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ABSTRACT 

The primary objective of this thesis is investigation 

of the holographic recording of a linear optical system in 

such manner that the resulting hologram displays the same 

input-output relationship as the recorded system, This 

proposition is defined herein through application and deri­

vation of necessary theory. Needed approximations are cited 

and corresponding consequences explored. 

i 

A basic review of the optical properties of the thin lens 

and the concepts of planar holography are offered. Transition 

is then made to a more rigorous treatment of the topology and 

diffraction efficiency of the volume hologram, whose multiple 

wavefront storage capacity offers a possible solution to 

optical system recording. 

Linear system theory is then revisited, Practicality is 

shown to dictate compromise, necessitating the formulation of 

the piecewise isoplanatic approximation, a method by which 

desired output functions may be synthesized, 

The linear system and volume holography discussions merge 

under recording theory. Schemes are advanced for physically 

recording the response of a system, and limited implementation 

results are presented. A generalization of necessary system 

recording criteria is also offered, 
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I) The Thin Lens 

With applications ranging from simple magnification to 

Fourier transformation, the thin lens is distinguished as the 

most basic instrument in optical processing. Due primarily to 

the extensive use of Fourier transforms in linear system theory, 

and secondly, to lens' appearance in many optical systems of 

interest, a basic review of the properties of the thin lens 

is in order, 

In general terms, a lens may be defined as a non-attenuating 

optical element which alters the phase of incident waveforms in a 

non-random manner. A lens is said to be thin if a ray incident 

on the lens at coordinates (x,y) emerges at the same coordinates. 

Properties of the thin lens may be derived from either wave optics 

or from geometrical tracing. For purely illustrative purposes, 

a combination of these models is employed here to describe thin 

lens operations with attention restricted to the double convex 

thin lens. 

A) Classical Ray Tracing 

By far the most important lens parameter is the focal length. 

For the double convex lens, comprised of two adjoined sphere 

slices (Fig. la), the focal length is defined as (l) 

1 

{1-1) 

where n is the homogeneous index of refraction of the lens 

media, and R1 and R2 are the spheres' radii, which are positive. 



a) Formation from two adjoined sphere slices. 
rl1h h h d'" R·~ ~ IJ ·~· e sp. eres ave ra lJ. . 1 anc" \2. 

I 
I 

,J 
b) Location of the focal points and lens axis. 

Fig. ] Defining parameterR of the double convex lens. 
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The lens axis is the line defined by joining the 'spheres' 

centers. 

The properties of the thin lens may be illustrated through 

ray tracing techniques, 

1) The Ray 

In order to determine the lens' effect on incident waveforms 

we now introduce and discuss the concept of the optical ray. 

The electromagnetic theory presented by Maxwell predicts the pre-

sence of electric and magnetic vector fields in light waves, 

In 1890, Weiner experimentally confirmed the electric field's 

nearly complete dominance over the magnetic field in the formation 

of photographs. This hierarchy holds true not only for photo-

graphic emulsion, but for all photosensitive media in which holo­

grams have been formed(2). In diffraction analysis, the electric 

and magnetic fields may also be treated separately under the condi-

tion that the diffracting aperture is large in comparison to the 

wavelength of the illuminating light. Under these conditions, 

attention may be restricted to the electric field component of 

the electromagnetic wave. 

Maxwell's equations relate the space and time derivatives of 
~ 

the electric field v(x,y,z,t) 

I 
'\7avcx,v,z.,t):: Ci 

for propagation 
~-:~. V(X,Y,Z,t) 

~ t :J, 

in free space(3) 

0-2) 

8 M · rt~ where c = 3 x 10 Sec IS the speed of light in free space and v , 

the Lapacian operator, is given as 

~ 'J. b "l. b 2 
f"12 .. - + .....-- +-
v - ~x:2. ~y2. 6'l::z. (1-3) 
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A scalar solution to (1-2) for the case of monochromatic (single­

wavelength) light is( 4 ) 

V('~<,v,a,t) = A(KI't,~)eJ~rrct/)\ 0-4) 

where A is the light's wavelength, and A(x,y,z) is the complex 

amplitude or phasor describing both the phase and amplitude 

of the wave. Since the phase term in (1-4) is contained in 

most mathematical manipulations in the study of monochromatic 

wavefronts, we focus attention on 

0-5) 

where a(x,y,z) and 0<x,y,z) are respectively the magnitude and 

phase of A(x,y,z). 

A wavefront, or equiphase surface, is defined as the 

closed three-dimensional surface at time t 0 for which 

c/> ('A,'{''!:.):. ¢() 0-6) 

where 0 0 is constant( 5 ). After passage of a short time 6~ 

the same equiphase surface may be described by 

0-7) 

The point to point correlation of these wavefronts is estab-

lished by "rays" as illustrated in Fig. 2, The ray also gives 

the direction of energy flow in the electric field. 

In homogeneous isotropic materials, such as glass and air, 

rays are perpendicular to the described equiphase surfaces and 

may be thought of as incremental planar wavefronts. Consider, 

for example, Fig. 3~ in which a point source gives rise to 

spherical wavefronts at times t
0 

and t
0 

+ 6 t, The correspond-



Fig. 2 

¢(x,y,=a)=¢o+ b~ 
t: t'C)t ~t 

Equiphase surfaces or wave fronts, 
,cb(x,'f,'l:.) at times to a.ndto+-~"C 
The point by point :mapping of the 
inner to outer surface is established 
by the rays. 
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ing ray representation given in Fig. 3b, consists of a family 

of rays diverging from the point source. Each ray is obviously 

normal to all of the spherical wavefronts generated by the point 

source. 

The optical ray proves to be an intuitively gratifying tool 

in analysis of electromagnetic propagation in homogeneous iso-

tropic media, and is particularly useful in analysis of optical 

properties of the thin lens. 

2) Ray Tracing Laws(b) 

Classical ray tracing is a familiar topic in elementary 

optics for the case of the thin lens. With reference to Fig. 4, 

the ray tracing laws for the double convex thin lens are as 

follows: 

a) rays propagating parallel to the lens axis are bent 
by the lens to pass through the back foca 1 point, 

b) rays passing through the front focal point emerge 
parallel to the lens axis, 

c) rays incident on the lens at the lens axis remain unbent. 

We now venture to illustrate the magnification and Fourier 

transformation properties of the thin lens employing these ray 

tracing laws. 



a.) All rays para.lJ el to tfte le:ns axir::J pas::i throu.gh 
the back focal point. 

b) All rays passing through the front focal point 
emerge parallel to lens axis. 

c) All rays passing through the lens at the lens axis 
rema.in unbent0 

Tjll' 0' h 
I. b• 'j Hay tracing laws for the double conv(~X thin 

len.s. 
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B) Magnification 

Prior to the advent of the laser, the lens was used 

primarily for magnification. A foundation for magnification 

theory is now offered followed by analysis of a simple one lens 

magnifier. 

In the 17th century, Christian Huygens formulated what is 

presently called the Huygens-Fresnel Principle( 7). Huygens 

reasoned that each element of a wavefront can be considered as 

a secondary source and that the wavefront at any later instant 

can be found by the superposition of the resulting spherical 

w a v e 1 e t s , t F i g . 5). A 1 t h o ugh n o t r i g o r o u s i n c o n c e p t 1 a p p 1 i c a t i o n 

of the Huygens-Fresnel Principle has predicted results that agree 

amazingly well with experiment. 

Consider then Fig. 6 in which a two dimensional transmit-

tance function g<x,y) is illuminated by a normal unit aplitude 

plane wave (i.e., a wavefront consisting of planar equaphase 

surfaces propagating perpendicular to the x-y plane.) The 

Huygens-Fresnel Principle dictates that each point on the trans-

mittance acts as a secondary point source. That is 

0-8) 

where b(x,y), the Dirac Delta, represents a point source and 

may be defined*as 

b(x,Y):: lim 
N -i> oo 0-9) 



Fig. ) Illustration of the Huygens - Fresnel 
Principle. A wavefront a~ time 
t 0 4 ("~ ( 'f. I '( I :t: ) ::. ~0 ) 

may be modeled as a continuum of Gccondary 
sourcefs. 'T.'he envelope of the rosulting 
spherical wavQlets after time 1). t given the 
position of the wavefront at time 
t"o + ~ t J ( 4 ( ~ 1 '1, i! ~ :: ~o + 1::. ¢ ) • 



NoA.MIH. VNJT' 
PI..AN£ WAY£ .. 

y 

• 
I 

Fig. 6 Application of the Huygens - Fresnel Principle 
to a transmlttance, each point on g<x,'r') acts 
as a secondary source. 
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Equation (1-8~ termed the sifting property of the Dirac 

Delta, is the mathematical statement of the Huygens-Fresnel 

Principle for the case at hand. The transmittance is expressed 

as a superposition of secondary point sources located at 

coordinates ( ~J ?t) and weighted by ~ (~J ?t.). 

Suppose the configuration in Fig. 6 is placed a distance 

d 0 in front of a thin lens. Without loss of generality, atten-

tion is restricted to one dimension, 

Consider first, the case where d
0
)' f as illustrated in 

Fig. 7a. The point at x =( on the transmittance may be thought 

of as a secondary point source given as 

0-10) 

From the resulting spherical wavelet, rays are chosen which 

apply directly to the ray tracing laws. With reference to Fig. 7a: 

a) The ray component propagating parallel to the lens 
axis is bent to pass through the back focal point. 

b) The ray passing through the front focal point 
emerges from the lens parallel to the lens axis. 

c) The ray incident on the lens at the lens axis 
remains unbent. 

From the resulting geometry, each of these rays is seen to 

intersect at a distance di to the right of the lens and distance 

M~ below the lens axis, where M, the magnification, is the ratio 

of the displacement from the lens axis of these intersecting rays 

and the displacement from the lens axis to the secondary source 

on the transmittance, If the intersecting rays are extended 

* For a wealth of limit definitions of the Dirac Delta, see 
Goodman(B). 



1'~) 

do --~>~\F<~~~<~---- d4 ~--~ 

a) Magnifier when d0 ) ; 

and rea.l. 
rrhe irna.ge ir'l inverted ( M <. o) 

b) Nlagnifica.tion when ~ < do • The imago is erect 
( M "? o ) and virtual. 

Fig. 7 : Employment of the thin lens a.s a simple magnifier. 
Dashed curves repre~ient equ i phase surfaces of 
spherical wa.velets. 
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beyond their point of intersection, they will appear to be diverg-

ing from a common point, constituting the ray representation of 

a point source (Fig. 3), For this reason, the ray intersection 

point may be interpreted as a secondary point source given as 

(1-11) 

Magnification may thus be viewed as a mapping of secondary 

sources, From 0-10) and 0-11) we write 

where (~) denotes the mapping operation. To determine the 

effects of the entire transmittance we need to merely sum the ef-

fects of all the secondary sources on the transmittance. That 

is 

From a one dimensional equivalent of the Dirac Delta sifting 

property given in (1-8) it follows that 

0-13) 

where fo (X) represents the secondary source distribution 

resulting from the mapping. To evaluate the integral in (1-13), 

we must first recognize two identities of the Dirac Delta: 

&(Mx.): 
..L.. ~ ( )() 0-14) lM\ 

and 

b(><-E:) .. b < ( .. ~) (1-15) .. 
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Thus 

0-16) 

or equivalently, from .(1-8) 

0-17) 

The final mapping relationship is then expressed as 

0-18) 

This expression is the mathematical statement of the opera­

tion of magnification. The input function, g (x), is "squashed 

down" in amplitude and "spread out" in space by a factor of M, 

The above considerations are for d 0 ';:" f. Nearly identical 

results come from a similar analysis of the case where d 0 <f 

with the following differences: (compare Figs. 7a and 7b) 

1) For d
0
< f, the extended rays intersect behind the 

lens, constituting a virtual image. For d 0 >f, the 
image is real and may be actually imaged on a screen. 

2) For d 0 < f, the image is erect. The magnification, M, 
is thus positive. The inverted image resulting when 
d 0 > f yields a negative value forM, 

From the geometry of both Figs. 7a and 7b, one may derive 

the following general system parameter relationships: 

0-19) 

and 

0-20) 
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where d 0 , the object distance, is always positive when located 

to the left of the lens and 

if 
if 

0-21) 

These expressions may be employed to find the orientation, 

magnitud~ magnification, and location of an image given only 

the focal length and object distance of the magnifier, 

The ray tracing analysis of the simple one lens magnifier 

predicts image formation for all d #f. We now illustrate, 

through similar ray tracing techniques, the effect of equating 

the object distance and focal length. 

C) Fourier Transforming Properties of the Lens 

When a transmittance, ~ (x,y) is placed in the front focal 

plane* of a double convex thin lens and illuminated with a normal 

monochromatic plane wave, the distribution on the lens' back 

focal plane* under certain conditions, is proportional to the 

Fourier transform of g(x,y). This operation may be illustrated 

through ray tracing techniques. 

Consider the geometry presented in Fig. 8, where a point 

source is placed at (x,z) = (~,-f) on the front focal plane of 

a double convex thin lens. Application of the ray tracing laws 

states that the ray propagating parallel to the lens axis is bent 

to pass through (x,z) = (O,f) and the ray traveling through the 

* The front and back focal planes are defined respectively 
as the planes perpendicular to the lens axis at a focal dis­
tance in front of and behind a lens. 



F'ig. 8 

f 
(. 

A point source on the front focal plan(:! is 
colLimated by the double convex thin lens to 
a plane wave. 



lens at the lens axis remains unbent. Both of these rays 

lie at an angle 

11 

0-22) 

with respect to the z axis. Thus these rays are parallel. 

Note that the third ray of possible interest is propagating in 

the negative x direction, and consequently never incident on 

the lens, It is true, however, that each ray incident on the 

lens emerges at an angle of Qz with respect to the lens axis. 

The result is then a plane wave. 

Consider Fig. 9 in which the above argument is extended 

into three dimensions. A point source at (x,y,z) = ( (In I - f) 

is collimated into a plane wave, whose propagation direction is 

uniquely specified by direction cosines 

o(. = cos Qx = "'f..lr 

s = cos Qy = -~;,... 0-23) 

~= cos Qz = ~/r-

where 

r: J (" + 71~+ J'l-' 0-24) 

and Qx, QY' and Qz are, respectively, the angles made by the 

ray with the x,y, and z axes, Note, that by definition, 

0-25) 

The expression for a unit amplitude monochromatic plane 

wave propagating with direction cosines ~, t3, and lf is given by 



y 

Collima~ion of a point source located in the 
front focal plane of a double convex thin lens 
three dimensi.ons. The resulting propagation 
direction of the plane wave is defined by 
e ')( ey a.nd e~. 

I 

..;.· 
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A(x.Y,e) (1-26) 

where~ represents wavelength. The validity of the interpre-

tation of (1-26) is obvious when one equates the phase exponent 

to a constant ¢0 • The resulting expression is 

{l-27) 

This relationship describes a family of parallel equiphase 

planar wavefronts in space. From the previous discussion of 

equ. phase surfaces, equation (1-26) is thus seen to be repre-

sentative of a plane wave and is furthermore a solution to the 

wave equation {0-2), 0-4U(lO). 

Substitution of the direction cosine relationships ~1-23~ 

into the plane wave expression ~1-26~ gives 

(I -28) 

Attention is now restricted to the case where 

; n<< f 0-29) 

so that 

(I -30) 

Equation (1-28) then becomes 

e ~~rrt/~ .. e-~ ~ ((Xt??.V) A(x,Y~t-)~ .. ".,. (I -31) 
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The consequences of this approximation are to be discussed 

shortly. 

If attention is further restricted to the back focal plane 

of the lens, we have 

U(x,v)~ A(x,v, f) 
~A¢ e -~<~x· ?tY) 

{1-32) 

where 

{1-33) 

is a constant phase term. 

Equation (1-32) gives the field distribution on the back 

focal plane of a double convex thin lens resulting from a point 

source, b <x-~ I y- n) ' located on the front focal plane. As 

with the magnifier, we have a mapping: 

{1-34) 

This relationship may be generalized employing the Huygens-

Fresnel Principle of modeling a transmittance as a continuum of 

secondary sources when illuminated by a normal plane wave ~l-8~. 

It follows that when the transmittance, f (x,y), is placed on the 

front focal plane, the mapping becomes 

g- ( )(. y) = s .: J~: g- ( (I It ) b ( X • ~ I y ~ h) d ~ d ?'t 

-~,_..,. G-o (X, Y ) :: J.: J.: A 0 g ( ~ 1 it) (1 -3 5 ) 

.. ~*(~x+n.Y) -' 
xe d~an 
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The interpretation of G0 (x,y) becomes more apparent with the 

variable substitutions 

0-36) 

so that 

Outside of the proportionality constant, A0 , this expression 

is recognized as the Fourier transform of g-<x,y); 

In the more familiar one dimensional case, the Fourier transform 

of g<t) is given as 

~ 00 -J "" .ft G < f ) : J .(» g- ( t ) e d t (1-39) 

Optically, the Fourier transform, G(fx,fy), appearing in 

the back focal plane of a double convex thin lens, is seen to 

be a superposition of planar wavelets, each originating from a 

secondary point source on the transmittance g (x,y) placed at 

the front focal plane, One of the most remarkable and useful 

properties of a converging lens is its inherent ability to per-

form two-dimensional Fourier transformations, 



In derivation of this lens operation, the equating of r and the 

focal length [(1-JO)] is a rather radical approximation due to the 

large value of which is on the order of 106 reciprocal meters for 

the case of visible light • The approxima.tion error, multiplied by 

this large number, results in possible errors in excess of 2 radians. 

The final Fourier transform relationship, ho-vmver, is in excellent 

agreement 1dth the more rigorous wave optics derivation offered by 

Goodman ( 9) • 

The field as viewed perpendicular to the z axis in Fig. 6 at a 

distance far exceeding the dimensional extent of the transmittance 

is termed the far field. The far field may also be shown to be propor­

tional to the Fourier transform of the transmittance under a condition 

titled the Fraunhofer approxi~tion(ii), Thou~h not directly analogous 

to 0-:30) 1 this approxirrJJ.tion also deals with an alternate expression 

for r and consequently yields similar error. 

The importance of this section is.illustration of the remarkable 

capacity of the thin lens to perform Fourier transfornmtions, This 

operation has proved a useful tool in optics and holds prominent status 

in this thesis. 

15 



(a) 

Fig. J Spherical waves from a point source. 

a) Spherical waV(';!fronts at to and to• ~t 

b) Ray representation of t.he Flame 
point source. 
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II) Holography 

In order to faithfully mimic a system's response, input-

output amplitude and phase relationships of the system need to 

be known. Holography, or wavefront reconstruction, lends it-

self nicely to fulfilling these needs. 

A) A General View of Holography(l 2 ). 

The wavefront reconstruction process consists of a record-

ing and a reconstruction operation. First to be examined is 

the recording process. 

Consider two wavefronts incident on a photosensitive 

medium (Fig. 10). The wave U
0

(x,y) is here referred to as the 

object wave and is allowed to be arbitrary in nature, The wave 

Ur(x,y) is the reference beam. Both waves are monochromatic 

and may be expressed in terms of phase and magnitude as 

(2-1) 

The film ideally records a transmittance proportional to 

the resulting intensity of incident waveforms, If a wave 

is incident, the film records 

t(~,y) ~I t.J(x,Y>la 

:. t.J(x,Y) v•(x,Y) 
(2-3) 

= y2.~x,Y) 



l"ig. 10 Holographic recording results from two 
beating waves. rrhe refc~ronce wa.ve ( Ur ) 
chosen here as planar, is recorded 
simultaneously with an object wave, ( lJ~) 
depicted here~ by wave equ.i.pha.so surfaces 
to illustrate its moJ:>e arbitrary nature. 
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where ( ~) is read "is proportional to" and (*) denotes complex 

conjugate, Here, and henceforth, the convenient proportionality 

constant of unity is adopted, so that (2-3) becomes 

(2-4) 

Returning now to the object and reference beams, we have 

incident on the film 

(2-5) 

so that the resulting intensity is given as 

X(>< 1 Y): I U0 (X,V)f- Ur(X,Y)j
4 

= LU
0

(lC,V) + U,.(><,Y>](uo*(x,Y)•U,..*(><,V)] ( 2-6) 

Substitution of the phase-amplitude relationships {(2-1)] 
gives 

(2-7) 

or equivalently, from Euler's identity 

(2-8) 

Both phase and amplitude information are then contained in the 

final intensity distribution. Such a recording is dubbed a 

hologram, meaning a "total recording". 
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Before proceeding, an examination of the interpretation 

of a wave's conjugate expression is needed, In that a wave-

front may be modeled by a number of rays, attention may be re-

stricted to the plane wave with generalization to follow. 

The conjugate of the plane wave expression given in (1-26) is 

A • ( x, '(,:a) = e -~ <ex. x ... s" + b' a) 
(2-9) 

::: e 4Tf((·cx)x + (-/'!J)Y -t ('"Cf)i.] 

The signs of the direction cosines are seen to be negated. 

The corresponding rays describing the plane wave and its con-

jugate, illustrated in Fig, lla, have the same magnitude but 

opposite propagation directions. Generalization suggests this 

same relationship holds for any wavefront. 

When one is concerned with distributions on planar sur-

faces, an additional wavefront may be considered as congugate. 

For the plane wave case, we have from Fig, llb 
1 :<Tr 

A <></t,:z>: ed-T [<-·ot)x+ (-tJ>Y T t.aJ 

Obviously 

(2-10) 

(2-11) 

Thus, both distributions on the x-y plane are conjugate expressions 

of the distribution resulting from A(x,y,o). Generalization to 

more arbitrary wavefronts may be accomplished by a mapping of 

describing rays in this manner. With a feeling for conjugate 

waveforms, we turn now to reconstruction analysis. 



Fig. 11 

'( 

a.) rJ1he trm~ conjugate ray. 

b) The alternate conjugate ray for the case 
where one :is concerned solely with the 
distribution on the X - Y plane. Note 
the equivalent X and Y components of the 
conjugate urdt amplitude ray here:'l and in 
Fig o 7<'l.e 

A unit amplitude ray and corresponding conjugate 
rays a 
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Once developed, the hologram is a complex transmittance 

which is described best for present purposes by (2-7). The 

fiist two terms, containing no phase information, turn out to 

be of little consequence and are thus presently disregarded. 

Consider first, the illumination of the developed film by 

Ur(x,y). The resulting waveform from the third term in (2-7) 

would be 

(2-12) 

Suppose, for simplicity's sake, that a unit amplitude plane 

wave is chosen for the reference beam, so that 
• :l.Tr ( 

lu,..I2.-:Je<~-T o(x+sol,=1 

Equation (2-12) then becomes 

The original wavefront is thus reconstructed (Fig. 7a), 

(2-13) 

(2-11) 

If 

Ur* is chosen for re-illumination, the fourth term in (2-7) be­

comes of interest and yields 

(2-12) 

The resulting waveform of interest is seen to be the conjugate 

of the original object beam, which is physically represented 

by a mirror image of U0 off the system axis in the case for 

illumination as in Fig. 12. 

Obviously, unit amplitude plane waves and ideal film can-

not be actually used in holrigraphy, yet the resulting recon-

structed wavefronts in practice are attenuated and possibly 

distorted versions of the original object wave. 



(b) 

Fig. 12 

-, 
~ 

Uo' \ 

.... I' 

> 
I \ 

\ 

' ,. ·' ~' \ 

Illustration of wavefront reconstruction. 
( Compare with the recording geometry of Fig. 10 ) 

a) Wavc~front reconstruction using the 
original reference beam. 

b) Conjugate wavefront reconstruction 
using the con,jugate reference b<:;am. 

(The reconstructed 1,-ro.ve in (a.) :ls sometimes refered to 
8.S the v:irtual ~~avefront, and that in (b) as the real 
wavefront) 
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Upon reconstruction, terms were seemingly chosen arbi-

trarily from (2-7) in order to match the reconstruction wave. 

This is valid in implementation when the reconstructed beams 

are separated in space by proper choice of a reference beam, 

or when unwanted reconstructed waveforms may be successfully 

suppressed. When this is not the case, the interference of 

overlapping beams needs to be taken into account, 

The hologram is seen to have the capacity to store both 

the phase and the amplitude of a wavefront in a pure amplitude 

recording. This operation proves useful in system recording. 

B) Volume Holography 

When the emulsion thickness of the film used in holography 

is large in comparison with the illuminating light's wavelength, 

the recording is termed a volume hologram. The volume holo-

gram has the capacity to store a number of wavefronts within 

the emulsion of a single piece of film as opposed to the single 

wavefront storage capacity of the planar hologram. 

The volume hologram is presently being employed in the 

f . ld f . 1 (l 3 ) d h b t d 1e o opt1ca computers an as een sugges e as a 

possible model for the brain(l 4 ). 

1) The Grating 

a) The three dimensional grating 

To illustrate the intensity distribution within a volume 

hologram, the elementary case of two beating plane waves is 

now examined(lS). More complex distributions may then be 
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analyzed by Fourier techniques. 

Consider two unit amplitude plane waves incident on a 

film with a refractive index of unity. From (1-26) we write 

l) I ( )( I '(I a ) :: e J k ( 0( I )( +' s I '( t ~I i ) 

\J "'2): eJI"'(Q(aX+BaY+- ¥al) (2-13) u<a(x,,,IOo 

where 

(2-14) 

The emulsion of thickness t and height 2H records the result-

ant intensity of these waves. Following the three dimensional 

generalization of the intensity definition offered by (2-4), 

we write 

I(Y.;"/
1

"e):: J lJ,(x,V,!)-t U,_(><,Yil.)\2. ~(X+H1 V+H 1 t-+-t)( 2 _ 15 ) 
,.. /A ( )( .. H I y .. H J ~ .. t; ~) J 

where ~(x,y,z) is the three dimensional generalization of the 

unit step function. 

With the volume limits understood, substitution of the 

plane wave expressions [(2-13)] and expansion gives 

I (~I y ,l) ::. '- t e J 1-< [ ( 0( I~ 0( ~)X + ( 13 I .. f3 a) 'I + ( ~~ ·lt ~) ~] 
.. J I< [ ( o( I ... o( :l ) )( + ( 8 I -13 a) y ... ( cr I - h' :.t ) t] 

+ e (2-16) 

::2.(i+GOS k{(o<,·o<a)X-t-(13,·~$\)'f + (~~·~a)l.}J 

This expression then describes the intensity distribution 

within the emulsion. For greater insight into this geometry, 

consider the locus of intensity maxima which occur when 
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(2-17) 

or equivalently when 

c « I .. ot o.) ~ ... ( t3 1 .. 8 ~ ) 'I ... c lt, - r a ) =t : n A ; (2-18) 

On the x axis, these maxima occur when 

(2-19) 

For this reason, the x component of the spatial period and spatial 

frequency are defined respectively as 

Similarly 

T :: JL_ 
v ;.a,=-~,. 

~ 
·~ :: \J v Ut''C12. 

" ... ..L ... 13,-s'2. 
~ tv- Tv - >. 

(\ J- .. ~ .... 'll :2.. 
~ :r~= Ta ... A 

(2-20a) 

(2-20b) 

(2-20c) 

It thus becomes evident that the maximum intensity loci 

is a family of parallel planes described best by the substi­

tution of the above expressions into (2-18): 

(2-21) 

The case for n=l is illustrated in Fig. 13, along with the 
..... 

vector T descriptive of the true plane spacing. The direction 
.,). 

of T coincides with the direction of the gradient of (2-21)! 



ly 

Fig. 13 

y 

T~ 

A plane of constant intensity formed 
by.two beating plane waves@ The perpendicular 
distance between two adja.cent planes is 
given by the period vector T e 
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(2-22) 

...;. ~ "" where i, J , and k are unit vectors in the x,y, and z 
.... 

directions, respectively. The components of T must also 

satisfy (2-21) 

(2-23) 

Thus we may write 

~ [ (\ '1 (\ 2. (\ 2 ] ... ,,_ 
I Tl: 1x + :ty + 1'* (2-24) 

Substitution of the frequency expressions in '(2~20) 

gives 

(2-25) 

Recalling that the sum of squares of a direction cosine set is 

unity [(l-25U further simplifies this relationship to 

,..,.\. 

\ i \ : 
(2-26) 

The magnitude of the spatial frequency vector, defined in the 
~ 

same direction as T, is given as 
!"!:\ 

.... I .... V..!. _/ ' ' J lf :: 1 J T I :: ~ v--i .. 0( I 0( :a + ~a sa ... b", b" ~ ) ( 2-2 7) 

The above relationships describe the intensity distribution 

within the thick emulsion. A further insight into this topology 

is gained through a two-dimensional analysis. 
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b) 
. (15) 

The two dimensional grating . 

Transition from three to two dimensional analysis may here 

be accomplished by assuming no variation with respect to Y. 

We thus set 

(2-28) 

This assumes the plane waves which formed the grating were 

propagating normal to the Y axis. For this case, the maximum 

intensity loci are described according to (2-18) as 

(2-29) 

Solving for x gives 

(2-30) 

This relationship suggests a family of constant intensity lines 

as seen from an end on view of the hologram (Fig. 14). 

Two dimensional analysis allows convenient relationships 

between the direction cosines. From Fig. 15: 

'r : eo s e ~ = c. o s e < 2 _3 u 

0( = cos e lt :. cos ( f -e) = sin e 

From (2-30), the constant intensity lines have slope, 

(2-32) 
: .. 

Substitution of (2-31) with appropriate subscripts yields 

c.os e, .. c:.os s'2. 
~:. ... sin e, .. sine~ <2-33) 



F'ig@ 1'+ 

t---~-~ 

Geometry of the maximum intensity loci 
in a volume hologram formed by two 
plane wa.ves propagating a.t angler::i G, and 
Q::t. with reElpect to the hologram's no:rmal. 



Fig. 15 Relationship of the diroction corJines 
(~ and V ) in two dimensions. 



This can be reduced via trigonometric identities to: 

~=tan 
e.+ e~ 

2. 

Defining the arithmetic mean of 9 1 and 92 as 

we have 

ii=tan cp 
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(2-34) 

(2-35) 

(2-36) 

Thus, two waves incident on a thick photosensitive medium 

at angles 9 1 and 9 2 with respect to the film's normal, form a 

sinusoidal grating whose constant intensity loci lie at the 

bisected angle between 9 1 and 9 2 ; (See Fig. 14). 

The spatial frequency of the fringes for the two dimen­

sional grating is given from (2-27) as 

(2-37) 

Substitution of the sinusoidal assignments ~2-3lfl followed by 

trigonometric simplification gives 

t = 
J1. .. cos (9,-e,) 

~I r,:t 

Further simplification follows. 

f' ,. • ( e ~ - ez) 
T: ); Sin ~ 

... sin e ... sin E>:r. 

.. A cos (e.; Sa.) 
sin e, - s i n e ~ 

A c.o s ~ 

(2-38) 

(2-39) 
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This final relationship will later prove useful in diffraction 

efficiency analysis of volume holograms. 

c) The reflection analogy(l 4 ). 

As in planar holography, one would expect illumination of 

the developed transmittance with one of the recording plane 

waves to yield a diffracted plane wave propagating in the same 

direction as the second recorded plane waves, 

Consider, then, the geometry of Fig~re 16a where the grat­

ing formed by two plane waves propagating at angles 9 1 and 9 2 

is recorded, The volume transmittance is illuminated with a 

plane wave propagating at an angle 9 1 . Thinking of the constant 

intensity fringe as a mirror, one sees that the equivalent angle 

of incidence is 

e, (2-40) 

The beam then is reflected at an angle of 

( 2-41) 

or equivalently 

e,. = ?.~- e, 
(2-42) 

and finally from (2-35) 

e,.: e:a. (2-43) 

A similar analysis gives 91 as the reflected propagation dir­

ection when the hologram is re-illuminated with a ray propagating 

at an angle 92 . These results are in harmony with the arguments 

presented by (2-11) and Fig. 12a (in the case of planar holo­

graphy) and prove to be useful tools in intuitive analysis of 

gratings. 



) . . t . . l-'h f th . . , 'l a Re:LJ.lum:Lna· 1 on w1.·c_. GJYJ.e o.~ e or1g1na. 

b) 

Fig. 16 

recording beams yields a diffrac·ted wave in 
the direction of tht"J other recorded beam, 
supporting the Y'\3:flection analogy. 

Reillumina:tion with the con,jue;ate of one of the 
recording bea.ms gives a reflected bc~am not 
propagating in the direction of the second 
recording beam. The reflection analogy thus fails 
for conjuga·te reconstruction. 

Geometry deseriblng the reflection :=:tnalo:iY• 
rPlw conr-'.lta.nt intensity grating <rt angle y; in 
the hologram is modeled as a mirror, and was 
formed by two beating plane wa.ves. 
( See Fig. 13 ) 
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What, then, of the conjugate case? As previously stated, 

the conjugate of a wavefront may be thought of as a reflection 

of the original wavefront on the system axis. Thus, the con­

jugate of the plane wave represented by G1 would be a plane 

wave propagating at an angle of - G1 with respect to the hologram 

normal. As witnessed by the geometry of Fig. 16b, the reflection 

analogy does not hold for conjugate illumination as the follow­

ing analysis reveals. 

The angle of incidence to the mirror modeled grating in 

Fig. 16b is 

and is thus reflected at an angle of 

Combining and substituting (2-35) gives: 

e,.:. ~ ~ t s, 
e. ~ &, + Ba 

If the reflection analogy did hold we would expect 

e,.: -e2, 

(2-44) 

(2-45) 

(2-46) 

(2-47) 

A similarly distasteful result evolves when considering illumina-

tion by - G2 . 

The reflection analogy is thus seen to be valid only for 

illumination with original wavefronts and not for the conjugate 

case. Due to this limitation, care must be taken in its 

application. 
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2) Diffraction efficiency. 

In order to efficiently store a number of wavefronts in a 

volume hologram, an a priori knowledge of diffraction efficiency 

is needed. Diffraction efficiency is the ratio of power in the 

reconstruction and reconstructed waveforms, We are here pri-

marily concerned with diffraction efficiency as a function of 

the angle of incidence of the reconstruction beam. 

The scalar derivation to follow is taken closely from 

Smith(lb). A more rigorous derivation yielding diffraction 

efficiency amplitudes and similar angular orientation sensitivity 

is derived using coupled wave theory by Collier, Burchart, and 

Lin(l7). 

a) Derivation 

Analysis of diffraction efficiency begins with a two-

dimensional approximation of the Fresnel-Kirchhoff diffraction 

integral described by the geometry of Fig. 17 which is given by 

Smith(l6) as 
e j.l< < s + r) 

"r s ' 
dx (2-48) 

where integration is over the aperture Z As depicted in 

Fig. 17, Pc:. is a line source with amplitude "A" at a unit dis-

tance, and ~ is the angle between the object and image lines 

with respect to the z axis. If point PG lies at coordinates 

(2-49a) 

(2-49b) 



Fig. 17 1.rb.e geometry describing the two dimensional 
Fresnel - Kirchoff integral in equation ( 2-48)e 



The magnitude of r is similarly given as 

Expanding the quadratic and noting (2-49a) gives 

or equivalently 

The paraxial approximation states 

IF' a<< 1 

Thus, if attention is restricted such that 

The relationship in (2-52) becomes 

2. X, X .. x_"a.1 
r = ro [ 1 .. ., ro ~ 

)(,X .JL:_ 
:. ro ... r;; + ~ l""o 

Through similar analysis 

S "" s - -~~;.~)(­
.... c So 

Another approximation which may be made under the cited 

assumptions is 

29 

(2-50) 

(2-51) 

(2-52) 

(2-53) 

(2-54) 

(2-55) 

(2-56) 

(2-57) 
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Substitution of the above three expressions into the Fresnel-

(2-58) 

D i r e c t i o n c o s i n e s a r e no w a s s i g ned t h e r a y s i n .fi g. 14 

i.e ~ c.o S Be. 

me.::. sin 9c. 

or equivalent 

1.G:. .. ic./ n~ 

me.:: .. X" /ro 

1;:. cos e ... 
• m•: s 1n eJ,· 

1..; -::. -:a~/ So 

mol :: XJ I Se 

_....... 

dx 

(2-59) 

(2-60) 

The c subscripts denote the incident ray PcQ and i the 
......a. 

diffracted ray QPi. Substituting into (2-58) gives 

~ ~-J:-' e ~ k (ret Sc) 
.U(P,4):. Acosr A5oro 

, - .:b_ ,_ "' X oa. J ( 2 -61) 
M J e"ok(~(mz·m.) ?.ro :!,So dx 

2: 

We now take the limit as s 0 and r 0 approach infinity 

so that the quadratic terms in the exponential under the integral 

vanish, It is also assumed that the source strength A may 

be made arbitrarily large, so that 

lim 
ro .... 00 

So-P 00 

A _, t>o 

(2-62) 

where c' is a complex constant. Under these assumptions, 

(2-61) becomes 

(2-63) 
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This expression governs Fraunhoffer's diffraction from a thin 

aperture in terms of direction cosines, One is tempted to 

generalize (2-63) to govern diffraction from a volume hologram 

by writing 

This expressio~ thoug~ assumes each wave incident on each 

slice of dz thickness is equivalent, and thus holds only as a 

first order approximation for weak diffraction. For stronger 

diffraction from a spatial transmittance, a summation of all 

elementary diffractions must be made. The following diffraction 

integral results: 

The integral limits are here defined via the step function in 

(2-15). 

The function G(x,z) in (2-65) is the pupil function, and is 

representative of the spatial transmittance variation within the 

aperture, For the case of two beating plane waves, G(x,z) may 

be determined from (2-16) under the conditions of (2-28): 

(2-66) 

or equivalently, 

G- ( X,;: ) : 2. [ 1. t c. o s I( ( o<,- ol. ~) (X t !: : ~2-a a) ] ( 2-6 7) 
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For a more representative expression of the pupil function, 

direction cosines are assigned the fringes in Fig. 14: 

1:: cos + 
m = si ~ ~ 

(2-68) 

From (2-32) and (2-36) the slope of these fringes may then be 

expressed as 

tan~ (2-69) 

Substituting into the pupil fun~tion ~2-67~ gives 

(2-70) 

or equivalently 

(2-71) 

As promised, we now recall equation (2-39), Employing (2-31) 

and (2-68) we write 

(2-72) 

which may be expressed in angular terms as 

(2-73) 

Substitution into (2-71) produces the desired expression for 

the pupil function formed by two beating plane waves; 

(2-74) 
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This relationship is now employed to give a measure of 

the volume hologram's diffraction efficiency as a function 

of angular incidence of the reconstruction beam, 

b) Bragg condition 

Expanding the sinusoidal term of the pupil function via 

Euler's identity, and substituting into equation (2-65) yields 

U( n. m·)::! C j~ Jt/'1. r 2. _.. e~wo<~x-ma) -Jw0 (.tx·mi!~ 2 _ 75 ) 
"'" • ~ ...... •t;a L + € 

)( e .. ~ I<~ ( m 4 ... me:) e .. ~ k i!: ( .t.c· .. £c.) d :e d X 

This expression divides into three integrals 

(
II, \ .. :<C J .. Jtla e·J.k.l<'(m~-mc.)e-~k(.i.c··Lc) 

U .x..c, m; J ... "~"~ .. t.;a ~ ~dx 

,._ C. J N J +.J,_ e"'~ (k m, ·I'< t'Yic -We l_J X €-~tk 1.;. .. J< I.e+ Wa mJ i-
"1-1 '"t;,. J ~Jx 

+cJ .. J.Ir Jt/a e -~[km ... ·kMetWolJ')( e -~[l-<_a.i .. l<£c.-WomJ~ 
H ·t12. d ,:Z d)( 

(2-76) 

Since 

(2-77) 

where 
sinx(x): 

(2-78) 
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the diffraction expression becomes: 

U ( .t.;, m.) : ~ c H t sin)( [ ~ ( k L,: .. k le )] 

)(. sin)( [ H ( k m,: - 1<. me)] 

+ :lC.Ht sinx [ f(kA.t • kle.+ Worn)] 

)ft. s i n x [ H ( k rn ~ - I< m c. .. w CJ .a. ) J 
(2-79) 

+ ;l c.. H t :s i n K ( t ( k 1.t • k .l..c .. Wo m)] 

~sinK [H (kM,.: ... kmc+Wc-i)] 

This diffraction expression has strict analogy to the com-

plex transmittance of a planar hologram offered in (2-7). The 

first two terms in (2-7) correspond to the first term in (2-79) 

which yields the zeroth order diffracted beam that contains no 

information, and is disregarded when possible. The second and 

third terms correspond respectively to the primary and conjug-

ate reconstructed object beams. 

Equation (2-79) also contains information pertaining to 

diffraction efficiency as a function of angular orientation. 

As will be shown, the volume grating may be thought of as an 

angular bandpass filter, attenuating all diffracted waves which 

are not propagating in the direction of the recording beam or 

in the direction of the recording beam's conjugate. This 

property is analogous to Bragg's law of constructive and de-

structive interference and is appropriately called the Bragg 

condition. 
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c) Extinction Angle 

Since one is usually concerned with the primary dif-

fracted beam, and not the conjugate, attention is now re-

stricted to the second term in (2-79): 

\)" ( J..; Jr'l,.·) :: ~cH t sinx [ f ( k .tJ -k tc. +Worn)] 

1'. sin x [ H (k t'YI4'- k m, ·wol )] 
(2-80) 

The Bragg condition is satisfied when (2-80) is maximum, which 

occurs when the arguments of the sinx function are zero • 

• 

' 
( 2-81) 

Substitution of (2-69) and (2-73) and simplification gives the 

following equivalent expressions 

• 
' (2-82) 

Substitution of the sinusoids assigned to each of these variables 

yields the not-too-surprising conclusion that the Bragg condition 

is satisfied when 

• 
' (2-83) 

That is, the reconstruction beam is identical to a recording 

beam and the diffracted beam is identical to the second record-

ing beam. 

We now define the extinction angle as the angular deviation 

from maximum diffraction efficiency necessary to extinguish the 

diffracted waveform. This occurs when the sinx functions in 

(2-80) become zero. The first does so when 
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(2-84) 

where J. and j are chosen to meet the Bragg condition. 
1 c 

Substitution of (2-69) and (2-73) into (2-84) followed by 

simplification, gives 

Since the Bragg condition specified by (2-82a) is met, we 

may write: 

(2-86) 

Similarly, analysis for the second sinx function yields 

(2-87) 

In the case where 

(2-88) 

we may safely restate (2-87) as 

(2-89) 

If attention is restricted to small angular deviations, the 

direction cosines may be estimated from the differentials of 

equations (2-59) 
At .. -sin ec. A e" - .. me. AGe, c. .. - (2-90a) 

A l.J -: -sin el A9.t -=--m~ Ae; 
(2-90b) 

Amc.= c:.os ec. ASc::. ~ .tc-. A e c. 
(2-90c) 

Am;: eos e4 A e.t ':. .!;, ~e..: 
(2-90d) 
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Note that AGe is, by the previously given definition, 

the extinction angle, which now needs to be solved in terms 

of non-incremented values. From (2-89), (2-90c) and (2-90d) 

.Le e 
A9.; : ).l A c: 

Substituting into (2-90b) 

llt: = -rn: & Ae ... .. iJ. c: 

(2-91) 

(2-92) 

Subtracting (2-90a) from (2-92) and noting (2-86), we write 

(2-93) 

Solving for the extinction angle then gives 

(2-94) 

Note that because of (2-83) 

( l;. I ff1 i. ) :" ( ~I I 0{ I) (2-95a) 
and 

(2-95b) 

As a function of recording parameters, the extinction angle 

is then 

(2-96) 

where for clarity the r subscript denoting the reference beam 

has replaced the 1 subscript and 0 denoting the object 

beam has replaced the 2 subscript. 
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Substituting the trigonometric assignments to the direction 

cosines U2-3lij into the extinction angle relationship, followed 

by a trigonometric simplification gives 

_A. c. o 5 Go (2-97) 
t s i n ( e" .. eo ) 

The corresponding plot of A Gc as a function of the reference 

angle (Fig. 18) resembles a cosecant curve (which it is for 

9 0 = 0) and is a generalization of that offered by Smith,(IG) 

Due to the approximations made in the derivation, (2-97) 

may only be ascribed the status of a first order approximation 

to the extinction angle. 

As an example of interpretation of Fig, 18, consider the 

case where both object and reference beam are equivalent 

(i.e. Gi = 9 0 ). The resulting hologram would record a constant 

intensity, or equivalently, a grating of zero frequency. The 

resulting reconstruction process would obviously yield a "dif-

fracted" beam of unchanging intensity for all angles of recon-

struction incidence. The corresponding extinction angle may 

thus be interpreted as infinite. 

Note also that the extinction angle decreases as the 

emulsion thickness increases, giving the volume hologram a 

larger capacity for storing wavefronts. 



Fig. 18 
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A first order approximation of the,extinction 
ang1e as a function of the-) Emgle of 
incidence of thG reconstruction beam. 
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d) Effects of refraction 

To this point all properties of the volume hologram have 

been expressed in terms of parameters within the emulsion. 

Due to its importance in later applications, the extinction 

angle expression is now manipulated to contain only external 

parameters, 

We begin by stating Snell's law described by the geometry 

of Fig. 19 
sin e•-:. nsine 

(2-98) 

where n is the homogeneous refractive index of the emulsion, 

Q' is the angle of incidence, and Q is the angle of refraction. 

Here and henceforth, primed variables denote external parameters, 

An elementary manipulation of (2-98) gives 

e : s ! n ., [ * s i n ej (2-99) 

With appropriate subscripts, substitution into (2-97) yields 

(2-100) 

Expanding the denominator we write 

~ -t c.os [sin·' (1\ sine;)][r!isine~ ... cos [sin"' (2
- 10 U 

( * s i n e ~ ) ] [ -k s i n e~J 
Since 

eos [sin·• (-?rsit'\e)]:. J 1 ... sin'-e' 
n1. 

equation (2-101) becomes ~ j 
1 

_ s i n'-,_e/' 

(2-102) 
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Illustration o:f:' Snell's lawe 1l1he ra.y, 
entering a medium o:f:' homogeneous 
refractive index n from air with a 
refractive index o:f:' unity, is bent 
towa.rd tho normaJ. in aecorclance with 
(2-9B) 
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Before a final simplification, an additional substitution 

is in order. If a monochromatic wave has wavelength A~ 

external to the recording medium(in air), then the wavelength A 
within the medii'Jmis 

(2-104) 

Substitution into (2-103) followed by simplification gives 

(2-105) 

Let 
' ..Le/ .. 

" ~ . 2.6)' • I .. n ~ su'l o ,...,, .. stn Q() 
I 0 .. 

e' .t,.' ~na-~in:2. e,.' • : m,. = s• n ,. 
) 

(2-106) 

so that (2-105) simplifies to 

(2-107) 

The quantities in (2-107) may be thought of as effective 

direction cosines, displaying similar computational status as 

the direction cosines, (Compare (2-96) and (2-107~ but void of 

direction cosines properties, Specifically 

(2-108) 

A family of extinction angle curves as a function of object 

angle and discrete variation of the reference angle is offered 

in Fig, 20 from (2-107). Recording parameters are for the 
0 

helium-neon laser (~a = 6328 A) and Kodak 649F emulsion 

(t = l~Mi n~l.5). A general Fortran computer program allow­

ing variable parameters to generate data for similar curves is 



Ji'ig. 20 

N 
0 

w 
0 

'J:he extinction. angle from ( 2-10?) for 
~<\ ~ (., 3 ~ 8 ~ , 1 ~ M , and n ~ 1. S • 
The reference a.nd object beam propagation 
direct:i. ons ( e; and eo' ) are measured 
external to the emulsion. 
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offered in the appendix, 

Due to the refractive nature of the emulsion, there is an 

obvious limitation placed on the angles within the media. 

From (2-98) and (2-31) 

Since 

we may write 

sin e'/n C'(_: (2-109) 

(2-110) 

(2-111) 

The relationships in (2-109) and (2-111~ sketched in Fig. 21, 

clearly limit extinction angle values, since the direction 

cosines are limited to the intervals 

leX. I c:: 'In (2-112) 

and 

vnrJ.~I ~ \ '({j ~ 1 
n 

(2-113) 

With the concept of volume holography's extinction angle 

well understood, we now begin exploration of system theory to 

determine how the extinction angle property might ultimately 

be used to holographically record a system. 



1 

.J.. 
0· 

-J,.. 
n 

Fig. 21 

e' 

e' 

H.c-:d'raetivc index limitation::-; placed on the 
dj_rection cot'jines w:L thin a. :t:'ecordinp; m~~dium of 
refractive index n, Primed varia .. blef1 denote 
the corresponding direction cosines external 
to the medit:~m. 

(D'or n~=:t .5, the propagation direction 1dthin the 
emulsion :i.s limited to the interval \~\ < l.J-20) 
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III, Linear System Theory 

Theory of holographic recording of an optical system stems 

from classical linear systems theory and the Fourier trans-

forming properties of thin lenses, Problems of practicality 

lead to approximations, the consequences of which are explored 

here. 

A) Linear Systems(lB). 

The input-output relationship of a system, as portrayed 

in Fig. 22, may be modeled by the mathematical operator $[] 

(3-1) 

where g<t) and gcJt) are respectively the system's input and 

output, This operation is equivalent to the mapping technique. 

employed in Chapter I to analyze the magnification and Fourier 

transformation properties of the thin lens. 

A system is said to be linear if it obeys the properties 

of homogeneity and superposition* stated respectively as 

and 

* 

(3-2) 

(3-3) 

In Chapter I, linearity was assumed for the operations of 
magnification and Fourier transformation, specifically in 
the transitions from equations (1-11) to (1-12) and (1-34) 
to 0-35). 



Flg. 22 The genera] system model consisting of an 
input, a system described by the mathematical 
operator ~t 'j, and an output& 



where g{t) and f(t) are arbitrary input functions and a 

is a constant. These criteria may be combined into a single 

necessary and sufficient condition for linearity 

(3-4) 

where b is a constant. 

1) The superposition integral 

A more powerful mathematical treatment of linear systems 

arises from the sifting property of the Dirac Delta restated 

here after (1-8): 

(3-5) 

Substituting into (3-1) gives 

(3-6) 

For linear systems, the integral may be extracted from the 

operator argument due to superposition. 

( 3 -7) 

Since the operator is only concerned with functions of t, it 

views both g ( () and d ~ as constant. Thus, due to the 

homogeneity property of linear systems, these variables may 

be extracted from the operator's argument leaving 

(3-8) 

The output from a Dirac Delta input is appropriately called 

the system's impulse response, and is written 

43 
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(3-9) 

Substituting into (3-8) yields the superposition integral 

(3-10) 

To define a general system, the output must be known for 

every possible input. Assuming linearity, a system is defined 

by knowledge of all possible inpulse inputs by virtue of 

the superposition integral. 

The infinity of knowledge required for general system 
definition constitutes the highest order of infinity in­
tuitively (but not mathematically) conceivable. Assumption 
of linearity reduces the order of the infinite number of 
defining relationships by one, For an elementary, but. 
interesting discussion on such notions, see Gamov (19). 
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2) Invariance and convolution 

By far the most powerful and most studied subset of linear 

systems are those which are invariant. For such systems the 

impulse response is dependent only on the difference of its 

arguments 

( 3-ll) 

Prime examples of such systems are those arising in linear 

circuit theory. If an input b<t) into a linear circuit pro­

duces an output of h(t), then an input ~(t - t 0 ) will pro­

duce h(t - t ). Such circuits are then time-invariant, 
0 

Substitution of the invariance criterion(3-ll) into the 

superposition integral (3-10) results in the convolution 

integral 

(3-12) 

Thus, for an invariant linear system, a single impulse response 

suffices for a complete system definition. 

(3-13) 

In shorter form, the convolution operation may be expressed 

as 

go(t): g-(t)Ji. h(t) (3-14) 

The convolution operation is commutative, associative, and 

isdistributive with respect to addition( 20) 

(3-15) 

[ cr ( t) * h ( t)] *- t ( -t) = "" ( t) * [ h ( t) * :J.' ( t )] 
0 '0 (3-16) 

g<t)•[h(t)+;(t)] = g-Ct)•h(t) + g(t)~;(t) 
(3-17) 
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Another property of the convolution operation which will later 

prove useful is (with reference to (3-14)) 

g-o ( t - c; ) : g- ( t · ~ ) W. h ( t ) 

= g(t)•h(t-~) 

3) Fourier relationships 

(3-18) 

The power of invariant systems rests in their analysis in 

the frequency domain. From (3-12), it may be shown that 

(3-19) 

where G0 (f), G(f), and H(f) are the Fourier transforms of 

g
0
(t), g(t) and h(t), respectively, given by 0-39). The 

Fourier transform of the system impulse response, H(f), is 

called the system transfer function. Due to the one-to-one 

correspondence between function and transform, knowledge of H(f) 

also suffices for complete definition of an invariant linear 

system. Mathematically 

(3-20) 

where g( denotes the Fourier transform operation, Important 

Fourier theorems which will prove useful in later analysis are 

given below. 

(1) Linearity 

~ L o ~ < t) ... b g ( t >] = o ~ [ ; ( t >J + b ~ [ g- < t )] 
(3-21) 

(2) Similarity 

(3-22) 

(3) Shift theorem 

~ Lg(t-E;)] '0. G(.f) e~J.~rr~; (3-23) 
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(4) Recurrence 

(3-24) 

Proofs of these theorems (except 4) plus the convolution­

Fourier transform relationship are offered by Goodman( 2l) ~ 

B) Linear Optical Systems 

Linear imaging systems afford parallel processing; thus 

previous notions must be extended to two dimensions and 

appropriate nomenclature must be applied. Most optical 

systems may be thought of as consisting of an input plane, a 

system, and an output plane (see Fig. 23). 

The one- and two-dimensional impulse responses of such a 

system are optically called the point spread and line spread 

functions, which are obtained respectively from (3-13) as 

(3-25) 

and 

(3-26) 

The line-spread function is employed where one dimensional 

analysis loses no generality, 

In two dimensions, the superposition integral becomes 

(from (3-10)) 
t» 

go ( X, Y ) ::. ~J g' ( ~ , 'h ) h ( X, Y ; ~ , i't) d ~ cl 71 (3-27) 

a n d c o n v o 1 u t i o n f rom ( 3 -1 I) a n d ( 3 -1 2 ) 

g.cx,Y\= C'! gc~:n.) h<x-E;,Y-i't) d~d12.. <3-28) 



SYSTEM:$[] 

General port:raya.l of' a.n optical syst(~m conr-:5i~3ting 
of an inrnrl; plane, <l system, and an output plc:tn0lm 
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The two dimensional Fourier transform is here repeated from 

0-38) 

G(Jx,tv)~ ~[g-(x,v)] (3-29) 

= n g-<~,?!.) e -J.,rr(:h( dv?!.) d~ d1!. 
-QQ 

When Fourier transforming is done with a thin double 

convex lens, the spatial frequencies are given as 

where the transform falls on the (xf,yf) plane, 

(1) Isoplanicity 

(3-30) 

Optical system invariance is called space invariance or 

isoplanicity. For isoplanatic systems, a single impulse suffices 

for a complete system definition. It is indeed unfortunate 

that optical systems in general are space variant. 

We pause here to cite two common optical systems which 

are not isoplanatic and which will hencefqrth be used as run-

ning examples, 

Consider first a simple thin lens Fourier transformer. The 

impulse response for such a system is given as: 

$ [ b ( )( • ~ 
1 

Y ~ 11..)] :; ~ [ b (X "~ 1 'f "' ?1, )j 
::: e -; arr <Sx~., ~v 'it) 

Applying (3-30) and (3-25) we write the point spread function as: 

1..( • )- e-w-<x~+'1'?1..) 
fl )(~'(I ~I ?t - ( 3 -31) 



Clearly the complex argument of the exponential cannot be 

manipulated to produce h(x - ~, y -it.). The system is thus 

not isoplanatic. It is indeed ironic that the Fourier trans-

forming operation used so widely in the study of invariant 

linear systems is itself variant. 

A second common variant optical system is the simple 
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magnifier, We here rewrite its input-output relationship from 

0-17) as 

Placing the point source b (x - ~ , y -/t) on the input plane, 

we then have 

h < x,Y; (, ?2.):: -~,. b [ N - ~, *- 'h] 

= b [x- M ~ 1 Y- M 'i'l] 

Here again there exists no algebraic trickery to produce 

h ( x - E: , y, - ?1) except for the trivial case of unity 

magnification. 

(3-33) 

The space variant nature of these elementary optical sys-

terns suggests that most linear optical systems are indeed not 

isoplanatic. 
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2) Measurement of spatial variance 

In previous notions, a linear system was tagged discretely 

as invariant or variant, A classic paper by Lohmann and Paris( 22 ) 

introduces the idea of relative degrees of invariance to linear 

systems. Without loss of generality, attention is restricted 

to one-dimensional analysis. All systems are assumed linear. 

We begin by redefining the line spread function as 

(3-34) 

(Compare with 3-25). There are two advantages to this notation. 

First, when the line spread function is no longer a function 

of its second argument, the system is completely isoplanatic,. 

Secondly, in order to extend the idea of the transfer function 

from line spread functions originating from line sources not 

located at the origin, We define from (3-20) and (3-34) 

(3-35) 

To begin assignment of various degrees of isoplanicity to 

linear systems, the cross-correlation of the line spread func-

tions originating from line sources x1 and x2 on the input plane 

is defined as 

c(~,)(,,)(,_):.J .. :'h (xt t .. x,;x,) ~*(x- ~-><:~.;><a) 
(3-36) 

': C • ( • ~ ,"''. ~ 1 )(, I ) 

The degree of space invariance is then defined as 

c (.x,- X a J .)(I ~ X :a.) 

(3-37) 
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or equivalently 

Schwarz's inequality may be written as 

(3-39) 

where X and Y are complex functions of < and 1t . Direct 

comparison with (3-38) gives 

(3-40) 

Equality in (3-39) is achieved when 

( 3-41) 

Thus a value of unity is assigned IO"'(xl,yl)\ when 

(3-42) 

or equivalently when the system is isoplanatic in the conventional 

sense. On the other hand when 0'::: 0, the system may be said to 

have no trace of isoplanicity. 

To include cases not covered by (3-38), we define~== 0 

if one and only one of the line spread functions is zero, and 

~== 1 if both are zero. 

The degree of space invariance may also be expressed in 

the frequency domain, in terms of transfer functions. Parseval's 

theorem states: 

(3-43) 
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where 

(3-44) 

It is evident that 

(3-45) 

and can be shown that 

(3-46) 

so that (3-Y8) becomes 

J .. : H ( ~)C; X I ) H * ( f~ ·, X,) J t'K 
0' (X 11 )( ~) : u.: I H a.; x,)l ~d ~. r.: I H o.; x~)I 2M,](~;471 

It has been pointed out that the Lohmann-Paris method will 

yield complete isoplanicity only if the linear system is 

isoplanatic for all inputs( 23 >. For example, direct application 

of the above expressions for the degree of isoplanicity to both 

the simple magnifier and Fourier transformer ~ives: 

i 

0 
(3-48) 
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This occurs due to the infinite integral limits in the fre-

quency or spatial expressions of the degree of space variance, 

which in practice do not extend over the entire planes. Thus 

appropriate applications of (3-38) and (3-47) are respectively 

to object width limited and band limited line spread functions, 

When analytical computation of line spread functions become 

overly complex, an experimental method for determining the cross-

correlation function given by (3-3G) is offered by Lohmann and 

Paris( 22 ). 

We now venture to derive the isoplanicity of the systems 

used herein as running examples. Consider, first, the simple 

magnifier which is used solely for magnification of band-limited 

functions. Redefining the magnifier's line spread function 

g3-33)l in terms of (3-34) gives 

h(x-x,;x . .>-= b[X-M)(;] 
: ~ ( (X· X A) ... ( M .. i) "'~] 

(3-49) 

or equivalently 

(3-50) 

The corresponding transfer function is then 

(3-51) 

Assuming that we limit the frequency of all input functions to 

be zero outside the interval 

(3-52) 

and noting 

(3-53) 
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we have from (3-47) 

o-' X, I ~:a) :. (3-54) 

Evaluation of this expression gives 

(3-55) 

where 

(3-56) 

We note from (3-55) as before, the magnifier is completely 

isoplanatic for the case of unit magnification. The isoplanicity 

is also directly a function of the distance between the lines of 

interest in the input plane, Note also, in the limit as 4J 

approaches infinity, the statement made in (3-48) is verified. 

Consider now the Fourier transformer. Redefining the line 

spread function (3-31) via (3-34) we have 

h(x-X"·; X..t):. e -J.'J.lT/;x 
(3-57) 

where 

or equivalently 

h ( X ; X 4 ) -:. e . ~ :a. rr J .i X e -j :2. Tr f i X'(. (3-58) 
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All input functions are now restricted to the interval 

(3-59) 

Substituting the line spread function into the spatial expression 

for the degree of space variance ~3-38ij, and manipulating gives 

Evaluation of (3-60) gives 

The magnitude of the space variance of the optical Fourier 

transformer is seen to change more quickly with (x 1 - x2 ) than 

that of the magnifier due to the small value of Af, which has 

an order of magnitude of 10-5 meters squared for visible light, 

Note here, as always, 

(3-62) 

A final isoplanatic measure offered by Lohmann and Paris( 22 ) 

assigns a numerical value to a system's space variance, The 

average degree of isoplanicity is defined as 

J~J cr(I<,,X,_)d)(,dXa. 

~ : J,.J ot )( 1 d )( ~ 
(3-63) 

where integration is over a region of interest in the input 

plane, In a fashion similar to that employed earlier in this 

section, it can be shown that 

(3-64), 
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c) The piecewise isoplanatic approximation 

No matter what degree of isoplanicity is assigned to a 

variant linear system, an infinite number of spread functions 

is needed for complete system definition. Those systems, how-

ever, whose space variance changes slowly over a small increment 

in the input plane may be approximated as piecewise isoplanatic, 

In essen6e, the space variant system is divided into a number 

of isoplanatic systems, each specified by a patch on the input 

. (22) plane. Lohmann and Par1s after Fellgett and Linfoot, 

define such an isoplanatic patch from 

(3-65) 

where e is the maximum magnitude change in isoplanicity 

allowed a patch. 

We now explore the modeling of a space variant linear 

system as piecewise isoplanatic and the corresponding conse-

quences. 

(1) The system model 

In general terms, the input plane of a space variant 

system may be expressed as 

!: rect [ \~:~] 
1'1 

(3-66) 

where 
rec.t()()='( 1 •..L..t,v~-!; :t-"- ... 

; OTHE'RWIS€ 
(3-67) 

and 

(3-68) 
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The n!h spatial pulse in (3-66) represents the location of 

the nth isoplanatic patch centered at x = Xn and with width 

2 Axn. Summation is assumed to cover the region of interest 

on the input plane. The criterion in (3-68) is made to insure 

that there are no "holes", or overlap between two adjacent 

isoplanatic patches. 

In order to completely define a piecewise isoplanatic 

system, knowledge of the spread-function of each patch needs to 

be known. We assume line sources are placed conveniently at 

the midpoints of each patch at Xn and we have knowledge of 

(3-69) 

for all n. 

Co n s i d e re~ now i s t he i n put - o u t p u t r e 1 a t i o n s h i p of a p i e c e -

wise isoplanatic system, An input function g(x) must first be 

divided into isoplanatic regions, Specifically 

g ( >C ) ;: ~ gr. ( X ... )(") (3-70) 

where. 

(3-71) 

or equivalently 

g,..(x) = g· (X.,. Xn) rect [ ~n] 
(3-72) 

Note that, by definition, each gn(x) is centered at the origin 

(Fig. 24). Also to be noted is the analogy between the "function 

sifting" in (3-71) and the sifting property of the Dirac Delta 

((3-5)]. 



Fig. 2l-~ 1 Extraction_ of th,e nth isoplanatic region from 
~ ( J<) • 
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To determine the output of a piecewise isoplanatic system, 

g 0 ( x ) , due to a n i n put ((.X ) , the s y s t em opera tor [ ( 3 -1)] 

is recalled. Substitution of (3-70) into (3-1) gives 

(3-73) 

The system is assumed linear so that the principle of super-

position ~3-3~ may be applied: 

(3-74) 

Each argument of the system operator is now isoplanatic and 

can be expressed via the convolution integral ~3-12~. That is: 

or in shorthand form, from (3-14) 

(3-76) 

Substituting into (3-75) gives 

(3-77) 

or equivalently from (3-18) 

(3-78) 

The input-output relationship of a piecewise isoplanatic 

system can thus be expressed as a superposition of convolutions, 

and is the hybrid of variance and invariance. For example, one 

heuristically sees 
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that is, the system becomes completely space variant as the 

width of each isoplanatic patch approaches zero. This neces-

sitates system description solely by superposition. 

The ideas presented by Lohmann and Paris can now be seen 

as possible criteria for determining which invariant linear 

systems can be successfully modeled as piecewise isoplanatic, 

The input-output relationship of a piecewise isoplanatic 

system may also be expressed in the frequency domain. From 

the shift theorem ~3-23fl and the convolution-Fourier transform 

relationship, the frequency expression for both (3-77) and 

(3-78) is 

where 

(3-81) 

and 

(3-82) 

A problem encountered in implementation of the piecewise 

isoplanatic approximation is avoidance of the n!h isoplanatic 

region transform from multiplying other than the n!h transfer 

function. For this reason, we formulate the cross-talk elimina-

tion criterion as 

(3-83) 
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(2) Consequences of the piecewise isoplanatic approximation 

The effects of modeling a system as piecewise isoplanatic 

are best illustrated by example, 

Consider first the simple magnifier. We conveniently 

choose for an input (Fig, 25a) 

~(x):: rect [fa) (3-84) 

where the rect function is given by (3-67), From the input-

output relationship of the simple magnifier ~1-18~ one would 

expect an output (Fig. 25C) 

g-. ( K ) : 1 ~ 1 ~ e e t ( :~.~a 1 (3-85) 

In order to apply the piecewise isoplanatic approximation, 

the input is divided into 2k + 1 isoplanatic patches, all of 

width 2 /::;. x, centered at 

X n:: an AX (3-86) 

Ntting that 

(3-87) 

we then have 

(3-88) 

so that from (3-72) 

(3-89) 

From (3-50) the line spread function for the simple magnifier 

is h(X·)(,.;Xn)= b(X•MXn] 

:: b (x · 2-t'\MAX) (3-90) 
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From ( 3·7B) 'the piecewise isoplanatic approximation for the 

output is thus 

(3-91) 

Through the sifting property of the Dirac Delta and the con-

volution integral, it may be shown that 

f Thus, (3-91) becomes 
r 

The cases for lMl > 1 and f ~fMI6 i are illustrated 

(3-92) 

(3-93) 

respectively in Figures 25d and e. In both cases one can see 

the attempts of the piecewise isoplanatic approximation to mimic 

the true output in terms of width and area. 

A generalization of the piecewise isoplanatic magnifier's 

output follows. Substitution of the line spread function ~3-90D 

into the piecewise isoplanatic approximation ~3-78~ gives 

(3-94) 

or equivalently, from (3-72) 

Noting (3-92), the final desired relationship is 

g'.<KI. ~ g-(x- (M-i)X~) rect [ x:t·~~~:o.J (3-96) 



a) The input rect function, 

g(><):: rect[ x;::J.a] 
i 

---~-- ....... -------. 

g<x):: rect ~ 
~AX 

~ 
1\••k 

\1-~ ~ '::'~"~ 
-0 ~." '" ~ ~1...\:> ~ '-'+ ;: 

~ ~v. \_~ 
/} , 

\_'+- .. ' \)"' "+ 
Iff~~ ... ~*' .. !iti.'Q; tt'Gf'~~ . .. 

b) Dividing the input in (a) into isoplanatic patches-. Each patch has 
·vridth 2 AX • 

'1M ----+_;...:...... __ . ' . 

} 
-Mil Ma 

c) The true output for the s:imple 111agni.fier for the input given in (a). 

X 



• • • • •• 

• ~M (k -• )tt.'IC 0 
~ M(k-1).:\X 

d) Pieco~Lbse lsoplanat.ic approximat8d output for the- sintple magnifier 
for IMI "l 1 . Each pulse has vridth 'At:.X e 

If • 

0 

e) Piecewise isoplanatic approximated output for f <. IM I<. :1.. 

F'ig. 215: Piecc~v1lse isoplanatic approximation for the simple magnifier 
with a pulse input. 

X 
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Here again, each isoplanatic patch is "magnified" by being 

shifted by a factor of Mxn (Fig. 26). 

Next to be explored is the consequence of modeling the 

Fourier transformer as piecewise isoplanatic. We begin by 

assuming the rect function input as before ~3-84B with general­

ization to follow. From the Fourier integral Rl-39~, it may be 

shown that 

(3-97) 

From the similarity theorem ~3-22U one would then expect an 

output of 

g.<x): 't[rec.t('fa)] 

:. ;tQ sine. [¥f-] (3-98) 

where we have employed the spatial equivalence to frequency 

~1-36~ for notational consistency. 

The line spread function of the n!h isoplanatic patch is 

~ 3-58 )]: 

(3-99) 

From the recurrence theorem, ~3-24)1 the corresponding transfer 

function is 

1 " ~) .. J2-rr:P,..xn H ( .f.)(. ~ X n ) ::: o ( 't )t -+ :r n e 
(3-100) 
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MX .. 1 MlC• MX 1 MXI\ ~ 

Generalized piecewise isoplanatic approximation 
to the simple ma{inifier ( 3 .. ct"' ) • Each isoplanatic 
region is "magnified" by being shifted a factor 
of M Xh. 
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where 

(3-101 

If we choose to divide the input rect function in the same 

manner as be~ore R3-89~ the similarity theorem dictates 

Gn ( J'lt ) :. ~ [ r e c t ( ~)) (3-102) 

~ '- 6 X sinG ( ~ 4. )(. f)t) 

Substituting this isoplanatic patch spectrum and the trans­

fer function ~3-lOOll into the frequency expression for the 

piecewise isoplanatic approximation ~3-80~ gives 

Due to the Delta function, ·each term is non-zero only when 

(3-104) 

Thus, (3-103) becomes 

Inverse transformation gives 

(3-106) 

Since 

(3-107) 

equation (3-106) becomes 
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(3-108) 

: :u~x [1 +2r sine. (l6X~n) c.os (::rn·;nx )) 
t'\1:.1 

or , e qui v a 1 en t 1 y , f rom ( 3-8 6) a n d ( 3 -1 0 l) 

(3-108) 

This is the final piecewise isoplanatic approximation to the 

Fourier transform of a spatial pulse. In the limit, as k 

approaches infinity, one would expect (3-108) to become the true 

sine output given in (3-102), This is graphically illustrated 

in Fig, 27 where (3-108) is plotted for various values of k. 

The computer program from which these curves were generated is 

offered in the appendix. 

The generalized input-output relationship of the piecewise 

isoplanatic approximation of the Fourier transformer follows. 

From (3-72) we write 

(3-109) 
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Substituting this and the Fourier transformer's transfer 

function ~3-100~ into the frequency domain expression for the 

piecewise isoplanatic approximation ~3-80~ gives 

or equivalently in the spatial domain 

g 0 (It ) = ~ ~ [ g- ( P A X • ) ,. e c t ( ~~~X n)] I f • = -.J'" 
)( e ·J:ur~,x 

(3-110) 

(3-111) 

There exists an interesting analogy to the piecewise iso-

planatic approximation of the Fourier transformer and the 

Fourier series expansion of a function. Any periodic function 

&"on(><) with fundamental frequency f, may be expressed as 

(3-112) 

where 

J
x+ 'If -J.2rrnfx 

o<n::. X g-on (X) e dx (3-113) 

a n d w he r e the p e r i o d i c n a t u r e of g o n (X ) i s a s s u red b y 

gon (X ) '=- f'o,-, ( >< + '/.p) (3-114) 
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The «n coefficient is recognized as the Fourier transform 

of a single period of [bn (X) evaluated at nf, and may be 

written as 

(3-115) 

where [op(X) is a single period of g-on 

and x0 is constant. 

The frequency domain equivalent of the Fourier series 

expression [C3-112il is 

G-bh(~M): ~ [g'on(X)] 
:: E e>< n b ( ~)( • n ; ) 

(3-117) 

n: ·co 

Substitution of (3-115) gives 

Note the striking computational similarities between the 

Fourier series ~3-llBB and piecewise isoplanatic approximation 

synthesis ~3-llOil of a function. Both relationships are expressed 

in the frequency domain as an impulse chain weighted by a Fourier 

transform expression of the described function. A notable dif-

ference is the limitation of the Fourier series to describe 

, non-periodic functions which are zero outside a certain 

finite interval. Such is not the case for the piecewise iso-

planatic synthesis. Another notable difference is the Fourier 
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series' employment of harmonics for function synthesis. For 

non-uniform isoplanatic patch calibration (A xn ~ constant 

for all n) this.is not the case for the piecewise isoplanatic 

synthesis. 

(3) Isop~anatic linear systems 

We now examine the effects of modeling an isoplanatic 

linear system as piecewise isoplanatic. The most obvious of 

isoplanatic systems are those performing operations encountered 

in elementary calculus. Consider first the integrator, which 

may be expressed in system notation as 

go(x)= $[gCx)] 

: j_~ g ( x) d X 
(3-119) 

The line spread function (3-34) of the optical integrator is then 

h ( lC • X • i Xo) : J.: b ( X ·X o) c.\ X ~ ( X - X 0 ) (3-120) 

where ~(x) is the unit step function, We see that the optical 

integrator is isoplanatic, since the line spread function is 

solely a function of the difference (x- x0 ). The transfer 

function of the integrator is 

H ( tM ) = ~ ~ ( )( )] . 
~ = T b (.f)() - :tTT#~ 

(3-121) 
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The optical differentiator is also isoplanatic, with an 

input-output relation given as 

go(X):: S l g (X)] 

: Jr.- g- (X) 

The differentiator's line spread function is then 

(3-122) 

(3-123) 

where lr (24) 
0 (x) represents the unit doublet . The unit doublet 

may be defined through an operation analogous to the sifting 

property of the Dirac Delta R3-5~: 

J ~ I' t 1 l dt(Ko) 
•
00 

'1 ( X ) 0 ( X - X o) cs )( -:. ... d X (3-124) 

The transfer function of the differentiator is 

~~ ( S K ) : 't [ s 1 
( X ) ] 

= J.: ~·(x) e-J.:urt~xc:lx (3-125) 

om (3-124) 

H ( ~,.. ) = - [ * e -J :ur .t,.. X J I x= Q 

(3-126) 

::J,.rr&~ 

From the above considerations, one may generalize transfer 

functions for multiple integration and differentiation. All 

will be isoplanatic, 
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An intuitively comforting relationship is the equivalence 
tti 

of goUt) and gC.l<) where a system is completely isoplanatic. 

For such systems 

(3-127) 

The piecewise isoplanatic approximation ~3-77D then becomes 

go ( X ) ~ ~ g" n (X .. X ~) • h ( X ) 
(3-128) 

Through the commutative[(3-15il and distributive f<3-17)J 

properties of the convolution operation 

(3-129) 

which from (3-70) reduces to 

(3-130) 

This is the promised result. 

We now examine the equivalence of the piecewise isoplana-

tic approximation for the specific cases of integrator and dif-

ferentiator. For the former, we have from (3-128) and (3-120) 

(3-131) 

or equivalently 

(3-132) 

Each region is thus integrated. A geometrical illustration of 

thds process is offered in Fig. 28a for the case of a spatial 

pulse divided into three arbitrary isoplanatic regions. 
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The superposition of all processed patches is seen to produce 

the true integrator output. 

The same predicted equivalence of true and approximated 

output occurs with the invariant differentiator. Substitution 

of (3-123) into (3-128) gives 

~0 (\C)~ ~ gn('I<•Xn) • £'(x) (3-127) 

or equivalently 

(3-128) 

From (3-71) 

(3-129) 

since 

The n!h processed patch (the n!h term in 3-129) may be written 

at r(x) re et [:~ ~~"] 

:. re,t- [ x2.·6xx:J Jx g-Cx) 
(3-131) 

-+ ~(Kn·4)(n~ b (I(·J(I'I+ Al<n) 

- g<x"-t6Xn) b (K ·)(n·t1Kn) 
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b) The piecewise isoplanatic approximation to the space 
invariant difforentiator. 
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invar·iant system for the case of the integrator and 
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In the summation process in (3-129), the unwanted delta terms 

in (3-131) cancel from corresponding delta terms generated in 

adjacent patches, This occurs because we have already speci­

fied in (3-68) that 

(3-132) 

An illustration of this process for the specific case of a 

spatial pulse divided into three isoplanatic regions is offered 

in Fig. 28b, Again, the approximated output is equivalent to 

the true output due to the isoplanatic nature of the system. 

(4) Generalizations and reflections 

The preceding methods of analysis for determining the con­

sequences of modeling the magnifier and Fourier transformer 

as piecewise isoplanatic may be directly applied to any invariant 

linear system. The following is a generalized summary of this 

technique: 

1) Divide the system into a number of non-overlapping 

invariant regions. For example, optical system in­

puts are divided into isoplanatic patches, A linear 

invariant circuit input would be divided into a number 

of invariant time intervals. 

2) Find the impulse response (and thus the transfer func­

tion) of each region. This is done by placing an im­

pulse within the n!h region at the system's input and 

noting the corresponding output, 



3) Divide an arbitrary input function into invariant 

regions as in (1). Convolve each region with the 

corresponding impulse response. The summation of 

all processed regions is the piecewise invariant 

approximation of the output. 
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4) Determine the true output of the linear system by 

means of superposition and compare with the approxi­

mated output for goodness of fit, 

The piecewise invariant approximation is one dimensional 

when applied to linear circuitry and two dimensional when ap­

plied in optics, Extension suggests generalization may be 

applied to describe any variant linear system in any finite 

number of dimensions. 

The system analysis presented in this section is not com­

plete. The following topics are in need of further investi­

gation concerning the piecewise isoplanatic approximation: 

1) A measure of the rate that a given piecewise iso­

planatic approximation approaches the true output is 

needed, 

2) Allowance for arbitrary isoplanatic patch width 

has been allowed in this section, Some patch distri­

butions would seem to produce better output approxi­

mations than others. This suggests an investigation 

of optimal isoplanatic patch calibration. 
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3) All line spread functions in this section were found 

from the system response to an impulse placed at the 

midpoint of each isoplanatic patch while the very 

nature of isoplanicity suggests the spread function 

may be found from an impulse placed anywhere within 

the patch, This reflection suggests a study of the 

optimal placement of the impulse in each isoplanatic 

region. 

4) Lastly, a method to determine which systems may be sue-

cessfully modeled as piecewise isoplanatic is needed, 

A possible solution to these problems rests in the system 

. (22) 
theory presented by Lohmann and Par1s . Another possible 

method could arise from comparison of the true and approximated 

outputs. To date, the author's investigation of these methods 

has only been mildly successful. 

A final note of interest rests in the amount of information 

needed to define a piecewise isoplanatic system. As previously 

stated, a general non-linear system demands knowledge of every 

output for every input. The infinity of defining relationship 

needed is of the highest order intuitively conceivable, constitut-

ing a one-to-one mapping with the set of all geometrical curves. 

Assumption of linearity decreases the order of the infinity of 

defining relationships which now may be mapped on a one-to-one 

basis with the set of all real numbers. A piecewise isoplanatic 

linear system {for which one is concerned with the entire input 

plane) also demands an infinity of defining relationships. 



This particular infinity, however, has a one-to-one mapping 

with the positive integers and is thus an order below that 

demanded solely by assumption of linearity. Lastly, if a 

system is both linear and invariant, only a single defining 

relationship (the spread function) is needed for complete 

system definition. 
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Having explored these pure mathematical curiosities of 

system analysis, we now explore the possibility of implementing 

the piecewise isoplananatic approximation through holographic 

techniques. 

IV. Recording Theory and Implementation 

With the properties of the thin lens, the concepts of 

planar and volume holography, and an understanding of linear 

optical systems, we venture now to derive and implement procedures 

for holographically recording space variant linear system~ ex­

ploring the consequences, limitations, and implementation 

problems of each. 

A) Generating Spread and Transfer Functions 

To this point, mathematical models have been presented 

to analyze the linear optical system. Methods of realization 

of these concepts are now presented. 

(1) The Dirac Delta and spread functions. 

The two dimensional generalization of the point spread 

function (<3-34)] is 

h ( X • )( 1'1 t Y .. Y M; )(II 1 1 N1) ::. $ [ b (X .. ')( 1\ 1 '( - y IYI)] ( 4-1) 
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The Dirac Delta is used here and elsewhere in system analysis 

primarily for mathematical convenience, The physical existence 

o f s u c h a f u n c t i o n i s i m p o s s i b 1 e d u e t o i t s ill H n i. t e " h e i g h t " 

and discontinuity. 

A fair optical approximation of the Dirac Delta may be 

made by focusing a plane wave to a "point" with a thin lens 

(Fig, 29). Noting that the thin lens is circular, we define 

; ..fx. (l. .... v ~' ~ 1 

; O'T~l!~WtSE 

(4-2) 

The Fourier transform approximation of the field in the back 

focal plane is 

~ [eire .J~,. yt] = ~ Jt (~Tro.f) 
( 4-3) 

where a is the lens radius, J 1 is the Bessel Function of 

the first kind, order one, and 

V X a+ {i.' 
>-.t (4-4) 

Goodman(S) offers the following possible definition of 

the Dirac Delta 

b ( x, '() (4-5) 

The focused plane wave thus suffices for a Dirac Delta, for 

sufficiently large values of a. 

The point spread function, (4-1), may easily be realized 

with b(x - xn' y - yn) at one's disposal. Recalling the gen­

eral optical system model pictured in Fig. 23, one need merely 

"focus" a point source on the input plane at (xn, Yn). The field 
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distribution on the output plane is the corresponding point 

spread function. (Fig. 30). 

Generation of the line spread function is possible in 

an analogous manner employing a double convex cylindrical 

(as opposed to spherical) lens. Such a lens would essentially 

focus an incident unit amplitude plane wave to b (x) on its 

back focal plane and perform Fourier transforms in the sense 

of 

(4-6) 

In order to completely specify a variant system, point spread 

functions from each isoplanatic patch need to be known. 

Intuitively, this information would be included from a know-

ledge of the responses of "criss-crossed" line sources on the 

system input, reducing the number of defining spread functions 

by tWQce a square root. This hypothesis is left for future 

consideration. 

(2) The transfer function. 

One possible procedure to determine the transfer func-

tion of a linear circuit is to first place an impulse at 

the circuit's input terminal and then perform a Fourier 

transform on the corresponding output. This overation 

finds some happy optical analogs due to the Fourier trans-

forming properties of the thin lens. 
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If one were to perform a Fourier transform of a system's 

line spread function with a lens centered on the system 

axis, the result would be 

where we have adopted the notation 

(4-8) 

To determine the Fourier transforming properties of a 

lens centered at (xn, Yrn), we define 

where 

I (4-10) 

The advantages to this notation are obvious when one notes 

This is, in fact, the transform of the line spread function 

of a system resulting from a lens centered at (xn,ym). 

In the most general case, the transform of the shifted line 

function, (4-1), with a lens centered at (a,b) gives 

ijflm ( J~):: ~[)l.•q Y·bl [ hnt'\'\ (X-Xn 1 y .. ~m)] 
• (4-12) 

; Hnm (~~ -~Q' ~v·~., )eJ~rr[(/l( .. ~a)(x"·Q)+ (tot .. ;b)(Y"·.b)] 
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where the notation f(x,y) denotes shifted versions of f(x,y) 

possibly accompanied by a linear or constant multiplicative 

phase factor, 

As can be seen, there exist. a number of ways to generate 

transfer function expressions. In future considerations, we 

choose from this abundance in accordance with need. 

(3) Holographic recording of the transfer function 

a) Availability of form 

When holographically recorded, a transfer function ex-

pression may be further altered by physically shifting the de-

veloped hologram to different reconstruction locations. Of 

additional interest is the altering of the multiplicative phase 

term from the reference beam resulting from this shifting. 

In order to record the magnitude and phase of an informa-

tion bearing wave, a reference beam needs to be employed. The 

most general expression for a reference beam for recording the 

nm~~ transfer function would be 

UnW'I(~ ... ISY): AIAN(;~,l'() e·Jtnm (~K,Iv) 
1 ., "' ( 4-13) 

It becomes convenient to assign the amplitude of the reference 

beam a value of unity, and keep the phase linear, 

(4-14) 

The reference wave then results from a plane wave with dir-

ection cosines L0-26)] 

ct,,.. = (ta I,.. 
(3 n m = 1t M l_r __ -:::--:"\ 
<r"m= 1:-Jr-a.. .. ~,,_-'h~ 

(4-15) 



Note that by virtue of the subscripts, different reference 

beams are being allowed for each transfer function, 

If the reference beam is beat with the corresponding 

transfer function ~4-12U, the resulting intensity on the 

surface of a photosensitive media would be (from (2-4)) 

a. 
I ( : It I ~ '( ) ::. I H fiM ( ~ ~ , ~ ~ ) l + 1 
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(4-16) 

Since one ultimately wishes to work with the transfer function, 

and not its conjugate, attention is restricted to the third 

term in the intensity distribution. 

Or equivalently, from (4-12): 

r 3 ( .J..,. 1 ~ Y ) :. .., II M ( f ~ - ~ Q I ~ '( - J\, ) 
)( e J. ~:rr [ ( t X - J a ) ( )( f\ • a) i" ( .p'( • f b ) ( '(rtf" b )) ( 4 -IS ) 

)( e -~ ~.-rr [ ;)( ~ rl + .J.'{ n..,.] 

The more specific cases of interest are when the transform 

lens is centered on the system axis ~4-7B or at coordinates 

( x n , y m ) [( 4 -11)] a s p i c t u r e d i n F i g • 31. The c o r r e s p o n d i n g i n-

tensity 

and 
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Further expressions containing the transfer function are 

available by physically shifting the developed hologram. In 

the most general case, shifting the intensity distribution 

given by (4-18) to coordinates <p!q) on the Fourier plane 

would put at one's disposal the expression 

I 3 ( t ~ .. ~pI t ~ ... ~, ) :: H 1\ WI ( *)( - .f q - ~ ~ J t 't - ~ b --J q ) 

~ e ~:LIT((t11 -~q-~q) (xl\-a)+ (~'1--rb- fq) (Yo·h) 

X e -~ ~ 1T [ ( t x .. J p ) ~ h + ( lv"' J q ) J1"1 1 ( 4 -
2

1) 

Specific cases of interest are first, shifting the on­

axis transform intensity distribution [{4-19)) to coordinates 

(xn,ym) on the Fourier plane to give 

and secondly, shifting the specific off-axis transform inten­

s i t y d i s t r i b u t i o n ( ( 4 - 2 0 )] t o t he o r i g i n 

Obviously, there then exist a number of ways to generate 

intensity distributions containing the transfer function. 

In each case presented above, the transfer function is shifted 

and/or accompanied by a multiplicative linear phase factor. 

This diversity will later prove useful for choosing appropriate 

expressions to fulfill the piecewise isoplanatic approximation. 
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b) Desired Fourier plane expressions 

The non-existence of the inverse Fourier transform in 

optical processing is overcome by the recurrence theorem 

n3-24U. As such the Fourier expression of the piecewise iso-

planatic approximation (P.I,A.) must be remassaged. Speci-

fically, we desire on the Fourier plane the inverse transform 

of the P.I.A. in the spatial domain. That is 

~"'[hnm ('A,Y)~g"W~(>t .. X",v .. y'W\)}:Gnm<-S)t,~"' ~of)~"'"' (-1'1.:· tv) 
~ e ~ ,_,. [.f)(.xrt +- ~'i' Ym) <4-24) 

or equivalently 

(4-24) 

Since a rotation of 180° is also acceptable on the output, 

we may also have on the Fourier plane 

(4-25) 

While appearing rather innocent in this context, the 

above considerations become critical in later recording schemes. 

3) Limitations on Recordable Waveforms 

A note is in order concerning the physical limitations 

on waveforms which may be holographically recorded. Film is 

a passive optical element affording a normali~ed attenuation 

between opaque (1) and transparent (0), Recorded intensity 

({2-4)] is then limited by 

(4-25) 
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This restriction, for example, precludes conventional holo-

graphic recording of the transfer functions of the Fourier 

t r a nsf or me r l< 3 -1 0 0 )] o r the i n t e g r a to r F 3 -121)). both of w h i c h 

contain the Dirac Delta, Acceptable synthesis of these fre-

quency domain transmittances necessitates the use of active 

optical elements, 

B) System Recording Employing the Extinction Angle 

In previous holographic considerations, distinction is 

made between the object and reference beams, while in truth, 

the system has no such method of differentiation. This becomes 

self evident when one considers the case of two plane waves, 

Consider Fig. 32a where ~n<fx) ~4-12~, accompanied by a 

multiplicative linear phase term, is beat with a planar re-

ference beam. The former may be thought of as a modulated 

plane wave propagating at an angle 0' with respect to the 

system axis. Employing the labeled parameters in Fig. 32a, 

the film essentially records an intensity distribution given as 

X= 1+ 

Attention is restricted to the third term which contains the 

desired transfer function information: 

(4-27) 

Once developed, the hologram will be illuminated with 

tilted versions of Gn(fx)• As with the transfer function 

notation, Gn(fx) is a generalization of all shifted versions 

of Gn(fx) which may be accompanied by a linear multiplicative 

phase term, 



a) 

b) 

c) 
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Methods of obtaining G11 Hn from a holographic 
recording. 
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-~ ~rt We first illuminate with Gn e (Fig. 32b), With no 

regard to diffraction efficiency, this term multiplies (4-27) 

to give 

- - .. J en 
U6 ": Hn G" e (4-28) 

In a similar fashion, illumination with Gn e;e(\ (Fig, 32c) 

gives 

(4-29) 

Thus, in the most general of terms, there are two ways to 

extract the desired information from the hologram, Note also 

the similarity of the above expressions and the terms of the 

piecewise isoplanatic approximation expressed in the Fourier 

domain ~3-80)]. 

In order to determine how one might employ diffraction 

efficiency to separate adjacent functions on recording and 

reconstruction, a brief detour into the angular incidence 

interval occupied by a waveform is necessitated, 

1) Angular intervals of waveforms 

As stated previously in the thin lens section, a wave-

form may be decomposed into a number of rays. In many cases, 

the propagation directions of these rays fall into an angular 

interval 

(4-30) 

Consider first the transfer function of the non-inverting 

magnifier 

( 4-31) 
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This expression results from a plane wave with a single propa-

gation direction, and may be shown to lie in the zero width 

angular interval given by 

(4-32) 

The transfer function of the Fourier transformer is again 

(4-33) 

Generating the Dirac Delta term by focusing a plane wave to a 

point suggests a value of A1J'n between 90° and, say, 10°, 

depending on the goodness of approximation desired, 

As a third example, consider the transformation of gn(x-xn) 

as depicted in Fig. 33, The end points at xn± A xn on the 

input plane essentially give rise to spherical waves which are 

collimated by the lens, All other points within the input 

strip yield plane waves propagating within the resulting 

angular interval. As such 

1fn + ~v,. -:. a ta.n 

1/)n- A 1fr, : at an 

- ( )C.n+ AX") 
f. 

-(.)( 0 -6Xn) 
; 

(4-34) 

This is true when g (x-x ) extends the entire strip width 
n n 

and is the maximum angular interval. For example, if the 

input was b (x-xn), the result would be a plane wave with 
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The concept of a function's angular interval is now 

employed in determining the diffraction efficiency in general 

volume hologram recordings. 

2) The angular bandpass 

Now consider the diffraction efficiency of a transfer 

function expression with a known angular interval when it is 

holographically recorded with a planar reference beam. One 
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is not as much concerned with the physical diffraction efficiency 

function as with the angular interval over which the diffraction 

efficiency is non-zero. 

Consider again Fig. 32a in which a transfer function ex­

pression is holographically recorded and assume that Hn(fx) 

has a finite angular interval 'tfn -t A 1./Jf\• The resulting re­

corded distribution may be thought of as a plane wave (the 

reference beam) beating with a number of rays lying within the 

transfer function expression's angular interval. For recon­

struction, we are interested in the angular extent of diffraction 

efficiency from reconstruction with plane waves propagating 

in the angular regions about the reference beam, and the trans­

fer function expression's angular intervals. 

Consider first, the illumination of the developed holo­

gram with plane waves about the region of the reference beam, 

noting the monotonic nature of the extinction angle function 

(Fig. 20) I the maximum extinction angle formed by a constant 

reference beam and any variable ray direction in the transfer 

f u n c t i o n ex p r e s s i o n ' s a n g u 1 a r i n t e r v a 1 w o u 1 d r e s u 1 t f r o m 1.f,. -A 1/J,-.,. 
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This extinction angle is denoted by A Gn . As such, the 

angular bandpass for reconstruction about the angle Q' n 

(Fig, 34a) is given as 
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(4-35) 

Next for examination is re-illumination with rays in the 

region of 'f./Jn• Here, roles are mathematically switched in 

that the rays within 'tfn:J:. AC/Jn are now reference beams and 

Q~ is the object beam. The extinction angles formed by 1./ln+Ai.pn 

and 1fn-A?/Jn with Qn will be denoted respectively by 6 Qne and 

A Qnu' Again from the extinction angle curve (Fig. 20) 

(4-36) 

in fact, A Q is the maximum extinction angle formed from nu 

the interval *'lfn :l:. A. 1/)fl . As such, the angular bandpass 

about 'tfn (Fig. 34a) is safely defined as 

(4-37) 

The intervals given in (4-35) and (4-37) are the angular 

bandpasses encountered in reconstruction respectively in 

Figures 34b and 34c ideally yielding UQn and u0n as given in 

(4-28) and (4-29). We wish to choose the best method of re-

construction. Obviously the narrower the passband, the more 

overall number of wavefronts one can store. This rules in 

favor of the reference beam direction reconstruction, The de-

ciding vote is cast by the arbitrariness of the transfer function 
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waveform which might possibly contain a null wave component 

within its angular interval. For this reason, reference beam 

reconstruction is chosen. 

3) Recording and re~onstruction 

We now derive a procedure by which a variant linear 

system may be recorded employing the extinction angle, 

The resulting hologram should then have similar input-output 

relationships to the recorded hologram as prescribed by the 

piecewise isoplanatic approximation. 

In order to formulate a recording scheme, one must first 

specify a reconstruction geometry. The one most obvious is 

pictured in Fig. 35, The input transmittance g(x) is Fourier 

transformed and selectively multiplied by the holographic 

transmittance of the Fourier plane. The desired output then 

appears displaced a distance a from the system axis ~o as not 

to interfere with the zero order wave) where it is reimaged. 

We now examine this reconstruction scheme to see what 

must happen and what we would like to have happen. Dividing 

the input g(x) into isoplanatic regions [(3-70), (3-7lll the 

Fourier plane sees 

(4-37) 

The frequency domain expression for the piecewise isoplanatic 

approximation, shifted a distance a, is (from 3-80)): 

N (t) e"'J~rrPMa: E Hn(~)\) Gn(l)t) e. ·J2.TTt,.<xn+0) 
Go x n (4-38) 
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Comparing the above two expressions dictates that the hologram 

transmittance must be 

H ( ~)t) ::. !; H 1'\ ( ~)!.) e -~ ~ Tr ~ 1\ a 
n 

(4-39) 

Furthermore, recording should be done in such a manner that 

the cross-talk elimination criterion ~3-83tl is fulfilled upon 

reconstruction. 

The angular interval of each transformed strip is given 

by (4-34). In order to align diffraction efficiencies, the 

propagation direction of the n~~ reference beam should be 1Pn· 
For small angles 

(4-40) 

The wave expression for such a wave is 

u~(J')t):. e -J ~rr ~;;x,.. (4-41) 

where a unit amplitude has been chosen for the sake of sim-

plicity. This expression will appear in conjugate form in 

the intensity distribution, Comparison with (4-41) then die-

tates 

(4-42) 

Employing the transform expression generation ideas previously 

discussed, this expression may be realized as in Fig. 36. The 

impulse input appears as the displaced line spread function 

hn(x-xn) on the output. The transforming lens is placed a 

distance a below the system axis, and thus sees the line 

spread function as hn(x-xn-a). The corresponding transform 
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is accordingly that of (4-4~). 

Now to be examined is the fulfillment of the cross-talk 

elimination criterion via diffraction efficiency. The maximum 

extinction angle from a ray component within the angular in-

terval of (4-42) and the nlh reference beam will be denoted AQ~. 

The resulting angular bandpass is again given by (4-35). The 

angular interval of the transformed input region 

[G-I\(£lC)e·~~1T~kX"] must also lie in this band. As such, 

we must record each transfer function in such a manner as to 

have no overlap in adjacent bands. The spacing of these bands 

will be completely dictated by the angular interval of the 

transfer function expression ~4-42D. This in turn will dic­

tate the permissible isoplanatic patch density on the input 

plane. 

As an example, we turn to the Fourier transformer, saving 

the magnifier for implementation purposes. As previously 

mentioned, attempting to conventionally record Dirac Delta is 

not advisable, but all will turn out well, assuming active 

film exists. 

Consider Fig. 37 ip which the recording scheme for the 

Fourier transformer is presented after the more general Fig. 36. 

Assume the plane wave focused to the input point source has a 

height d and focal length f. The point source thus has an 

angular interval of 

(4-43) 
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The system transformer lens sees this point source in its 

front focal plane and collimates it into a plane wave propa-

gating at an angle 

¢, = a t.a n ( "'~/ ~ ) (4-44) 

and with a width d. (All lenses are conveniently assigned 

the same focal length f). This wave is essentially focused 

to a point source in the Fourier plane and is given by 

We are interested in the angular interval of this wave. From 

the geometry of Fig. 37, it can be shown that 

d 
(4-46) 

and 

(4-47) 

From these expressions one may easily extract the desired angular 

interval. 

Suppose, for simplicity's sake, d may be varied to 

always yield A1p,= 15°, The film is assumed to be an active 

version of Kodak 649F plates, and illumination is accomplished 

with a helium neon laser. As such, we may employ the extinction 

angle curves in Fig. 20. The focal length of all lenses will 

be 10 em, A value of 7 em is assigned to a. 

First, a point source is placed directly on the system 

axis yielding an angular interval of 1p0 ± IS 0 

where, from (4-47). t'an ( 1/'o ... l5'
0

) ~ o.1 



or 1fo ~ :l.C o 

The planar reference beam for the zeroth patch from (4-37) 

is incident at an angle of 
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The worst case condition for the extinction angle occurs with 

, a point which lies off of the 

extinction angle plot, From (2-107), the resulting extinc-

tion angle turns out to be 

L\ 9 0 ~ ?.. 1.5° 

From previous arguments, we must now find 1/J1 and +• such that 

(4-48) 

or equivalently 
f•- AB,-:.. :2. 7·5° 

where ~9, is the extinction angle from tj> 1 and 1/1• •A'?.p,: 1/1,-15~ 

While innocent in appearance, this quest is quite complicated, 

involving combinations of four equations [(2-107), (4-40), 

(4-41), and (4-48)]. If one does not assume a constant 61./), 1 

(4-46) enters also. The operation is made much more palatable 

by a trial and error procedure on the extinction angle curve. 

Note the undesirable overlap of the object and reference 

angular bandpasses that occur from only the first transfer 

function. Note, also, that the extinction angles resulting 

from further calibration attempts would also be on the order 

of 30°, limiting the input plane to about three isoplanatic 

patches, 
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Although impractical, the recording of the Fourier trans-

former exposes the limitations which must be placed on the 

angular interval of a linear system's transfer function when 

recorded on a "thin thick" hologram. An obvious solution to 

the large extinction angle problem is employment of a macro-

scopically thick emulsion which is discussed shortly. 

We now focus attention on a system with the smallest of 

all angular intervals: the simple magnifier which can be re-

corded on Kodak 649-F plates employing extinction angle 

techniques. 

4) Implementation of the holographic recording 
of a non-inverting magnifier 

The transfer function of the magnifier is given in (4-31) 

and results from a plane wave propagating at an angle given by 

(4-32). The generalized recording procedure of Fig. 36 is 

again called upon and is pictured for the non-inverting magni-

fier case in Fig. 38. The first two lenses are placed in the 

system to invert the input function. The third system lens 

performs the magnification in the same manner as pictured in 

Fig. 7a. The magnification is governed by the system relation-

ships in (1-19) and (1-20). 

An input of b (x-xn) appears on the output as b (x-Mxn). 

The Fourier transform lens sees this impulse as ~(X·MX.,-O) 
and collimates it to a plane wave propagating at an angle 

( M~ntO) e":. atan ; <4_49 ) 



tN'Itr~$tON 
t..rrt.)SES 

MAGNI P IGol\'iiON 
tENS 

~(X--)(1\v \ ~ 

Fig. 38 Extinction angle recording geometry for the non­
inverting magnifier a.ftf~r the mor<::~ general Fig, 36. 

'· ' 



93 

The corresponding propagation of the reference beam is given 

by (4-40) as 

(4-50) 

As can be seen, the piecewise isoplanatic approximation 

of the simple magnifier results from beating plane waves. 

Consider then Figs. 39a and b in which two beating waves are 

recorded on a single thick emulsion. In the first exposure 

the parameters are 
Qo = 30° 
X = 0 

0 

00 = 0 

From Fig. 20, a rough interpolation of the corresponding 

extinction angle is 

Also, we have from (~-~9), 

Let 

From the second exposure 

X 1 = 2.0 em 

Ql = 50° 

0 = 30° 1 
AGl ~ 2,5° 

M ~ 1 

A rough sketch of the resulting diffraction efficiency 

(angular bandpasses) is offered in Fig. 39c. The optimal case 

for recording the adjacent transfer function would have the 

major lobes of these transfer functions meet at a common point. 
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The recording method used, though not optimal, succeeds in 

illustrating the cross-talk elimination criteria of the piece-

wise isoplanatic approximation via diffraction efficiency. 

Consider now reconstruction. Two point sources are 

placed on the front focal plane of a 5 em focal length lens 

at X0 and x1 . These give rise to plane waves propagating at 

angles ~ 0 and ~' respectively. These beams line up ·exactly 

with the corresponding angular bandpasses in Fig. 39c and are 

thus diffracted at angles Q0 and G1 • This idea is verified 

by the reflection analogy. 

The diffracted beams are now re-imaged by a 10 em lens, 

and appear as point sources separated by 2,3 em on the output, 

The reconstruction geometry is offered in Fig. 40a and a 

photograph of the output is in Fig. 40b. 

Similar results from a variation of this scheme have been 

reported by Burton, Hagler and Krile( 25 ). 

5) Macroscopically thick hologram system 
recording 

Film having an emulsion thickness far greater than the 

illuminating light's wavelength will here be denoted as 

macroscopically thick. That is 

t >> )\ (4-51) 

We here attempt to theorize how such film might be employed 

in system recording. 

For a macroscopically thick hologram, the extinction 

a n g 1 e (< 2 -1 0 7 )) i s e s s e n t i a 11 y z e r o • T h i s r u 1 e s o u t t he p r e -
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Fig, 40 Reconstruction· of the volume hologram made in 
Fig. 38 of two non-inverting magnifier transfer 
functions and the resulting image. 



95 

viously presented recording scheme, since an extremely high 

isoplanatic patch density would result. The scheme's prin-

ciples, however, remain valid. We hopefully need only to make 

appropriate revisions. 

A necessary condition of reconstruction is lignment of 

angular bandpasses and corresponding patch transforms. As 

pictured in Fig. 4la this may be accomplished by using the 

transformed patch region as a reference beam. From the 

geometry, the back focal plane of the transform lens sees 

u < .f)4) : H n ( l)() e .. ~ 2 TT lx (X 1\ ... a) . 

. · " ) e-~2.rr.f)l.xt\ <4-52) 
+ ~ AXn S I t) C. ( 2. A)( n 1".,. 

The intensity term of interest resulting from expansion of 

this expression is 

1;
3
( ~K): :1. 6XnJ..In (~.)sin' (:u.XJ.) e ·~"- rr~~~-53 ) 

Again, the form is not as important as the fact that the 

angular bandpass is ·aligned with the angular interval of the 

transformed isoplanatic region on reconstruction. This occurs 

because the angular intervals of the transformed patch refer-

ence beam and the transformed isoplanatic region are equivalent. 

(Compare Figs. 4la and 4lb). 

On reconstruction, the n!h processed patch appears immedi-

ately to the right of the hologram as 
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Inverse transforming gives 

where the convolving shift term b(x+a) has been dropped for 

clarity of analysis. Note that in the previous scheme, ~(x) 
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a p p e a red i n s t e a d of r e c t LX/ ?.. A X ,J i n t h e a b o v e o u t p u t , a n d we 

had generated the n!h term of the piecewise isoplanatic 

approximation. The substitution of the above expression into 

the convolution integral yields a means by which the conse-

quences of this convolving rect affects the output. Specifically 

As will be seen via an example, outputs tend to be "smoothed". 

This seemingly results from the sine function in (4-53) 

acting as a low pass filter. 

In the three examples to follow, a single isoplanatic 

patch input will be used 

g"n ( x)::. rec. t [ :6iJ 
This reduces (4-54) to 

~ OU"I' ( X ) : h ft ( X ) II f\ [ ·rt.XX;;] 
where the triangle function A<x) is defined as 

; '~ \ ~ 1 
• O'T'I-t e R UJI S &" 
J 

(4-56) 

(4-57) 

(4-58 



Consider first the magnifier, Substituting its line 

spread function n3-90)] into (4-57) gives 
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( 1\ ( )( • M X n) 
g--ouT )():: ~A X n (4-59) 

The piecewise isoplanatic approximation, on the other hand, 

y i e 1 d s (Fig • 4 2 a ) : 

l~ (K): rec t ( ll. ;~:nn) 
(4-60) 

The integrator line spread function ~3-120il substituted 

into (4-57) gives a piecewise quadratic output instead of 

the desired ramp, (Fig. 42b) 

Lastly, the line spread function of the differentiator, 

~3-122U, when substituted into (4-57), gives two rect functions 

instead of the two desired impulses (Fig. 42c), 

The generalized output resulting from bandpass alignment 

in a macroscopically thick hologram is purely speculative and 

is subject to experimental verification. It was here pre-

sented as a possible foundation for future work. 

c) Generalizations of system recording criteria 

We venture here to illustrate how the piecewise iso-

planatic statement of a space variant system might be holo-

graphically implemented by methods other than employment of the 

extinction angle, First, a detailed understanding of the dif-

fraction efficiency method is needed. 

Consider Fig. 43 in which the extinction angle recording 

reconstruction operation is presented in block form, The input 

is transformed and is separated by the angular bandpasses to 
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multiply corresponding transfer functions. The result is 

summed and Fourier transformed to give an inverted version of 

the piecewise isoplanatic approximation on the output, 

In original piecewise isoplanatic approximation considera-

tions, the input plane was divided into isoplanatic patches of 

non-overlapping unit height rectangular pulses, These patches 

may be thought of as constituting a block orthogonal basis set. 

That is 

.. 
where ..t : n, m 
by the ith isoplanatic patch, 

• , 
; m = n ( 4-61) 

refers to the region covered 

(4-62) 

The input function was then expressed in terms of the rect 

functions rr3-71U.Each resulting block orthogonal function was 

convolved with its corresponding line spread function and then 

all resulting functions were added together to yield the piece-

wise isoplanatic approximation to the recorded system's output, 

A re-examination of Fig, 43 will show that this is not the 

case in the extinction angle implementation. The operation of 

separating the isoplanatic regions is done in the Fourier plane. 

This is valid due to the mapping of the block orthogonal input 

regions into block orthogonal angular intervals upon Fourier 

transformation. This process is illustrated in Fig. 44 and was 

essentially discussed previously under angular intervals. Each 

patch transform is selectively multiplied by the corresponding 
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transform function in the aligned angular bandpass. All pro-

cessed patches are then summed and re-imaged. 

The most probable alternative to the angular bandpass is 

individual processing of each isoplanatic patch, A general 

block diagram of such a process is offered in Fig. 45, The 

input function is divided into isoplanatic regions, Fourier 

transformed in some manner, multiplied by a corresponding 

transfer function expression, summed, and inverse transformed. 

The inverse transformation may possibly be done in each channel 

before final summation, depending upon the model, One can 

visualize a complicated optical apparatus by which the patches 

might be separated to be individually processed. 

1) Fly's eye lens system recording 

A matrix of identical lenslets is appropriately called 

the fly's eye lens and has found use primarily in three dimen-

sional image synthesis and optical computing. 

Consider Fig. 46a in which a transmittance g(x) is 

placed in the front focal plane of a fly's eye lens and assume 

the n~ isoplanatic patch is aligned with the nth lenslet. The 

back focal plane essentially sees 

(4-63) 

The further assumption is made that each transfer function is 

"essentially band limited" to the interval 

(4-64) 
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A problem arises immediately. Each patch will be in-

verted on re-imaging. This might be overcome by the con-

figuration in Fig, 46b where three identical fly' eye lenses 

are cascaded, The back focal plane now sees 

(4-65) 

For any reconstruction scheme, one would expect the 

nth isoplanatic spectrum to multiply a transfer function ex-

pression containing Hn(-fx-fn) giving something akin to 

E H " ( ... ~ ~ .. t n) G n ( .. tx "' f n ) (4-66) 
1'1 

A problem now arises which is presently unsolved by the 

author for the general case. That problem is re-imaging. 

Note first that re-imaging by a fly's eye lens for the 

general case would not be permissible, in that one is not 

assured of adequate separation of each processed patch, For 

example, consider the Fourier transformer's piecewise isoplantic 

approximation ~3-lllB. Ea~h patch essentially maps into a 

weighted plane wave which completely covers any pre-imaging 

fly's eye element. 

This, then, suggests employment of a conventional lens 

for re-imaging. Note, however, that the Fourier transform of 

(4-67) 
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To introduce the shift contained in the piecewise isoplanatic 

approximation [<3-77ll we need to convolve with h (x-xn) to give 

~ [hW\()()*-gn()()J eJ::trr~"~* b (X•)(n) 

: ~ [ h~ ( K) <fl. g, ()(-X.,)) e J 2.TT :fn'l<. e •J 271' .foX 'I (4-68) 

The re-imaging problem lies in elimination of the phase terms. 

This might be accomplished by an optical configuration which 

would have the re-imaging lens see all the waveforms shifted 

to the origin in its front focal plane, Note, interestingly, 

the unwanted phase term is equivalent to the conjugate line 

spread function of the Fourier transformer ~3-SBil. 

2) Fly's eye implementation of the magnifier 

Although no descriptive theory has been derived by the 

author for general system recording the fly's eye lens, sue-

cess in producing the piecewise isoplanatic approximation for 

the simple magnifier was accomplished employing fly's eye 

techniques. The system recording, as pictured in Fig. 47a, 

arises directly from the reflection analogy. 

With reference to Fig. 47a an equ.alateral triangle was 

placed at a distance d from a photographic plate. Three separ-

ate exposures were taken of a beam aligned with each of the 

vertices and the hologram's midpoint (point d), The planar 

reference beam was the same in each case. 

Once developed, the three holograms were cut and arranged 

as in Fig. 47b. The reconstruction geometry in Fig. 47c con-

sists of plane wave illumination of each hologram with a normal 

plane wave, which is the equivalent of placing point sources in 



a) Recording geometry 

b) Hologram Placement 

d) Photograph of output of "magnified" pointa 
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a) Recording geometry 

,_ 

b) Hologram Placement 

d) Photogr~ph of output of "magnified" points 

Fig I 4·7 Magnifier system recording:fly's eye techniques. 
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the front focal plane aligned with each of the Fourier trans­

forming fly's eye lenslets. The resulting diffracted wave­

forms were re-imaged by a single lens and photographed result­

ing in Fig. 47c. 

Note that, in this particular scheme, no inversion 

problems were encountered due to the intersection of the three 

diffracted beams, as shown in 47b, 

V, Conclusions 

To this author's mind, employment of the extinction angle 

of the "microscopically" thick hologram for system recording 

leaves much to be desired due to the following reasons: 

1) The sine function's poor mimic of the ideal rectangular 

angular bandpass. 

2) The undesired diffraction from this sine functions 

minor lobes. This constitutes unwanted cross~talk. 

3) The complete dictation of the emulsion thickness on 

the isoplanatic patch calibration on the input plane. 

4) The limitations which must be made on the angular 

intervals of recorded transfer functions. (e.g. 

the Fourier transformer). 

5) Distortion arising from reconstruction of a hologram 

when recorded with steep rays. (See appendix). 

All but the last of these reasons have no proposed method 

of reconcilliation, All but the last, however, may be avoided 

by employment of a macroscopically thick hologram, but a new 

problem arises from the low pass filter generated, As pre-



viously stated, this latter solution is in need of further 

experimental investigation. 
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On the more successful side, the proposition of record­

ing a linear system has been thoroughly investigated. The 

formulated piecewise isoplanatic approximation may be employed 

to determine the consequences of division of a space variant 

system into a number of isoplanatic systems. Foundations for 

system recording schemes employing diffraction efficiency 

have been made. Sufficient and necessary criteria for piece­

wise isoplanatic system recording by any other method is also 

offered. 

Future theoretical work might include a closer inspection 

of the relationship between a linear optical system's degree 

of space variance andasymptotic convergence of the piecewise 

isoplanatic approximation. Once formulated, the relationship 

might be applied to determine the optimal isoplanatic patch 

calibration for a given system. 

Linear system notions herein are obviously not restricted 

to optics, They may be applied to any linear system with 

appropriate changes in terminology. Also, applications to in­

variant synthesis of variant systems are obvious, 
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V. Appendix 

A) Distortion 

A most worrisome encounter in attempts at implementation 

of system recording was distortion of diffracted waveforms. 

An investigation of the film's contribution to this distortion 

has been presented by McCauley, Simpson and Murbach( 26) after 

the ray tracing predictions of Latta< 27 ). 

The distortion from a binary grating formed from plane 

waves propagating at 70° and + 15° were recorded, The dif-

fracted waveforms are pictured in the figures below as a 

function of reconstruction angle, These images diffracted at 

nearly a right angle from the hologram normal and fell in the 

same x-z plane as that defined by the recording beams. Note 

the elongation of the circular input to the left of the 70° 

"bias" and the constriction to the right. 

A rather amusing, yet effective proposal to eliminate 

this type of distortion is application of an inversely dis­

torted input, For example, an elongated ellipsoid output 

would obtain the desired circular nature if one chose an 

appropriately constricted ellipsoid for an input. 

The distortions from the sinusoidal grating seemingly 

become more pronounced as steeper recording plane waves are 

employed, 



Fig. 1+8 Distortion from diffracted 
waveforms from. a binary grating ar:~ a 
function of reconstruction angle. 



Fig. 48 Distortion from diffracted 
waveforms from a binary grating as a 
function of reconstruction angle. 
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B) Fortran generation of extinction angle data 

Offered here is the computer program by which the extinc-

tion angle curves of Fig, 20 from (2-107) were generated. 

Care has been taken to allow data to be generated from any 

set of system parameters <Aa' t, n) and over any angular 

interval desired. The comments are hoped to suffice for 

explanation of the program's workings. ( \. is read in ang­f\a 

stroms, and t in micrometers,) 

C) Fortran generation of the piecewise isoplanatic 

approximation to the Fourier transform of a pulse 

This program was used to generate data for Fig. 23 from 

(3-108). 

D) Photographic development of holograms 

All holograms made in this report were exposed on Kodak 

649F emulsion employing a helium neon laser ().. = 6328A). a 

Film developing was done as follows: 

1) 6 minutes in Kodak D-19 developer. 

2) ~ minute in Kodak indicator stop bath. 

3) 2 minutes in Kodak fixer. 

4) 10 minute rinse in tap water. 

When necessary, the hologram was bleached to decrease 

attenuation of the diffracted wave. 
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8) EXTINCTION ANGL€ 

PROG~AM XTNK( INPUT,UUTPUT,TAPE2=INPUT,TAPE5=0UTPUTl 
kEAL N,LAMA,Lk,Mk,LO,MO 

C ••• EXT!NCTIUN ANGLE CURVES FROM EXTERNAL PARAMATERS ----c-;-;-:tNPur----·--·- ....... ···········-----·-----·----·---·---------·--·----·---·---------

c SYSTEM P~RAMATERS •• N=REFRACTIVE INDEX •• T=EMULSION THICKNESS 
C IN MICKUMfTERS •• LAMA=LASER WAVELENGTH IN AIR 

f\ ~A I) ( 2 , 1 0 J r~ , r , L M1 A 
i, kr:cuRfJif'-ll; 1\14[; ITtt{AfiON PARAMATERS (REF AND UbJ bEAMS) 
C ALL A~GLES 1N DEG~EES 

-----ln:··;fiJ(2 ·; 11 ) T H TAR , U [ L R ·~ N K··-- ---------- ·----- --··----·--------·-· 

Rt:AD(2,1llTHTAO,DEL0 1 NO 
C ••• UAT/\ ECHCJE 

WRITb(5,12)N,T,LAMA 
WRITE(5,13lNR,uELR,THTAR,NU,OELU,THTAO 

C ••• USEFUL CONSTANTS 
-r-=tt:*-:1'\T:bJ,r cr:~J 

kTD=lBO.IPI 
DTR=PII180. 
Ff-=LM1,\•0.00011T 
THTAI=THTAU 

C ••• REFERENCE ANGLE LUOP 

·-----·-·--· 

~---·-uu9Nt\fR =r,· me--··------- ---------·---·-----:----·--·-
~~~~ I T f: ( 5 , l 4 ) N N k , T H T A R 
/>1 R = S I N ( T H T A f{ * f) T R ) 
LR=SQRTIN•N-MR•MRl 

C ••• OBJECf-ANGLE LOOP 
DO 8 ~mO= 1 , NO 

Mu-=-stl\frTHT AUi t1 T K·r·-----
LO=SQRT(N•N-MU*MU) 
IF(LU•MR-MO•LR)2,4 1 ! 

4 WI\!Tr~(5,17) 

CD TO 3 
2 EAT=(FF•LOI(LO•MR-MO•LR) J•RTD 

---s-TrfEXT-=-3-bD.·l 7 ~ 6; 6 --------~---- ··--- --------·-··---- ·--·-··---------------------·----~--·-----

6 EXf=EXT-360. 
GtJ TO 5 

7 WRITE(5 1 l51THTA0 1 EXT 
,-. -···3.THTAO=TIHAO+DELU 

8 CCJf\JTINUE 
-----,-HTlffi =TRT A I---- -- ... ·--· ··--·-···· - ------------.- --·- ··-·· ··--- ........ - --·. -------··-----·- ------·-·---· --····--· ..... -

r IH A I{= T H T A R + D E L R 
9 CONTINUE 

SfCJP 
10 FUI~Iv\/\T(3Fl0.5) 

11 FURMATI2F10.4 1 l3) 
.----12·· FOfUiAT( 1 l S YSTE fvl PARAM ET FRSr; ;r,-~----R E FRAC T IV E -INDEX= 1 , F 10 ;"4; ~~- 1 --EMU __ _ 

l L s I (J!I.J T H I c KNEss= I ' F l 0 • 6 ' I 1"1 I c R 0 MET r:: R s I ' I ' I WAvELENGTH= I , F 1 0 • 4 t 
2 1 1\NGSTRU!Y1S 1 ) 

13 FURMAT(I,2X,I5, 1 REFERENCE ANGLE ITERATIONS OF 1 ,Fl0.6,' DEGREES F 
3 R L J 1·1 1 , F l 0 • 6 , ' lJ E G R E E S 1 , I , 2 X , I 5 , 1 0 H;J E C T AN G L E I T E R A T I 0 N S 0 F 1 , 

· 4 F 1 o • 6 , 1 o E G R t t s F R o ;.1 ' , F 1 o • 6 , 1 o E G R E E s 1 , 1 J 
-------T4rGRHAT ( ///, , .. CURVE·-,·; I 5 ;-,--THT AR-= 1 ; F 10. 6 ,- 1 DEGREES,-; I, 7X; 1 THTAO ,--,-------· 

5llX 1
1 XTNI< 1 l 

15 FORMAT(2(5X,F10.6)) 
17 FORMAT( I ***••O.O**********INFINITE*****') 

ENlJ 

Tt:f~GTW-INCLUD I NG--1 10 DUFFERS··--··-··----·-··--- .. --·--·-··--··-··---·····--···-···-----------------------
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SAMPLE: OUTPUT: 

S Y S T c I~ I) A 1.; Ml [ T f. R S 
REFRACTIVe INDEX= 1.5000 
Ett.ULS!Uf\l THICKf\ltSS= 15.000000 MICROMETERS 
~iAVELt:N::JrH= 632B.OOOO MJGSTKUMS -----·------- -· ----------- ·--- ·- . ----····· ···- -- ----~-------·- ·----------- ------ ··-· --- ··- --··-- .. --- --· --. ·---- ---------------·------·--

§ i~Gr~gGi'!Ci=, i\l~i1LE !TEI~AfHmS UF tO.OOOOOO DEGREES FROM 40.000000 DEGF 
21 OtiJ~CT ANGLE ITERATIONS OF 2.000000 DEGREES FROM -20.000000 DEGf 

-----------------·---------· 

1 fHTAK= 40.000000 DEGREES 
THTAU XTNK 

-20.000000 2.517376 
-1e.ooouoo ~ 2.604333 
-16.000000 2.697229 

------=-t 4-:uocTcuu----·--·-·-2--.-1 9 6 f 1"4-------------------·--···------
-li.oooooo 2.903539 
-10.000000 3._018583 

-H.OOOOUO 3.142872 
-6.000000 3.277615 
-4.0UOOOO 3.424248 

~---=--z·:o-ocr u o a·--------3 :· s s 4. 47 9--- -------· -·-·-·····-·······------------------· -· 

o.oooooo 3.760368 
2.000000 1.954409. 
4.000UOO 4.169657 
6.000000 4.409891 
8.000000 4.679841 -----ft.f:-o·u o uti u ··------- ---- · -,~ . 9 8 5 ·5· u· ~3 --------- ----------------·--- --·---------- -·- -----------------------

12.oo0ooo 5.334598 
14.000000 5.737225 
16.000000 6.206863 
18.000000 6.761Y04 
20.000000 1.428107 

CURVE 2 THTAR= ~0.000000 DEGREES 
lHTMJ XTNK 

-20.000000 2.263101 
-----=To ~-·o-aTm o o ·----·-·----- · 2 • 3 2 9 6 4 2 ··- ·-----·· ···------ --------· ·--·---·-----. ---·----------------

-tt>.oooooo 2.400Q01 
. -1~.000000 2.474531 

-12.ououoo 2.~53632 

-10.0GOllOU 2.A37764 
-8.000000 2.727452 

----~--D--:·o r>·a o (j o----- -- 2 · -~ A. 2 ·3 2 ·() 1 ----·------------ -----·- --- ·- -·------·----------------------·-·· · 

-4.0000UO 2.925998 
-z.ooouuu 3.036360 

0.UUGOOO 3.1~5323 

2.000GOO 3.283Y89 
4.000000 3.423653 

·----n~·uo o o oo -------3 ~ 57 rs n 5 r··-------------··------
~.oooooo 3.742419 

lO.OUOOOO 3.925563. 
12.0UOOOO 4.127960 
14.000000 4.352891 
16.000000 _______ '!_~_6_0_4413_ -----· --- ·-----·······---.-- ---~-----~-. . ·---------· 

e-re. 



C) P. X. A. S '1 NTH c s 1 s '.A sine. (~Ax/~~) 
II JC~ T 384 31131 ROBERT J. MARKS II 
*Llf'IITS T60,F4 
II FORTRA~ MAINLINE PROGRAM 
*LIST SOURCe PROGRAM 
*IOCS(1403 PRINTER,CARDI 

c 
c 
c 
c 
c 
c 

REAL LAI"F,N 
Pl=4.*ATAN( 1.) 

GENERATION OF THE PIECEWISE ISCPLANATIC APPROXIMATED OUTPUT OF A 
FOURIER TRANSFORMER WilH A~ INPUT CF RECT(XI2A). THE TRUE OUTPUT 
IS 2A*SINC(2AX/LAI"F) 

SYSTEM CONSTANTS 
A =HALF WIDTH OF P~LSE INPUT 
LAMF=~AVELENGTH-FOCAL LENGTH PRCCUCT 

READ(2 7 10)A,LAf'IF 
PROGRAM PARAMETERS c 

c 
c 
c 

N K = N U M B E R C F F I T S D E S I R E 0 ____ _ . . __ _ . 
NIT=NUMBER CF ITERATIONS 

·-·-·-~--I 

c 

c 

c 

c 

c 

c 

OX =ITERATION LE~GTH 

REA0(2,11lbX,NIT,NK 
PARAMETER ECHOE 

WRITE(5,12)A,LAI"F,NK,NIT,OX 
NK'TH APPROXI~ATION LCOP 

DG 9 NN=1,NK 
THERE ARE 2K+1 ISOPLANATIC PATCHES 

REA0(2,13)K 
hRITE(5,14lN1\,K 

DELX=HALF WIDTH CF EACH ISOPLANATIC PATCH 
DELX=AI(2.*FLOAT(K)+1.) 
X=O. 

COMPUTATION GF GCUT AT X 
DC 9 r~NN=1,NIT 

SUf'11=l. 
SUMMATION OF THE K TERMS OF GOUT AT X 

DC 8 NNr\N=1,K 
N=FLOAT(NNNNI 
TERM=2.*SlN(4.*PI*N*OELX*OELX/LAMFl*COS(4.*PI*N*DELX*XILAMFll 

1(4.*PI*N*DELX*DELXILAMF) 
SUI"=SUtJ+TER~~ 

8 CONTINUE 
GCUT=Z.*OELX*SUf'l 
~RITE(5,15)X,GOUT 

X=X+OX 
9 CONTINUE 

STOP 
10 FCRf'IAT(2F10.4) 
11 FCRf'IAT(F10.4,I5,5X,!5). 
1 2 F c R ~~A T ( I 1 I I~ p u T E c H c E I I I H A L F p u l s E w I 0 T H = I ' F 5 • 3 ' I 2 X I F 0 c A L L ENG T H­

lWAVELENGTH PRODUCT=' 1 E10.4,/2X 1 !5 1 
1 OUTPUT DATA GROUPS 1 12X,I5, 

2 1 ITERATIONS OF 1 ,F10.5 7 1) 
13 FORMAT!I3l 
1 4 ___ F c R M A T ( I I D AT A G R 0 u P ... ~., _1 5.' ~ -' _j( =_ I ' l 5 ' I 8 X I X I 1 4 X I G 0 u T ' ) 
15 FCRf'IAT(2(5X,Fl0.6)) . ------·-·---- ··-----

END 
~·-----~------- -------~--···· ·-- .. 

i 
I 
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SAMPLE: OUTPVT: 

INPUT tCHOE 
HALF PULSE WIDTH=l.OOO 
FOCAL LENGTH-WAVEL[NGTH PRODUCT=O,lOOOE 01 

6 OUTPUT DATA GRCUPS 
3 1 I T c RAT I 0 N S C F 0 • 1 0 0 0 0 _ _ _ ___ ---·- .. 

DATA GROUP 
X 

o.oooooo 
0.100000 
0.200000 
0.300000 
0.399999 
0.499999 
0.'399999 
0.699999 . . 

0.799999 
0.899999 
0.999Y99 
1.099999 
1.199999 
·1.299999 
1.399999 
1.499999 
1.599998 
1.699998 
1.799998 
1.899998 
1.999998 
2.099998 
2.199998 
2.299998 
2.399998 
2.499998 ·-· 

2.599998 
2.699997 
2.799997 
2.8<.)9997 
2.999997 

uATA GROUP 
X 

o.oooooo 
0.100000 
0.2UCOOO. 
0.300000'' 
0.'399999 
0.499999 
0.599999 
0.699999 
0.799999 
0.899999 

1' K= 1 
GOUT 

1.607088 
~ .. - ·----~---

1.525784 
·- ·~--- -----~- -~- ·-·- -----------

1.295932 
0.957273 
0.568366 
0.196456 

-0.094149 
-0.253204 - -------~--------------~-- . 
-0.253205 
-:0.094152 

0.196452 
0.568361 
0.957268 
1.295928 -· ·--·- -----. -------· 
1.525782 
1.607088 
1.525787 
1.295936 
0.957279 
0.568373 .. ______ ·--~ -· 
0.196463 

-0.094145 
-0.253202 
-0.253206 
-0.094156 

0.196446 .. 
0.568354 
0.957261 
1.295922 
1.525779 
1.607088 

2, K= 2 
GOUT 

1.838628 
1.731431 
1.431913 
1.001114 
0.524759 
0.093360 

-0.218451 
-0.368383 
-0.354741 
-0.214636 

t:TC. 
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