgett and Linfoot,

define such an isoplanatic patch from
: - 4
!&q?(u&2.3 1;-—6 (3-65)

where £ 1is the maximum magnitude change in isoplanicity
allowed a patch,

We now explore the modeling of a space variant linear
system as piecewise isoplanatic and the corresponding conse-
quences,

(1) The system model

In general terms, the input plane of a space variant

system may be expressed as

Z rect (&5 1GXn (3-66)
where cde gty &
. £X 2z
rect(xy={ + « 2
o , CTHERWISE
(3-67)

and
o = X - 8%
Xp""A i iy fid g (3-68)
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The nth spatial pulse in (3-66) represents the location of
the nth isoplanatic patch centered at x = x, and with width
24§Xne Summation is assumed to cover the region of interest
on the input plane, The criterion in (3-68) is made to insure
that there are no "holes”, or overlap between two adjacent
isoplanatic patches,

In order to completely define a piecewise isoplanatic
system, knowledge of the spread-function of each patch needs to
be known. We assume line sources are placed conveniently at

the midpoints of each pateh at x, and we have knowledge of

h€x-%n;xa)= 8L 6Cx-xm)] (3-69)

for all n.
Considered now is the input-output relationship of a piece-
wise isoplanatic system. An input function g(x) must first be

divided into isoplanatic regions. Specifically

gexd: Z galx -xn) (3-70)

where .

gn (- Xn) = g‘£x> rect| 1Ax"} (3-71)

or equivalently

gnlx) = glxtxa) rect [ i, ] (3-79)

Note that, by definition, each gn(X) is centered at the origin
(Fig. 24). Also to be noted is the analogy between the "function
sifting" in (3-71) and the sifting property of the Dirac Delta

[(3-5).
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To determine the output of a piecewise isoplanatic system,
g«;(X) , due to an input g’(x} . the system operatorg(Snl)}

is recalled. Substitution of (3-70) into (3-1) gives
ad
go (%)= S[?g‘n(x‘—xn)] (3-73)

The system is assumed linear so that the principle of super-

position [(3-3)] may be applied:
golx)= Z gEgnN""n)} (3-74)

Each argument of the system operator is now isoplanatic and

can be expressed via the convolution integral &3u12ﬁ6 That is:

S Lgntx-xa) zf: gn(€-Xa) h(x-£:xa)dE (3-75)

or in shorthand form, from (3-14)
Sigﬂix-m} = Gnlx-Xo)® h(x: xa) (3-76)

Substituting into (3-75) gives

g}fx): 2 gn (k- xa) ¥ h(x; Xa) (3-77)
or equivalently from (3-18)

§¢(x>a§ Ta ()% WX =%} %a) (3-78)

The input-output relationship of a piecewise isoplanatic
system can thus be expressed as a superposition of convolutions,
and is the hybrid of variance and invariance. For example, one

heuristically sees
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lim 7. gn(xé*H(x*xn}Xn) ""f,‘»g () h (x-%n; x“\)d}gamm)

Ao N
A0

that is, the system becomes completely space variant as the
width of each isoplanatic patch approaches zero, This neces-
sitates system description solely by superposition.

The ideas presented by Lohmann and Paris can now be seen
as possible criteria for determining which invariant linear
systems can be successfully modeled as piecewise isoplanatic,

The input-output relationship of a piecewise isoplanatic
system may also be expressed in the frequency domain, From
the shift theorem [(3-23)} and the convolution-Fourier transform

relationship, the frequency expression for both (3-77) and

(3-78) 1is
~d _ . wéﬁﬂﬁxxﬂ
G‘c(§x}“ ?Gn(gx}H(é\mxﬂ}e (3-80)
where Gn<£‘x§ - é;{ g“(,‘iﬂ)]
(3-81)
and Ha(hii%a) = & [hxxa]
(3-82)

A problem encountered in implementation of the piecewise
isoplanatic approximation is avoidance of the nth isoplanatic
region transform from multiplying other than the nth transfer
function, For this reason, we formulate the cross-talk eliming-

tion criterion as

H($i%a) G (§):0 8 m#n (3-83)
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(2) Consequences of the piecewise isoplanatic approximation
The effects of modeling a system as piecewise isoplanatic

are best illustrated by example.

Consider first the simple magnifier., We conveniently

choose for an input (Fig. 25a)

gfx}w reat[ } (3-84)

where the rect function is given by (3-67), From the input-
output relationship of the simple magnifier ﬁ1~18ﬂ one would

expect an output (Fig. 25¢)
7 rect [ )
ge(x3= M| rect Lama (3-85)
In order to apply the piecewise isoplanatic approximation,

the input is divided into 2k + 1 isoplanatic patches, all of

width 2 & x, centered at

Xn® 4NAX (3-86)

Neting that
a: (alk+s1)D% (3-87)

we then have
gx) = QZ;;: rect [ 255 (3-88)

so that from (3-72)

gn(x?" rect [?‘z”i} (3-89)

From (3-50) the line spread function for the simple magnifier

L h{x-xn;xn}zé[,x"!’ixﬁ
§[x-2nmax] (3-90)
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From (3-78) the piecewise isoplanatic approximation for the

output is thus

geﬁx)=nikf‘ect [fR) e dx-anaxm] oy

Through the sifting property of the Divac Delta and the con-

volution integral, it may be shown that
FCxy §lx-xa)z glx-xa) (3-92)

Thus, (3-91) becomes

k X-2rnAXM
§°<x):z rect E A (3-93)

fiz=ik

The cases for M| > 1 and + &[M|£ 4 ave illustrated
respectively in Figures 25d and e. In both cases one can see
the attempts of the piecewise isoplanatic approximation to mimic
the true output in terms of width and ares,.

A generalization of the piecewise isoplanatic magnifier’'s
output follows. Substitution of the line spread function {(3-90)}

into the piecewise isoplanatic approximation l(3-78)1 gives

ggfﬂz {': En(x) 6 (x=Mx,) (3-94)

or equivalently, from (3-72)

o K
gQCX}t % g(x *Xn) rﬁﬁt {den} # é(X“MX(Ag_QS}

Noting (3-92), the final desired relatiouship is

- M
200 0 glx- (el rect [5R0] oo
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Here again, each isoplanatic patch is "magnified"™ by being
shifted by a factor of Mx  (Fig. 26).

Next to be explored is the consequence of modeling the
Fourier transformer as piecewise isoplanatic. We begin by
assuming the rect function input as before [(3-84)] with general-
ization to follow., From the Fourier integral ﬁl—BQﬁ, it may be

shown that

g[’ew(xﬂ: sine (4 (3-97)

From the similarity theorem‘§3~22ﬁ one would then expect an

cutput of

i

[ rect ( %\3}

geco
24a sinc [2’;9%"1 (3-98)

58

where we have employed the spatial equivalence to frequency
(1-36) for notational consistency.
The line spread function of the nth isoplanatic patch is

(3-58)%

h(x;xa)= e"“m’g"e“éiw‘g"x“
(3-99)

From the recurrence theorem, &3-24ﬁ, the corresponding transfer

funection is

H(‘{lx;xn): é(gx*itn\ie

°J. Q'TFJD& An
(3-100)



g0
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where

£ Xa/0f (3-101

If we choose to divide the input rect function in the same

manner as before ﬁ3~89ﬂ the similarity theorem dictates

Gn($) = g{recﬁ<§§&)} (3-102)

= 28X sine (24x $,)

Substituting this isoplanatic patch spectrum and the trans-
fer function &3~100ﬁ into the frequency expression for the

piecewise isoplanatic approximation [(3-80)] gives

ga <'£x\} = 24X é sinc (iéx'px) ééﬁx"’ﬁtn} e'é&ﬂ"-},,k'ne-j zﬂ.i??SIOB)

Az "k
Due to the Delta function, each term is non-zero only when

$e = -5, (3-104)

Thus, (3-103) becomes

Go($a) = 16xn?k sinc (a8x$,) § (x 70) (3-105)

Inverse transformation gives

. “4 2T 5n Kk
go(xitzéxik$‘nC€2¢X$n}eé 4 (3-106)
fe =
Since -
Xn= X.p
(3-107)

equation (3-106) becomes
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ke
é‘i(x\): 2L A% E.,i '&'n;z% sine <ié'ﬂgnl
iamPan -damfax
x{e + €

(3-108)
S s P.) cos (amr $ax )]
:gax[i-ﬁ'zz sinc (28X ¥, 5 \2TH 7
e
or, equivalently, from (3-86) and (3-101}
le

2oy s + " ax2 ;
ga(m" 26x [ 2§ sinc (AL%T__ ) (3-108)

X €OS {%é_&&ﬂ

This is the final piecewise isoplanatic approximation to the
Fourier transform of a spatial pulse., In the limit, as k
approaches infinity, one would expect (3-108) to become the true
sinc output given in (3-102). This is graphically illustrated
in Fig. 27 where (3-108) is plotted for various values of k.,
The computer program from which these curves were generated is
offered in the appendix,

The generalized input-output relationship of the piecewise
isoplanatic approximation of the Fourier transformer follows.

From (3-72) we write

anﬁx}'&@(g(““n)"ec’t(i"%i’?a\ﬂ (3-109)
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Substituting this and the Fourier transformer's transfer
function [(3-100) into the frequency domain expression for the

piecewise isoplanatic approximation R3~80ﬁ gives

g@{@ﬁ} = ; g«i[gm +t8xpYrect (ﬁ?”ﬁé.ﬁx: “;n (3-110)
x L (fe+ 59:3%}

or equivalently in the spatial domain

(a3 ”‘me
gAX):Z} gﬁ[g(guaxﬂ‘)rect(zaxnﬂ%; =~ (3-111)
) , X ]
" e’&lﬁ'ﬁnx
There exists an interesting analogy to the piecewise iso-
planatic approximation of the Fourier transformer and the
Fourier series expansion of a function., Any periodic function

g;n(x} with fundamental frequency f, may be expressed as

= Lamrnd -
g@nix-} = Z O{.ned’ x (3-112)
AR
where
X+ i/ ; g
-¢ 2T AT X
Ay = f gon (x) € ol x (3-113)
A
and where the periodic nature of g}us(X} is assured by

Lon (X)) = Fon (X * /f) (3-114)
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The 5{ﬁ coefficient is recognized as the Fourier transform
of a single period of é{ancx) evaluated at nf, and may be

written as

K n

s

~T
d"[gepc").”%;n; (3-115)
where g,(X) is a single period of Eon

ggp (x) = gyen<X§ r‘QCﬁfg CX-XJ] (3-116)

and x is constant.
The frequency domain equivalent of the Fourier series

expression [(3-112) is

C’@n(?:) = gig’an<x>] (3-117)
= i X n $ (‘;x"‘ﬂﬁ)

12 ~sn

Substitution of (3-115) gives

Gon(icx):’ § g[g“m(x)]l; fnfé (Qx—n{g?l]ﬁ)

iz en

Note the striking computational similarities between the
Fourier series [(3-118)] and piecewise isoplanatic approximation
synthesis [(3-110)] of a function. Both relationships are expressed
in the frequency domain as an impulse chain weighted by a Fourier
transform expression of the described function, A notable dif-
ference is the limitation of the Fourier series to describe
non-periodic functions which are zervo outside a certain
finite interval. Such is not the case for the piecewise iso-

planatic synthesis, Another notable difference is the Fourier
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series' employment of harmonics for function synthesis, For
non-uniform isoplanatic patch calibration (& x # constant

for all n) this is not the case for the piecewise isoplanatic

synthesis,

(3) Isoplanatic linear systems

We now examine the effects of modeling an isoplanatic
linear system as piecewise isoplanatic. The most obvious of
isoplanatic systems are those performing operations encountered

in elementary calculus., Consider first the integrator, which

may be expressed in system notation as

Slgwa]
j: g(x)éx

14

ga(x§

(3-119)

i€

The line spread function (3-34) of the optical integrator is then
jen é'( 3
- M s b = =
h(x x,,xg‘) o0 Xo)d x /u (X~-Xo) (3-120)

Where’j&(x) is the unit step function. We see that the optical
integrator is isoplanatic, since the line spread function is
solely a function of the difference (x - x,). The transfer

function of the integrator is

H($) f[//““J ; (3-121)
2 S<‘§x) ELEN

!

fi
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The optical differentiator is also isoplanatic, with an

input-output relation given as
gg,(x}a': S[g(x)] (3-122)
. d
*d% g0

The differentiator's line spread function is then
¢
h (X=X} Xe) = Jd:i §Cx-xe) = & (x=Xa) (3-123)

¢ . (24) .
where S (x) represents the unit doublet ., The unit doublet

may be defined through an operation analogous to the sifting

property of the Dirac Delta [(3-5)

j: Pexy S (x-xo)dx = -4 iix°) (3-124)

The transfer function of the differentiastor is

H(H)= FL800]
1= ¢ e-j.arrf,‘xax (3-125)

11

Erom (3-124)

H(%\) "[f; euézn”oxxj!xzc

: jard,

gt

(3-126)

From the above considerations, one may generalize transfer

functions for multiple integration and differentiation., All

will be isoplanatic,
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An intuitively comforting relationship is the equivalence
o
of goﬁﬂand g(x} where a system is completely isoplanatic,

For such systems

hix;%xa): h(x) (3-127)

The piecewise isoplanatic approximation [(3-77)} then becomes

& = (x=%q) % h (x)
go(x>= & gnCX7%n

Through the commutative [(3-15)} and distributive [(3-17)]

(3-128)

properties of the convolution operation

§’o(x)= h(x)» [? g (x-%a))  (3-129)
which from (3-70) reduces to
§°(x>= g‘(,x)*h@): £.0x) (3-130)

This is the promised result.
We now examine the equivalence of the piecewise isoplana-
tic approximation for the specific cases of integrator and dif-

ferentiator. For the former, we have from (3-128) and (3-120)

Folx> T T G lX=Xa)¥ e (X) (3-131)

or equivalently
b
gaCK)= Z} ganexn)dx (3-132)
" -

Each region is thus integrated. A geometrical illustration of
this process is offered in Fig. 28a for the case of a spatial

pulse divided into three arbitrary isoplanatic regions,
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The superposition of all processed patches is seen to produce

the true integrator output.
The same predicted equivalence of true and approximated

output occurs with the invariant differentiator, Substitution

of (3-123) into (3-128) gives

;faCK)= L ogn(x-xa)» 5 (x) (3-127)

or equivalently

§,,(;<)-:. };: ad; g“n (X -%xa) (3-128)

From (3-71)

as %o~ X

go (x)= ;t aék" g(x} rect [ zaxﬂ (3-129)
since

d

Re=%nl .
57 orect [5E0) 5 6 (xpmaxa) - § (x-Xa*akn)is_150)

The nth processed patch (the nth term in 3-129) may be written

& gex) rect [i&%]
= rect [‘%%%J g%g‘ g (x)

+ g (Kp-8Xa) § (x-xn+ axa)

(3-131)

- £ (xavaxa) § (x-Xn-aKn)
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In the summation process in (3-129), the unwanted delta terms
in (3-131) cancel from corresponding delta terms generated in
adjacent patches, This occurs because we have already speci-

fied in (3-68) that
Xn+t 8Ky = xnn"éxnu (3-132)

An illustration of this process for the specific case of a
spatial pulse divided into three isoplanatic regions is offered
in Fig. 28b., Again, the approximated output is equivalent to

the true output due to the isoplanatic nature of the system.

(4) Generalizations and reflections

The preceding methods of analysis for determining the con-
sequences of modeling the magnifier and Fourier transformer
as piecewise isoplanatic may be directly applied to any invariant
linear system. The following is a generalized summary of this
technique:

1) Divide the system into a number of non-overlapping
invariant regions. For example, optical system in-
puts are divided into isoplanatic patches. A linear
invariant circuit input would be divided into a number
of invariant time intervals,

2) Find the impulse response (and thus the transfer func-
tion) of each region., This is done by placing an im-
pulse within the nth region at the system’'s input and

noting the corresponding output.
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3) Divide an arbitrary input function into invariant
regions as in (1}. Convolve each region with the
corresponding impulse response. The summation of
all processed regions is the piecewise invariant
approximation of the output,

4) Determine the true output of the linear system by
means of superposition and compare with the approxi-
mated output for goodness of fit.

The piecewise invariant approximation is one dimensional
when applied to linear circuitry and two dimensional when ap-
plied in optics, Extension suggests generalization may be
applied to describe any variant linear system in any finite
number of dimensions,

The system analysis presented in this section is not com-
plete. The following topics are in need of further investi-
gation concerning the piecewise isoplanatic approximation:

1) A measure of the rate that a given piecewise iso-
planatic approximation approaches the true output is
needed,

2) Allowance for arbitrary isoplanatic patch width
has been allowed in this section. Some patch distri-
butions would seem to produce better output approxi-
mations than others, This suggests an investigation

of optimal isoplanatic patch calibration.
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3) All line spread functions in this section were found
from the system response to an impulse placed at the
midpoint of each isoplanatic patch while the very
nature of isoplanicity suggests the spread function
may be found from an impulse placed anywhere within
the patch, This reflection suggests a study of the
optimal placement of the impulse in each isoplanatic
region,

4) Lastly, a method to determine which systems may be suc-
cessfully modeled as piecewise isoplanatic is needed.

A possible solution to these problems rests in the system
theory presented by Lohmann and Paris(zz)@ Another possible
method could arise ffom comparison of the true and approximated
outputs, To date, the author's investigation of these methods
has only been mildly successful,

A final note of interest rests in the amount of information
needed to define a piecewise isoplanatic system. As previously
stated, a general non-linear system demands knowledge of every
output for every input, The infinity of defining relationship
needed is of the highest order intuitively conceivable, constitut-
ing a one-to-one mapping with the set of all geometrical curves,
Assumption of linearity decreases the order of the infinity of
defining relationships which now may be mapped on a one-to-one
basis with the set of all real numbers. A piecewise isoplanatic
linear system (for which one is concerned with the entire input

plane) also demands an infinity of defining relationships.
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This particular infinity, however, has a one-to-one mapping
with the positive integers and is thus an order below that
demanded solely by assumption of linearity. Lastly, if a
system is both linear and invariant, only a single defining
relationship (the spread function) is needed for complete
system definition,.

Having explored these pure mathematical curiosities of
system analysis, we now explore the possibility of implementing
the piecewise isoplananatic approximation through holographic

techniques,

IV. Recording Theory and Implementation

With the properties of the thin lens, the concepts of
planar and volume holography, and an understanding of linear
optical systems, we venture now to derive and implement procedures
for holographically recording space variant linear systems, ex-
ploring the consequences, limitations, and implementation
problems of each.

A) Generating Spread and Transfer Functions

To this point, mathematical models have been presented
to analyze the linear optical system. Methods of realization
of these concepts are now presented.

(1) The Dirac Delta and spread functions,

The two dimensional generalization of the point spread

function [(3-34)] is

hCx-%n3Y-Ym: %a, fm) = S[6Cx=%,, 1 -Yum)] (4-1)



75

The Dirac Delts is used here and elsewhere in system analysis
primarily for mathematical convenience, The physical existence
of such a function is impossible due to its intinife "height"
and discontinuity.

A fair optical approximation of the Dirac Delta may be
made by focusing a plane wave to a "point" with a thin lens
(Fig. 29)., Noting that the thin lens is circular, we define

cwci;xz*‘;a :{1 : %xlk?lfi (4-2)

O s CTHERWISE

The Fourier transform approximation of the field in the back

focal plane is

(4-3)

giairc ’Z"Y’“} = }?“Jg(zfra/p)

where a3 is the lens radius, J1 is the Bessel Function of

the first kind, order one, and

Vx2e v2
Vi Y (4-4)
(8) . . c s
Goodman offers the following possible definition of

the Dirac Delta

é{x'y): lim = J‘(QZT?QB (4-5)

G~ 0

The focused plane wave thus suffices for a Dirac Delta, for
sufficiently large values of 1.

The point spread function, (4-1), may easily be realized
with é(x - X, ¥ - yn) at one's disposal. Recalling the gen-
eral optical system model pictured in Fig. 23, one need merely

"focus" a point source on the input plane at (Xn'yn)' The field
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distribution on the output plane is the corresponding point
spread function. (Fig. 30).

Generation of the line spread function is possible in
an analogous manner employing a double convex cylindrical
(as opposed to spherical) lens. Such a lens would essentially
focus an incident unit amplitude plane wave to & (x) on its

back focal plane and perform Fourier transforms in the sense

°f | ATl )

% i “¢ 2 (‘X%)
6 (35,v)=[ogxmne dx
In order to completely specify a variant system, point spread
functions from each isoplanatic patch need to be known,
Intuitively, this information would be included from a know-
ledge of the responses of "criss-crossed” line sources on the
system input, reducing the number of defining spread functions
by twice a square root, This hypothesis is left for future
consideration.

(2) The transfer function.

One possible procedure to determine the transfer func-
tion of a linear civrcuit is to first place an impulse at
the circuit’'s input terminal and then perform a Fourier
transform on the corresponding output. This operation
finds some happy optical analogs due to the Fourier irans-

forming properties of the thin lens.
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If one were to perform a Fourier transform of a system's
line spread function with a lens centered on the system

axis, the result would bhe

gjt hnm (’fﬂxn) Y‘Ym)} = Hnm ('g’x, S'V> e“(;-iﬁ()axxn *PYYMP4_7)

where we have adopted the notation
-ﬁ»(x,’z’:m,‘rm):gnm(m‘@"} (4-8)

To determine the Fourier transforming properties of a

lens centered at (x,, YnQv we define

- e SRS JACTERTE M
d‘tx-xm-m]{g(x'”} Lg(x,?}e (4-9)

+ (YY) ( Fy- S‘m\‘
* dxdy

where ; X n %
nTONE fn® e (4-10)

The advantages to this notation are obvious when one notes

U‘nm(ﬁ-xm“"‘fmﬁ e Hom (,jﬁx-éﬁﬁ ’ % ) Qm} (4-11)

p
d’tx—xnivv*fmi
This is, in fact, the transform of the line spread function
of a system resulting from a lens centered at (Xp ¥y -
In the most general case, the transform of the shifted line
function, (4-1), with a lens centered at (a,b) gives
gnmg‘gx):éztx*ﬂ,‘(-b][hnmcxwx“/Yw%m}} (4-12)

= H ($ _g g .;b'}éé"aw[(';x"pa)()(n’q‘* C‘g\(‘gh}(vn“b)}
=it am A Jag Y
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where the notation ?(wa) denotes shifted versions of f(x,y)
possibly accompanied by a linear or constant multiplicative
phase factor.

As can be seen, there exist a number of ways to generate
transfer function expressions, In future considevrations, we
choose from this abundance in accordance with need.

(3) Holographic recording of the transfer function

a) Availability of form

When holographically recorded, a transfer function ex-
pression may be further altered by physically shifting the de-
veloped hologram te different reconstruction locations, Of
additional interest is the gltering of the multiplicative phase
term from the reference beam resulting from this shifting.

In order to record the magnitude and phase of an informa-
tion bearing wave, a reference beam needs to be employed. The
most general expression for a reference beam for recording the

nmth transfer function would be
Unm(g*'g*sz Anm(sl,’gv)e‘d‘ ¢ﬁm (ﬁm'yv) (413

It becomes convenient to assign the amplitude of the reference
beam a value of unity, and keep the phase linear,

S (Fy, §y)= 2 (€ f.rnd) (4-14)

The reference wave then results from a plane wave with dir-
ection cosinesiﬁl—26ﬂ

Hpy = <n/’"

B om : Nalr (4-15)

A

Enm = ‘:?J‘;z" é‘ﬂm‘h;
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Note that by virtue of the subscripts, different reference
beams are being allowed for each transfer function,

If the reference beam is beat with the corresponding
transfer function ﬁ4~12ﬂﬁ the resulting intensity on the

surface of a photosensitive media would be (from (2-4))

$C, $0) = [Han (8, 305 + 1
T (8, 8y) e Ear ) e
Lo &t Ao,
VHE (8,8,) @ PR )

Since one ultimately wishes to work with the transfer function,
and not its conjugate, attention is restricted to the third

term in the intensity distribution,

L3 (%ﬁ, §v>% Enm {§x;‘pv> e«é.&?"t”{a(?xxnf“gy??m&_”)

Or equivalen?%% from (4-12):

1“3{')2*,'??) = Hnm ($x“‘£a ; ﬁ? = é\b‘}
xe;awif:?x“:?a)(xmah (}QY~;&}(?M5)}(4—18)

% e"’&.a‘rr['ﬁxgn*dei nvﬂ}

The more specific cases of interest are when the transform
lens is centered on the system axis 1(4-7)] or at coordinates
(Xp e Vi) [(4-11)]) as pictured in Fig. 31, The corresponding in-

tensity distributions of interest are respectively
IB (£Ra§v ) = Hﬂm <¥}&!£V) e ¢ QW[.{Xﬁ "’fn‘} gx"(‘fm‘* mm)zgv]
(4-19)
d
h ; "’:p 'é’zﬂ'("fn"ﬁx"”}?m;g)
Ia(§x,¥w)3t4&w\<£u'§n, y m} e
(4-20)
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Further expressions containing the transfer function are
available by physically shifting the developed hologram, 1In
the most general case, shifting the intensity distribution
given by (4-18) to coordinates (P,4q ) on the Fourier plane

would put at one's disposal the expression

Ig('@x';p, ;g";q) = Hﬂm(sx“'§q”;ﬁ ’ ;‘f - gb'gq)
'zﬂ[(‘}r?q‘%‘) <xn'a‘¥* <§:‘g’“'§'\b“gq\} (Yn'b>

x e
(o L §) £or (f- S M 120

Specific cases of interest are first, shifting the on-
axis transform intensity distribution [(4-19)) to coordinates

{Xn,ym) on the Fourier plane to give

Ig<§ Qn‘,“ﬁ ; )}” H’hm<$ "“;gni,sc w;j§ 29
o 0" EATLO0t2) (Be=20)* Ctn M) (F, Y

and secondly, shifting the specific off-axis transform inten-

sity distribution {(4-20)] to the origin

I3<$ ; $*£ § Fﬂm<£ #Y)
-23)

x a2 L€ ) e (dme 7, YERVA

Obviously, there then exist a number of ways to generate
intensity distributions containing the transfer function.
In each case presented above, the transfer function is shifted
and/or accompanied by a multiplicative linear phase factor.
This diversity will later prove useful for choosing appropriate

expressions to fulfill the piecewise isoplanatic approximation.



b) Desired Fourier plane expressions
The non-~existence of the inverse Fourier transform in
optical processing is overcome by the recurrence theorem
ﬁ3_24ﬂ9 As such the Fourier expression of the piecewise iso-~
planatic approximation (P.I,A.) must be remassaged, Speci-
fically, we desire on the Fourier plane the inverse transform

of the P,I1.,A, in the spatial domain, That is

g-![hﬂm(x‘v}*gﬂm(x'XR;Y‘YM)Janm<‘;xJ'91) Ham ('§m,'§v)
5 eéﬁﬂ'[scxxn* :pv‘fml (4-24)

or equivalently
- o
g: t{ %o(.x,;\’)J - GQC‘;X,‘£V) (4-24)

Since a rotation of 180° is also acceptable on the output,

we may also have on the Fourier plane
» &l ~
v [g'o(“x:“\’ﬂ = Ge(‘?x,‘?v} (4-25)

While appearing rather innocent in this context, the

above considerations become critical in later recording schemes,
3) Limitations on Recordable Waveforms

A note is in order councerning the physical limitations
on waveforms which may be holographically recorded, Film is
a passive optical element affording a normalized attenuation
between opaque (1) and transparent (0)., Recorded intensity
ﬂ2~4ﬂ is then limited by

oIkl (4-25)
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This restriction, for example, precludes conventional holo-
graphic recording of the transfer functions of the Fourier
transformer (3-100)] or the integrator [(3-121)}, both of which
contain the Dirac Delta. Acceptable synthesis of these fre-
quency domain transmittances necessitates the use of active

optical elements,

B) System Recording Employing the Extinction Angle

In previous holographic considerations, distinction is
made between the object and reference beams, while in truth,
the system has no such method of differentiation, This becomes
self evident when one considers the case of two plane waves,

Consider Fig, 32a where ﬁn(fx){ﬁ4—12ﬂ, accompanied by a
multiplicative linear phase term, is beat with a planar re-
ference beam, The former may be thought of as a modulated
plane wave propagating at an angle §' with respect to the
system axis. Employing the labeled parameters in Fig. 32a,

the film essentially records an intensity distribution given as

T= 1+ lHa|*+ Hne”"e‘*e’; H;"e‘é‘ﬁne*e"m_zé)

Attention is restricted to the third term which contains the

desired transfer function information:

T; = Hn e;‘ﬁ“ g -¢Sn (4-27)
Once developed, the hologram will be illuminated with
tilted versions of En(fx)~ As with the transfer function
notation, gn(fx) is a generalization of all shifted versions
of 6,(f ) which may be accompanied by a linear multiplicative

phase term,
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We first illuminate with En e'*é“ (Fig. 32p). With no
regard to diffraction efficiency, this term multiplies (4-27)

to give

s

o -4 8
UQ“: HhGne d, "

(4-28)

In a similar fashion, illumination with Ened"e" (Fig. 32¢)

gives

(4-29)
Thus, in the most general of terms, there are two ways to
extract the desired information from the hologram. Note also
the similarity of the above expressions and the terms of the
piecewise isoplanatic approximation expressed in the Fourier
domain {(3-80)].

In order to determine how one might employ diffraction
efficiency to separate adjacent functions on recording and
reconstruction, a brief detour into the angular incidence
interval occupied by a waveform is necessitated,

1) Angular intervals of waveforms

As stated previously in the thin lens section, a wave-
form may be decomposed into a number of rays. In many cases,
the propagation directions of these rays fall into an angular

interval
Wh iA"{Jn

Awo\ = 0 (4-30)

Consider first the transfer function of the non-inverting

magnifier

.-é,z'ﬁ'(M"i’)Xngn
(4-31)

Ha(£,)= €
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This expression results from a plane wave with a single propa-
gation direction, and may be shown to lie in the zero width

angular interval given by

MX>
W= atan <T (4-32)
A"Pn”ﬂ%

The transfer function of the Fourier transformer is again

Hn<£%\)= 8(%‘.‘.;’\) e"d"ﬁ-ﬂ’Xn S:n (4-33)

Generating the Dirac Delta term by focusing a plane wave to a
point suggests a value of Aﬁ%, between 90° and, say, 10°,
depending on the goodness of approximation desired,

As g third example, consider the transformation of gn(x—xn)
as depicted in Fig. 33. The end points at x,* A x, on the
input plane essentially give rise to spherical waves which are
collimated by the lens, All other points within the input

strip yield plane waves propagating within the resulting

angular interval. As such
¢ "§ Kot A%n)
+ O = 4tan
Yn+ &% ¥ (4-34)

~(X,=AXn)

fwn- A'li}nzataﬂ

This is true when gn(x—xn) extends the entire strip width
and is the maximum angular interval. For example, if the

input was é(x—xn), the result would be a plane wave with

Alyn:: »]



WAVELETS FRaM
THE SECONDARY

SOURCES AT THE
ENPEGINTS 6F

gn (X =% ﬂ}




85

The concept of a function's angular interval is now
employed in determining the diffraction efficiency in general
volume hologram recordings,.

2) The angular bandpass

Now consider the diffraction efficiency of a transfer
function expression with a known angular interval when it is
holographically recorded with a planar reference beam, One
is not as much concerned with the physical diffraction efficiency
function as with the angular interval over which the diffraction
efficiency is non-zero,

Consider again Fig. 32a in which a transfer function ex-
pression is holographically recorded and assume that H, (f,)
has a finite angular interval ’q’,\i A'lpm The resulting re-
corded distribution may be thought of as a plane wave (the
reference beam) beating with a number of rays lying within the
transfer function expression’'s angular interval, For recon-
struction, we are interested in the angular extent of diffraction
efficiency from reconstruction with plane waves propagating
in the angular regions about the reference beam, and the trans-
fer function expression’'s angular intervals,.

Consider first, the illumination of the developed holo-
gram with plane waves about the region of the reference beamn,
noting the monotonic nature of the extinction angle function
(Fig., 20), the maximum extinction angle formed by a constant
reference beam and any variable ray direction in the transfer

function expression's angular interval would result from v&"Awm
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This extinction angle is denoted by A8, . As such, the

¥

angular bandpass for reconstruction about the angle Qn

(Fig. 34a) is given as

e, t 06, (4-35)

Next for examination is re~illumination with rays in the
region of ane Here, roles are mathematically switched in
that the rays within yﬁwi‘Aﬂbn are now reference beams and
6, is the object beam. The extinction angles formed by ?#n+£¥y%
and “#%‘A?% with 6 will be denoted respectively by és@ne and

[2Y GHHS Again from the extinction angle curve (Fig. 20)
> A6
Any = ne (4-36)

in fact, & Qnu is the maximum extinction angle formed from
the interval Q#ﬂ & AW, . As such, the angular bandpass

~about Qﬁﬂ (Fig. 34a) is safely defined as

Wn*‘-"wh"‘ 88, & @m éWn" A’wn"'ﬂenu (4-37)

The intervals given in (4-35) and (4-37) are the angular
bandpasses encountered in reconstruction respectively in
Figures 724b and %4c ideally yielding UQn and Uan as given in
(4-28) and (4-29), We wish to choose the best method of re-
construction, Obviously the narrower the passband, the more
overall number of wavefronts one c¢an store, This rules in
favor of the reference beam direction reconstruction., The de-

ciding vote is cast by the arbitrariness of the transfer function
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waveform which might possibly contain a null wave component
within its angular interval. For this reason, reference beam
reconstruction is chosen,

3) Recording and reconstruction

We now derive a procedure by which a variant linear
system may be recorded employing the extinction angle,

The resulting hologram should then have similar input-output
relationships to the recorded hologram as prescribed by the
piecewise isoplanatic approximation,

In order to formulate a recording scheme, one must first
specify a reconstruction geometry., The one most obvious is
pictured in Fig. 35. The input transmittance g(x) is Fourier
transformed and selectively multiplied by the holographic
transmittance of the Fourier plane, The desired output then
appears displaced a distance a from the system axis (So as not
to interfere with the zero order wave) where it is reimaged,

We now examine this reconstruction scheme to see what
must happen and what we would like to have happen. Dividing
the input g(x) into isoplanatic regions [(3-70), (3-71)] the
Fourier plane sees

G(H)=FLgnl = T6,(R) o+ 3T Fxn

(4-37)

The frequency domain expression for the piecewise isoplanatic

approximation, shifted a distance a, is (from 3-80)):

2 (5 e A 1 08,) 6y (d) € AT R (xava)

(4-38)
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Comparing the above two expressions dictates that the hologram

transmittance must be
Ath)= T ()€

Furthermore, recording should be done in such a manner that

- a
¢ 2T 2 (4-39)

the cross-talk elimination criterion E3m83ﬁ is fulfilled upon
reconstruction.

The angular interval of each transformed strip is given
by (4-34). 1In ovrder to =zlign diffraction efficiencies, the
propagation direction of the nth reference beam should be‘yﬁg

For small angles

yor dosatan C¥4)= 8 o
The wave expression for such a wave is

U (3(\ 3" e"g;ﬁ'ﬁ';xxn (4-41)

F b

where a unit amplitude has been chosen for the sake of sim-
plicity. This expression will appear in conjugate form in
the intensity distribution, Comparison with (4-41) then dic~-

tates

Ho(£) 2 H(&,&)e‘&"“#" (xn+a) (4-42)

Employing the transform expression generation ideas previocusly
discussed, this expression may be realized as in Fig. 36. The
impulse input appears as the displaced line spread function
h,(x-x,) on the output. The transforming lens is placed a
distance a below the system axis, and thus sees the line

spread function as hn(xnxn»a). The corresponding transform
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We first illuminate with En e'*é“ (Fig. 32p). With no
regard to diffraction efficiency, this term multiplies (4-27)

to give

s

o -4 8
UQ“: HhGne d, "

(4-28)

In a similar fashion, illumination with Ened"e" (Fig. 32¢)

gives

(4-29)
Thus, in the most general of terms, there are two ways to
extract the desired information from the hologram. Note also
the similarity of the above expressions and the terms of the
piecewise isoplanatic approximation expressed in the Fourier
domain {(3-80)].

In order to determine how one might employ diffraction
efficiency to separate adjacent functions on recording and
reconstruction, a brief detour into the angular incidence
interval occupied by a waveform is necessitated,

1) Angular intervals of waveforms

As stated previously in the thin lens section, a wave-
form may be decomposed into a number of rays. In many cases,
the propagation directions of these rays fall into an angular

interval
Wh iA"{Jn

Awo\ = 0 (4-30)

Consider first the transfer function of the non-inverting

magnifier

.-é,z'ﬁ'(M"i’)Xngn
(4-31)

Ha(£,)= €
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This expression results from a plane wave with a single propa-
gation direction, and may be shown to lie in the zero width

angular interval given by

MX>
W= atan <T (4-32)
A"Pn”ﬂ%

The transfer function of the Fourier transformer is again

Hn<£%\)= 8(%‘.‘.;’\) e"d"ﬁ-ﬂ’Xn S:n (4-33)

Generating the Dirac Delta term by focusing a plane wave to a
point suggests a value of Aﬁ%, between 90° and, say, 10°,
depending on the goodness of approximation desired,

As g third example, consider the transformation of gn(x—xn)
as depicted in Fig. 33. The end points at x,* A x, on the
input plane essentially give rise to spherical waves which are
collimated by the lens, All other points within the input

strip yield plane waves propagating within the resulting

angular interval. As such
¢ "§ Kot A%n)
+ O = 4tan
Yn+ &% ¥ (4-34)

~(X,=AXn)

fwn- A'li}nzataﬂ

This is true when gn(x—xn) extends the entire strip width
and is the maximum angular interval. For example, if the

input was é(x—xn), the result would be a plane wave with

Alyn:: »]
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The concept of a function's angular interval is now
employed in determining the diffraction efficiency in general
volume hologram recordings,.

2) The angular bandpass

Now consider the diffraction efficiency of a transfer
function expression with a known angular interval when it is
holographically recorded with a planar reference beam, One
is not as much concerned with the physical diffraction efficiency
function as with the angular interval over which the diffraction
efficiency is non-zero,

Consider again Fig. 32a in which a transfer function ex-
pression is holographically recorded and assume that H, (f,)
has a finite angular interval ’q’,\i A'lpm The resulting re-
corded distribution may be thought of as a plane wave (the
reference beam) beating with a number of rays lying within the
transfer function expression’'s angular interval, For recon-
struction, we are interested in the angular extent of diffraction
efficiency from reconstruction with plane waves propagating
in the angular regions about the reference beam, and the trans-
fer function expression’'s angular intervals,.

Consider first, the illumination of the developed holo-
gram with plane waves about the region of the reference beamn,
noting the monotonic nature of the extinction angle function
(Fig., 20), the maximum extinction angle formed by a constant
reference beam and any variable ray direction in the transfer

function expression's angular interval would result from v&"Awm
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This extinction angle is denoted by A8, . As such, the

¥

angular bandpass for reconstruction about the angle Qn

(Fig. 34a) is given as

e, t 06, (4-35)

Next for examination is re~illumination with rays in the
region of ane Here, roles are mathematically switched in
that the rays within yﬁwi‘Aﬂbn are now reference beams and
6, is the object beam. The extinction angles formed by ?#n+£¥y%
and “#%‘A?% with 6 will be denoted respectively by és@ne and

[2Y GHHS Again from the extinction angle curve (Fig. 20)
> A6
Any = ne (4-36)

in fact, & Qnu is the maximum extinction angle formed from
the interval Q#ﬂ & AW, . As such, the angular bandpass

~about Qﬁﬂ (Fig. 34a) is safely defined as

Wn*‘-"wh"‘ 88, & @m éWn" A’wn"'ﬂenu (4-37)

The intervals given in (4-35) and (4-37) are the angular
bandpasses encountered in reconstruction respectively in
Figures 724b and %4c ideally yielding UQn and Uan as given in
(4-28) and (4-29), We wish to choose the best method of re-
construction, Obviously the narrower the passband, the more
overall number of wavefronts one c¢an store, This rules in
favor of the reference beam direction reconstruction., The de-

ciding vote is cast by the arbitrariness of the transfer function
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waveform which might possibly contain a null wave component
within its angular interval. For this reason, reference beam
reconstruction is chosen,

3) Recording and reconstruction

We now derive a procedure by which a variant linear
system may be recorded employing the extinction angle,

The resulting hologram should then have similar input-output
relationships to the recorded hologram as prescribed by the
piecewise isoplanatic approximation,

In order to formulate a recording scheme, one must first
specify a reconstruction geometry., The one most obvious is
pictured in Fig. 35. The input transmittance g(x) is Fourier
transformed and selectively multiplied by the holographic
transmittance of the Fourier plane, The desired output then
appears displaced a distance a from the system axis (So as not
to interfere with the zero order wave) where it is reimaged,

We now examine this reconstruction scheme to see what
must happen and what we would like to have happen. Dividing
the input g(x) into isoplanatic regions [(3-70), (3-71)] the
Fourier plane sees

G(H)=FLgnl = T6,(R) o+ 3T Fxn

(4-37)

The frequency domain expression for the piecewise isoplanatic

approximation, shifted a distance a, is (from 3-80)):

2 (5 e A 1 08,) 6y (d) € AT R (xava)

(4-38)
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Comparing the above two expressions dictates that the hologram

transmittance must be
Ath)= T ()€

Furthermore, recording should be done in such a manner that

- a
¢ 2T 2 (4-39)

the cross-talk elimination criterion E3m83ﬁ is fulfilled upon
reconstruction.

The angular interval of each transformed strip is given
by (4-34). 1In ovrder to =zlign diffraction efficiencies, the
propagation direction of the nth reference beam should be‘yﬁg

For small angles

yor dosatan C¥4)= 8 o
The wave expression for such a wave is

U (3(\ 3" e"g;ﬁ'ﬁ';xxn (4-41)

F b

where a unit amplitude has been chosen for the sake of sim-
plicity. This expression will appear in conjugate form in
the intensity distribution, Comparison with (4-41) then dic~-

tates

Ho(£) 2 H(&,&)e‘&"“#" (xn+a) (4-42)

Employing the transform expression generation ideas previocusly
discussed, this expression may be realized as in Fig. 36. The
impulse input appears as the displaced line spread function
h,(x-x,) on the output. The transforming lens is placed a
distance a below the system axis, and thus sees the line

spread function as hn(xnxn»a). The corresponding transform
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is accordingly that of (4-42),

Now to be examined is the fulfillment of the cross-talk
elimination criterion via diffraction efficiency, The maximum
extinction angle from a ray component within the angular in-
terval of (4-42) and the nth reference beam will be denoted &6,
The resulting angular bandpass is again given by (4-35), The
angular interval of the transformed input region
EGR(QX)E-‘;:W"&"X“} must also lie in this band. AS such,
we must record each transfer function in such a manner as to
have no overlap in adjacent bands. The spacing of these bands
will be completely dictated by the angular interval of the
transfer function expression E4~42ﬁ. This in turn will dic-
tate the permissible isoplanatic patch density on the input
plane,

As an example, we turn to the Fourier transformer, saving
the magnifier for implementation purposes, As previously
mentioned, attempting to conventionally record Dirac Delta is
not advisable, but all will turn out well, assuming active
film exists,

Consider Fig. 37 in which the recording scheme for the
Fourier transformer is presented after the more general Fig. 36,
Assume the plane wave focused to the input point source has a

height d and focal length f. The point source thus has an

angular interval of

d
ok &Yy wHERE M})ps:atan< /zﬁ\) (4-43)
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The system transformer lens sees this point source in its

front focal plane and collimates it into a plane wave propa-

gating at an angle

¢n=3ta_n (x"/§\) (4-44)

and with a width d., (All lenses are conveniently assigned
the same focal length ). This wave is essentially focused

to a point source in the Fourier plane and is given by

D) = b (Bt da) e TR g garSaxn ()

We are interested in the angular interval of this wave. From

the geometry of Fig, 37, it can be shown that

d

sin (20Ya): J(q*x.ﬁi " ;—-;; (4-46)
and
a+¥n

tan (Yot Ya) = § (4-47)

From these expressions one may easily extract the desired angular
interval,

Suppose, for simplicity's sake, d may be varied to
always yield A}Q{r 15°, The film is assumed to be an active
version of Kodak 649F plates, and illumination is accomplished
with a helium neon laser. As such, we may employ the extinction
angle curves in Fig. 20. The focal length of all lenses will
be 10 ecm. A value of 7 cm is assigned to a.

First, a point source is placed directly on the system

= ©
axis yielding an angular interval of Qﬁa‘f-*b

where, from (4-47), tan (’We*‘ ‘5G> = 04
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or
Y, ¥ 20
The planar reference beam for the zeroth patch from (4-37)

is incident at an angle of

o= o

The worst case condition for the extinction angle occurs with

Yo -A'TP@’: 5° , a point which lies off of the
extinction angle plot. From (2-107), the resulting extinc-
tion angle turns out to be

AB. % 27.5°

From previous arguments, we must now find }Mand %esnwh that

¢, -a6,= ¢"+&@Q (4-48)

or equivalently

¢, -00,=27.5°

where A@,is the extinction angle from é.and 1#, “AY, = W,-:S‘;
While innocent in appearance, this quest is quite complicated,
involving combinations of four equations [(2-107), (4-40),
(4-47), and (4-48)]. If one does not assume a constant A1P“;
(4-46) enters also. The operation is made much more palatable
by a trial and error procedure on the extinction angle curve,
Note the undesirable overlap of the object and reference
angular bandpasses that occur from only the first transfer
function, Note, also, that the extinction angles resulting
from further calibration attempts would also be on the order

of 30°, limiting the input plane to about three isoplanatic

patches,
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Although impractical, the recording of the Fourier trans-
former exposes the limitations which must be placed on the
angular interval of a linear system's transfer function when
recorded on a "thin thick" hologram. An obvious solution to
the large extinction angle problem is employment of a macro-
scopically thick emulsion which is discussed shortly.

We now focus attention on a system with the smallest of
all angular intervals: the simple magnifier which can be re-
corded on Kodak 649-F plates employing extinction angle
techniques,

4) TImplementation of the holographic recording
of a non-inverting magnifier

The transfer function of the magnifier is given in (4-31)
and results from a plane wave propagating at an angle given by
(4-32), The generalized recording procedure of Fig. 3& is
again called upon and is pictured for the non-inverting magni-
fier case in Fig., 38, The first two lenses are placed in the
system to invert the input function. The third system lens
performs the magnification in the same manner as pictured in
Fig, Ta. The magnification is governed by the system relation-
ships in (1-19) and (1-20).

An input of é(x—xn) appears on the output as S(X—Mxn),
The Fourier transform lens sees this impulse as S(x“Mxﬂ’a\)

and collimates it to a plane wave propagating at an angle

Mg ¥4
e“:atan( § (4-49)
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The corresponding propagation of the reference beam is given

by (4-40) as
o= atan (“%o/ ) (4-50)

As can be seen, the piecewise isoplanatic approximation
of the simple magnifier results from beating plane waves.
Consider then Figs. 39a and b in which two beating waves are
recorded on a single thick emulsion., In the first exposure

the parameters are

90 = 30°
X =20

O
g, = 0

From Fig. 20, a rough interpolation of the corresponding

. . . )
extinction angle is AB,~ 5",

Also, we have from (4-4%9),
tan 6. qiﬁ
Let
Qz=llsem
From the second exposure

= 2.0 cm
6. = 50°
¢, = 30°
Ao, & 2. 50
Mo~

A rough sketch of the resulting diffraction efficiency
(angular bandpasses) is offered in Fig. 39¢c. The optimal case

for recording the adjacent transfer function would have the

major lobes of these transfer functions meet at a common point,
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The recording method used, though not optimal, succeeds in
illustrating the cross-talk elimination criteria of the piece-
wise isoplanatic approximation via diffraction efficiency.

Consider now reconstrumction., Two point sources are
placed on the front focal plane of a 5 cm focal length lens
at X, and X;. These give rise to plane waves propagating at
angles ¢0 and ¢, respectively. These beams line up exactly
with the corresponding angular bandpasses in Fig. 39c¢c and are
thus diffracted at angles 8, and 03y . This idea is verified
by the reflection analogy.

The diffracted beams are now re-imaged by a 10 cm lens,
and appear as point sources separated by 2.3 em on the output.
The reconstruction geometry is offered in Fig. 40a and a
photograph of the output is in Fig. 40b.

Similar results from a variation of this scheme have been
reported by Burton, Hagler and Krile(25)a

5) Macroscopically thick hologram system
recording

Film having an emulsion thickness far greater than the
illuminating light's wavelength will here be denoted as
macroscopically thick. That is

t>> A (4-51)
We here attempt to theorize how such film might be employed
in system recording.

For a macroscopically thick hologram, the extinction

angle RZ—IOY& is essentially zero, This rules out the pre-
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b) Resulting "magnified" point sources.

Fig, 40 : Reconstruction of the volume hologram made in
Fig. 38 of two non=-inverting magnifier traaner
functions and the resulting image.
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viously presented recording scheme, since an extremely high
isoplanatic patch density would result. The scheme's prin-
ciples, however, remain valid. We hopefully need only to make
appropriate revisions,

A necessary condition of reconstruction is &lignment of
angular bandpasses and corresponding patch transforms., As
pictured in Fig. 4la this may be accomplished by using the
transformed patch region as a reference beam., From the

geometry, the back focal plane of the transform lens sees

Ve ) = Ha( ) €723 Fu (xn-a)

; 'uinﬂ‘p ng
+aaxnsinc(zaxn«9,‘)e¢ xRn (4 50)

The intensity term of interest resulting from expansion of

this expression is

I £.)= 2a8x.Halh) ssnc(mx,}@,) e*é’tﬁg"(z_Sg)

Again, the form is not as important as the fact that the
angular bandpass is -@aligned with the angular interval of the
transformed isoplanatic region on reconstruction. This occurs
because the angular intervals of the transformed patch refer-
ence beam and the transformed isoplanatic region are equivalent,
(Compare Figs., 41a and 41b),

On reconstruction, the nth processed patch appears immedi-

ately to the right of the hologram as

C’WT('F"):’” QA)(“H“(,@“}G“(QQ (4-53)
csine (28%q ) @ 6 2T F1 (xa=0)
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Inverse transforming gives

Gour (XD = hn<x3&-gﬂ<x~xn)*rect {z"‘éﬁ{;} (4-54)

where the convolving shift term g(x+a) has been dropped for
clarity of analysis. Note that inm the previous scheme, é(x)
appeared instead of rect[x/Q.AXg} in the above output, and we
had generated the nth term of the piecewise isoplanatic
approximation. The substitution of the above expression into

the convolution integral yields a means by which the conse-

quences of this convolving rect affects the output. Specifically
Km‘&xnl
gour(x):‘j f g(h)hn(ﬂ's)d ndé (4-55)
Xg—bxn

As will be seen via an example, outputs tend to be "smoothed”,
This seemingly results from the sinc function in (4-53)

acting as a low pass filter,

In the three examples to follow, a single isoplanatic

patch input will be used
.
{2y = p th }
gn\x' rect L 248Xn (4-56)
This reduces (4-54) to

- X
g},m(x)= ha ()% A %ﬁ] (4-57)

where the triangle function A(x) is defined as

Axyz{ & =1 %l XV &4
o oTHERWISE

T

(4-58

S
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Consider first the magnifier. Substituting its line

spread function ﬂS—QOﬁ into (4-57) gives

- AR=MAn
gauT (x)= /\ W)

(4-59)

The piecewise isoplanatic approximation, on the other hand,
yields (Fig. 42a):

The integrator line spread function [(3-120) substituted
inte (4-57) gives a piecewise quadratic output instead of
the desired ramp. (Fig. 42b)

Lastly, the line spread function of the differentiator,
{(3—122)?5;w when substituted into (4-57), gives two rect functious
instead of the two desired impulses (Fig. 42¢).

The generalized output resulting from bandpass alignment
in a macroscopically thick hologram is purely speculative and
is subject to experimental verification. It was here pre-

sented as a3 possible foundation for future work.

¢) Generalizations of system recording criteris

We venture here to illustrate how the piecewise iso-
planatic statement of a space variant system might be holo-
graphically implementied by methods other than employment of the
extinction angle., First, a detailed understanding of the dif-
fraction efficiency method is needed.

Consider Fig. 43 in which the extinction angle recording
reconstruction operation is presented in block form, The input

is transformed and is separated by the angular bandpasses to
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multiply corresponding transfer functions, The result is
summed and Fourier transformed to give an inverted version of
the piecewise isoplanatic approximation on the ocutput.

In original piecewise isoplanatic approximation considera-
tions, the input plane was divided into isoplanatic patches of
non-overlapping unit height rectangular pulses., These patches

may be thought of as constituting a block orthogonal basis set.

That is ¢ﬁ(3€) ¢m<x): o s o mEn
28Xy s maz=n (4-61)
where ¢£ (x) : di = h, m refers to the region cevered

by the ith isoplanatic patch.
x-xn] (4-62)
bo(x): rect Laagy

The input function was then expressed in terms of the rect
functions &3~71ﬂ,§ach resulting block orthogonal function was
convolved with its corresponding line spread function and then
all resulting functions were added together to yield the piece-
wise isoplanatic approximation to the recorded system’'s output.

A re-examination of Fig., 43 will show that this is not the
case in the extinction angle implementation. The operation of
separating the isoplanatic regions is done in the Fourier plane,
This is valid due to the mapping of the block orthogonal input
regions into block orthogonal angular intervals upon Fourier
transformation. This process is illustrated in Fig. 44 and was
essentially discussed previously under angular intervals. Each

patch transform is selectively multiplied by the corresponding
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transform function in the aligned angular bandpass, All pro-
cessed patches are then Summed and re-imaged.

The most probable alternative to the angular bandpass is
individual processing of each isoplanatic patch., A general
block diagram of such a process is offered in Fig. 45. The
input function is divided into isoplanatic regions, Fourier
transformed in some manner, multiplied by a corresponding
transfer function expression, summed, and inverse transformed,
The inverse transformation may possibly be done in each channel
before final summation, depending upon the model. One can
visualize a complicated optical apparatus by which the patches
might be separated to be individually processed,.

1) Fly's eye lens system recording

A matrix of identical lenslets is appropriately called
the fly's eye lens and has found use primarily in three dimen-
sional image synthesis and optical computing.

Consider Fig. 46a in which a transmittance g(x) is
placed in the front focal plane of a fly's eye lens and assume
the nth isoplanatic patch is aligned with the nth lenslet. The

back focal plane essentially sees
gn: @ﬁ(!}xn;‘n) (4-63)

The further assumption is made that each transfer function is

"essentially band limited"” to the interval

p s L¥n (4-64)

IRy
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A problem arises immediately. Each patch will be in-
verted on re-imaging. This might be overcome by the con-
figuration in Fig. 46b where three identical fly’' eye lenses
are cascaded, The back focal plane now sees

T Gy (- 8- Fa) (4-65)

For any recon;truction scheme, one would expect the

nth isoplanatic spectrum to multiply a transfer function ex-

pression containing H (-f -f ) giving something akin to
EHh("’&n‘;n}Gn ("gx'yn) (4-66)
n

A problem now arises which is presently unsolved by the
author for the general case. That problem is re-imaging.

Note first that re-imaging by a fly's eye lens for the
general case would not be permissible, in that one is not
assured of adequate separation of each processed patch, For
example, consider the Fourier transformer's piecewise isoplantic
approximation i»(i%—-lll)}e Each patch essentially maps into a
weighted plane wave which completely covers any pre-imaging
fly's eye element,

This, then, suggests employment of a conventional lens
for re-imaging. Note, however, that the Fourier transform of

(4-66) gives

s {E\“(X) e;zwﬁﬂx-}*[gncx§eéxﬂ3nxj
(X3]Q}KW$RX

(4-67)

= Zﬂf [}\QCK)‘*‘ gh
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To introduce the shift contained in the piecewise isoplanatic

approximation[ﬁ3—77ﬂ we need to convolve with é(x~xn) to give

2 Lha(x) e ga )] @427 H0% 0 Ly

2 T [ha (504 g, (x-xa)] e mInkeFamdaxn (4 o)

The re-imaging problem lies in elimination of the phase terms,
This might be accomplished by an optical configuration which
would have the re-imaging lens see all the waveforms shifted
to the origin in its front foeal plane., Note, interestingly,
the unwanted phase term is equivalent to the conjugate line
spread function of the Fourier transformeri(S—SSﬂ,

2) Fly's eye implementation of the magnifier

Although no descriptive theory has been derived by the
author for general system recording the fly's eye lens, suc-
cess in producing the piecewise isoplanatic approximation for
the simple magnifier was accomplished employing fly's eye
techniques. The system recording, as pictured in Fig. 47a,
arises directly from the reflection analogy.

With reference to Fig. 47a an equilateral triangle was
placed at a distance d from a photographic plate., Three separ-
ate exposures were taken of a beam fligned with each of the
vertices and the hologram's midpoint (point d), The planar
reference beam was the same in each case.

Once developed, the three holograms were cut and arranged
as in Fig. 47b., The reconstruction geometry in Fig. 47¢ con-
sists of plane wave illumination of each hologram with a normal

plane wave, which is the equivalent of placing point sources in
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a.) Recording gcometry

b) Hologram Placement
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¢) Reconstruction

d) Photograph of output of "magnified" points

Fig, 47 : lagnifier system recording:fly's eye techniques,
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the front focal plane &ligned with each of the Fourier trans-~
forming fly's eye lenslets. The resulting diffracted wave-
forms were re-imaged by a single lens and photographed result-
ing in Fig. 47c,

Note that, in this particular scheme, no inversion
problems were encountered due to the intersection of the three

diffracted beams, as shown in 47b.

V. Conclusions
To this author's mind, employment of the extinction angle
of the "microscopically” thick hologram for system recording
leaves much to be desired due to the following reasons:
1) The sinc function's poor mimic of the ideal rectangular
angular bandpass.
2) The undesired diffraction from this sinc functions
minor lobes, This constitutes unwanted cross-talk.
3) The complete dictation of the emulsion thickness on
the isoplanatic patch calibration on the input plane.
4) The limitations which must be made on the angular
intervals of recorded transfer functions. (e.g.
the Fourier transformer),.
5) Distortion arising from reconstruction of a hologram
when recorded with steep rays. (See appendix).
All but the last of these reasons have no proposed method
of reconcilliation. All but the last, however, may be avoided
by employment of a macroscopically thick hologram, but a new

problem arises from the low pass filter generated. As pre-
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viously stated, this latter solution is in need of further
experimental investigation,

On the more successful side, the proposition of record-
ing a linear system has been thoroughly investigated. The
formulated piecewise isoplanatic approximation may be employed
to determine the consequences of division of a space variant
system into a number of isoplanatic systems. Foundations for
system recording schemes employing diffraction efficiency
have been made. Sufficient and necessary criteria for piece-
wise isoplanatic system recording by any other method is also
offered,

Future theoretical work might include a closer inspection
of the relationship between a linear optical system's degree
of space variance andasymptotic convergence of the piecewise
isoplanatic approximation, Once formulated, the relationship
might be applied to determine the optimal isoplanatic patch
calibration for a given system.

Linear system notions herein are obviously not restricted
to optics. They may be applied fo any linear system with
appropriate changes in terminology. Alsoc, applications to in-

variant synthesis of variant systems are obvious.
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V. Appendix

A) Distortion

A most worrisome encounter in attempts at implementation
of system recording was distortion of diffracted waveforms,

An investigation of the film's contribution to this distortion
has been presented by McCauley, Simpson and Murbach(26) after
the ray itracing predictions of Latta(27),

The distortion from a binary grating formed from plane
waves propagating at 70° and + 15° were recorded, The dif-
fracted waveforms are pictured in the figures below as s
function of reconstruction angle, These images diffracted at
nearly a right angle from the hologram normal and fell in the
same X~z plane as that defined by the recording beams, Note
the elongation of the circular input to the left of the 70°
"bias" and the constriction to the right,

A rather amusing, yet effective proposal to eliminate
this type of distortion is application of an inversely dis-
torted input., For example, an elongated ellipsoid output
would obtain the desired circular nature if one chose an
appropriately constricted ellipsoid for an input,

The distortions from the sinusoidal grating seemingly

become more pronounced as steeper recording plane waves are

employed.
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B) Fortran generation of extinction angle data

O0ffered here is the computer program by which the extinc-
tion angle curves of Fig. 20 from (2-107) were generated.
Care has been taken to allow data to be generated from any

set of system parameters (A:a° t, n) and over any angular

interval desired, The comments are hoped to suffice for
explanation of the program's workings. {A:a is read in ang-~

stroms, and t in micrometers,)

C) Fortran generation of the piecewise isoplanatic
approximation to the Fourier transform of a pulse

This program was used to generate data for Fig. 23 from

(3-108).

D) Photographic development of holograms
A11 holograms made in this report were exposed on Kodak
649F emulsion employing a helium neon laser ( Aa = 6328&)“
Film developing was done as follows:
1) 6 minutes in Kodak D-19 developer.
2) % minute in Kodak indicater stop bath,
3) 2 minutes in Kodak fixer.
4) 10 minute rinse in tap water.
When necessary, the hologram was bleached to decrease

attenuation of the diffracted wave,



i B) EXTINCTION ANGLE

PROGRAM XTNKIINPUT UUTPUT TAPEZ=INPUT,, TAPES=0UTPUT)

REAL Ny LAMA, LRy MR, LD, MO T
Coo o EXTINCTIUN ANGLE CURVES FROM EXTERNAL PARAMATERS
TP UT BARA SO Eouib s ST SN -

L SYSTEM PARAMATERS . N=REFRACTIVE INDEX..T=EMULSIUN THICKNESS
| L [N MICRUOMETERS . o LAMA=LASER WAVELENGTH IN AIR
P RoeADLZ, 1OV, T LAMA

o RECURDING Aib TTERATION PARAMATERS (REF AND (UBJ BEAMS)

C ALk ANGLES IN DEGREES

TTREAD(2, L) THTARZDELR,NR T T B i
READ(Z2s LY THTAG,DELDO,ND
LessUATA ECHOE
WRITE(S 12N TyLAMA
WRITE(S s 13INRZUELR, THTAR,NU,DELO, THTAD ‘ ‘ T
. Ceeo USEFUL CONSTANTS
‘ PT=4«8TANCL™
RTD=180./P1
DIR=PI/180.
FE=LAMA®Q . 0001/7
THTALI=THTACU
Loos REFERENCE ANGLE LUOP
DU 9 NNR=L,NR™ ™ — 7 777
WRITE(S, LAYNNR, THT AR
MR=SIN(THTAR=DTR)
LR=SURT {N#N-MR#MR}
Ceo o OBJECT ANGLE LOOP
DU 8 NNO=1,NU
TR OSSINUTHTATGRDTRY
LO=SQRT{N#N-MO#MQ)
ITF{LO®MR=MO#LR) 24,2
4 WRITEZ(5,17)
GO T0 3
2 EAT=(FF=LO/ (LU#MR-MO=LR) ) #RTD |
5TTF (EXT=360.)746,6 7 77 m e
& EXT=EXT-360.
Gu TO0O 5
! : T WRITE(S:L10)THTAG,EXT
. 3 THTAU=THTAO+DELO
8 CONTINUE
THTEDETHTAT e e e e e e e e e e e
THTAR=THTAR+DELR
9 CONTINUE
STOUP
10 FURMAT({3F10.5)
\ 1L FURMAT(2F10.4,413)
TTTTTIZ2TUFORMATIVISYSTEM PARAMETERS T, /v REFRACTIVE INDEX=',F10.4,/,Y EMU
LLSTON THICKNESS=Y3F10.65" MICROMETERSY, /3y ' WAVELENGTH=%',F10.4%5
2Y ANGSTROMST')
13 FURMAT(/+42X,15,7 REFERENCE ANGLE ITERATIONS OF '4,F10.645' DEGREES F
3RUM ", Fl0.64" DEGREESY,/,2X,15,% OBJECT ANGLE ITERATIONS OF @,
4F 10,6, DEGREES FRGM ', F10e06s*t DEGREESY, /)
TTTTTTAT FORMATA/ S/ o7 CURVE P IS5 VT THTAR=,F10.6, Y DEGREESY/ TX, 'THTAQY, 7
S5T1X P XTNKY)
15 FORMATI(2{5X:F10.6))
17 FORMAT (Y #wsurQ . Quunnerrsns INFINITE#x®zs?)
END .

- PR

TLENGTHTINCLUDING TT/0 QUFFERS 7 777777 s e r m mm mr e e o e
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B st i T

SAMPLE ou0TPUT:

SYSTEM PARKAMETERS
REFRACTIVE INDEX=
EMULSTON
WAVELENG TH= 6328.0

7

21 OByEC

e

CURVE 1
THTAQ
~20.000000
~18.000000
~16.0000G0
R4 UGO000
-12.000000
-10.000000
~-8.000000
-6.0000060
-4.,00U0000
TR0 000000
0.0C0G00
2.000000
4,000000
6.006000
8.000000
TTTTTTUU o060 0 T T
12.000000

THTAR=

THICKNESS=

REFERENGE ARGLE I
T ANGLE ]

1.5000
15.000000
000 ANGSTROMS

TERATIONS OF
TERATIONS OF

10.000000 DEGREES
2.000000 DEGREES

MICROMETERS

40.000000 DEGREES

XTNK
2517376

* 2.604333
2.697229

2.796714
2.903539
3.018583
3.142872
3.277615
3.424248

3.584479
3.760368
3.954409 .
4,169657
4,409891
4.679841

44935503
5.334598

FROM  40,000000 DEGR
FROM -20,000000 DEGR

14.000000 5.737225
16.000600 6.206863 .
18.000000 6.761904
20.000000 l1.428107
CURVE 2 THTAR= 50.000000 DEGREES
THTAOD XTHNK
-20.000000 2.263101
T L0, 0000007 20329642 T )
=16.,000G000 Z2.400001
-14.00C000 2ot 74531
=12.0000600 205530632
=10.000000 2.637764
-5, 000000 Lo 727452
=6 000000 T T 2.,823297 )
-4 ,0000u0 2.325998
=2.0000uu 3.036360
L. OUTCOO0 3.155323
2.000000 3.283989

4, 000000
TR TOOGO0 T
2.000000
10.000000
12.000000
14.G30000
16. 000000

3.423653

TU3.5758517 7
3.742419
3.925563.
4,127960
4.352891

4.604413




CYPI.A. SYNTHESIS oF 2aAp sinc(aAax/A9)

// JCB 7T 384 31131 RCBERT J. MARKS 11
#LIMITS T60,F4
[/ FORTRAN MAINLINE PROGRAM

#LIST SCURCE PROGRAM

+10CS(1403 PRINTER,CARD)

OO,

OO0

13

14

L5

REAL LANMF,N
PI=4.%ATAN(L.)
GENERATION OF THE PIECEWISE ISCPLANATIC APPROXIMATED OUTPUT OF A
FOURTER TRANSFORMER WITH AN INPUT CF RECT(X/2A). THE TRUE QUTPUT
IS 2A®SINC (2AX/LAVF)
SYSTEM CONSTANTS |
A =HALF WIDTH CF PULSE INPUT
LAMF=WAVELENGTH-FOCAL LENGTH PRGCUCT
READ(2,10)A, LANF
PROGRAM PARAMETERS
__NK =NUMBER CF FITS DESIRED
NIT=NUMBER CF ITERATICNS
DX =ITERATICGN LENGTH
READ(2,11)DX,NIT,NK
PARAMETER ECHCE
WRITE(5,12) Ay LANFNK,NIT DX
NK'TH APPROXIMATION LCOP _
DC 9 NN=1,NK
THERE ARE 2K+1 [SOPLANATIC PATCHES
READ(2,13)K
WRITE(5,14)NN,K
DELX=HALF WIDTH CF EACH ISOPLANATIC PATCH
DELA=A/(2.%FLOATIK)+1,)
X=0.
CCMPUTATICN GF GCUT AT X
DC 9 NNN=1,NIT
SUM=1.
SUMMATION OF THE K TERMS CF GCUT AT X
~ DC 8 NNAN=1,K
N=FLOAT (NNNN)
TERM=2.%SIN(4 ., *PT*N*DELX*DELX/LAMF)#COS (4. #PT#N#DELX*X/LAMF )/
1(4.#PT*N*DELX#DELX/LAMF)
SUM=SUNM+TERWM
8 CONTINUE
GLUT=2. #DELX%SUM
WRITE(5,15)X,GCUT
X=X+DX
9 CCNTINUE
STOP
10 FCRMAT(2F10.4) -
11 FCRMAT(F10.4,15,5X,15)
12 FCREAT('1INPUT ECHCE'/' HALF PULSE WIDTH=',F5.3,/2X'FOCAL LENGTH-
LWAVELENGTH PRODUCT=',E10.4,/2X,15,' CUTPUT DATA GROUPS'/2X,15,

27 ITERATIONS OF #,F10.5,/)

FGRMAT(13)

FCRMAT(/'  DATA GRCUP ', 15,', K=',15,/8X X" 14X 'GOUT") -
FCRMATI2(5X,F10.6)) ‘ T e
END

. et mirie o e e S
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SAMPLE OUTPUT:

INPUT

ECHOE

HALF PULSE WIDTH=1.000

FOCAL LENGTH-WAVELENGTH PRODUCT=0,1000E 01

&
31

DATA

OQUTPUT DATA GRCUES
ITERATIONS CF

GROUP
X
0.000000

. 0.10000¢C

0.200000
0.300000
0399999
0.499999
0.5959999

0.699999

0.769999
0.856969
0.999999
1.099999
1.199999

1.29G996

LATA

1.399999
1459999
1.559998
1.658998
1.758998
1.899998
1.999998
2.099998
2.196998
2.299998
2.395998
2.499998
2.599998
2.659997
2.799997
2.899997
2.999397

GRCUP

X
0.000000
0.1006000

0.2CC000.
¢.30c0¢C”

0.399999
0.499999
0.599999
0.659999
0.799999
0.8$9999

s [ NaNa ol

1y

K

0.10000

1
GouT
1.607088

1.525784 _

1.295932
0.957273
0.568366
0.156456
0.094149

0.253204_

0.253205
0.094152
0.196452
0.568361
0.9572¢68
1.295928
1.525782
1.607088
1.525787
1.295936
0.957279
0.568373
0.196463
0.094145
0.253202
0.253206
0.,094156

0.196446

0.568354
0.957261
1.295922
1.525779
1.607088

2

GOUT
1.838628
1.731431
1.431913
1.001114
Ce524759
0.093360
C.218451
0.368383
Ce354741
0.214636

~ DY T

ETC.



@




ROSE POLYTECHNIC INSTITUTE
Graduate Council

APPOINTMENT OF FINAL EXAMINATION COMMITTEE
AND

FINAL EXAMINATION REPORT

Student \&D\ﬁqu ..... \)M”\K6 .......... TL ............... Degree P\SEC; .................

Department Q"}e(:i/"ibc‘\ ...... ghc fhie,fi\h ................ Date ... A “z{‘ ........ '. (,3“}3
S Thesis rie Phelzqre .\k.iu.ﬂ.....&’ﬁ;f—..‘i!ﬁ.&i..ﬁ_%....éf ..... Oglical. Spacs Narlont
Sy sTemsg

[ MNon-Thesis
[, EXAMINATION COMMITTEE

It is requested that the following committee be appointed to conduct the final examination of the
student named above.

Professor Department

Tt’\ O &S F~ KF;‘Q Chairman Q{‘ .
WACHRE L T MoloWEY | PSS
Hawld 4. Sagastd E. €.

Requested by B L K LN \\{ ....................... Approved by

Major Professor Dept. Chairman

...........................................................

iI. FINAL EXAMINATION REPORT

Y I AR

E{ Passed '

[ Failed

Date of Exam

Note: When the report is complete, the Chairman of the Examining Committee should send this form
to the Director of Graduate Studies. Copies will be refurned to the Chairman of the Advisory
Committee, Department Chairman, and student.







	79.pdf
	80.pdf
	81.pdf
	82.pdf
	83.pdf
	84.pdf
	85.pdf
	86.pdf
	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf
	94.pdf
	95.pdf
	96.pdf
	97.pdf
	98.pdf
	99.pdf



