
Neural Network Ensonification Emulation:

Training and Application

Jae-Byung Jung

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

2001

Program Authorized to Offer Degree: Electrical Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Jae-Byung Jung

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

Robert J. Marks II

Reading Committee:

Mohamed A. El-Sharkawi

Warren L. J. Fox

Date:

In presenting this dissertation in partial fulfillment of the requirements for the Doc-

toral degree at the University of Washington, I agree that the Library shall make

its copies freely available for inspection. I further agree that extensive copying of

this dissertation is allowable only for scholarly purposes, consistent with “fair use” as

prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this

dissertation may be referred to Bell and Howell Information and Learning, 300 North

Zeeb Road, Ann Arbor, MI 48106-1346, to whom the author has granted “the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed

copies of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Neural Network Ensonification Emulation:

Training and Application

by Jae-Byung Jung

Chair of Supervisory Committee:

Professor Robert J. Marks II
Electrical Engineering

This dissertation investigates several modifications and extensions of conventional

neural networks for application to the problem of optimally choosing the adjustable

parameters in a sonar system. In general, neural networks offer several key advan-

tages over other technologies that might be used for this task, including the ability

to learn from examples and the ability to extract information about the underlying

system through neural network inversion. One aspect of this work is the use of a

neural network for emulating a computationally intensive acoustic model. A novel

neural network training technique for varying output node dimension is developed,

allowing a single neural network to be used for different output topologies. Step size

modification for this training technique is also introduced to improve accuracy, con-

vergence time, and the smoothness of the weight space, eventually providing better

generalization. Inversion of neural networks is also investigated in order to solve for

the optimal control parameters given a requested level of sonar performance. In order

to improve inversion accuracy, modular neural networks are designed using adaptive

resonance theory for pre-clustering. In addition, sensitivity of the feed forward layered

perceptron neural network is derived in this work. Sensitivity information (i.e., how

small changes in input layer neurons affect output layer neurons) can be very useful

in both the inversion process and system performance analysis. Finally, the multi-

ple sonar ping optimization problem is addressed using an evolutionary computation

algorithm applied to the results of properly trained neural networks. It searches for

the combination of control parameters over multiple independent sonar pings that

maximizes the combined sonar coverage.

TABLE OF CONTENTS

List of Figures iii

List of Tables vii

Chapter 1: Introduction 1

1.1 Adaptive sonar . 1

1.2 Neural networks and evolutionary algorithms 2

1.3 Organization of dissertation . 3

Chapter 2: Neural Network Training for Varying Output Node Di-

mension 5

2.1 Don’t care training . 6

2.2 Step size modification . 7

2.3 Performance contrast: A sonar example 10

Chapter 3: Inversion of Neural Network 16

3.1 ART2: unsupervised training for clustering 18

3.2 Training comparison with a single network 20

3.3 Inversion of single neural network . 22

3.4 Inversion of ART2 modular networks 28

Chapter 4: Neural Network Sensitivity Analysis 33

4.1 Neural network non-linear sensitivity 34

4.2 Sensitivity analysis for adaptive sonar neural network 37

i

Chapter 5: Team Optimization of Cooperating Systems 41

5.1 Preliminaries . 41

5.2 Set covering problem . 43

5.3 Area coverage with deformable shapes 45

5.4 Maximizing sonar area coverage . 48

Chapter 6: Conclusions 57

6.1 Contributions . 57

6.2 Ideas for future work . 58

Bibliography 59

Appendix A: Sonar data 64

A.1 Sonar data 1 . 64

A.2 Sonar data 2 . 67

ii

LIST OF FIGURES

2.1 The neural network training architecture. 7

2.2 Training performance comparisons with other training algorithms where

pixels below the bathymetry are treated differently. 12

2.3 Test error for don’t care training with and without SSM. Both cases

used EAMSE in Equation 4.8. The results of 5̃%, shown here, are

typical for this problem. 13

2.4 Neural network performance comparison using a testing pattern 1. . . 14

2.5 Neural network performance comparison using a testing pattern 2. . . 15

3.1 Structure of ART2 Neural Network 19

3.2 Basic Architecture of ART2 Pre-clustering and Training 19

3.3 Comparison of RMS Errors. 21

3.4 Sample SE Maps of Testing. 23

3.5 Architecture of neural network inversion (shaded arrows represent clamped

subsets while empty arrows involve iterative searching). 24

3.6 Neural network training and single output pixel inversion. 27

3.7 Multi Input Parameter Inversion and Maximizing Target Area. 29

3.8 Inversion of ART2 Modular Neural Networks (ANN 2 is selected when

the Euclidian distance between the desired output and each cluster’s

centroid is measured in this example). 30

3.9 Multi input parameter inversion and maximizing target area using pre-

clustered training by ART2. 31

iii

4.1 Illustration of the neural network sensitivity analysis at the given op-

erating point ik with respect to the target surveillance output OT . . . 34

4.2 Local gradient at the output node i. 36

4.3 Local gradient at the hidden node j. 36

4.4 Local gradient at the input node k. 37

4.5 Sensitivity analysis for adaptive sonar neural network at a given en-

vironmental situation 1 (the absolute sensitivities of 5 control input

parameters and their output changes when each input was marginally

increased by 2% of the full scale respectively as the rest 23 environ-

mental parameters are fixed). 39

4.6 Sensitivity analysis for adaptive sonar neural network at a given en-

vironmental situation 2 (the absolute sensitivities of 5 control input

parameters and their output changes when each input was marginally

increased by 2% of the full scale respectively as the rest 23 environ-

mental parameters are fixed). 40

5.1 Team optimization of cooperating systems (TOCS) for maximal area

coverage (MAC). The K systems, in response to stimuli generate re-

spective area coverages of {~ak}. These coverages are combined and a
fitness function is evaluated. The fitness provides input to the control

which, in turn, generates changes in the control vectors, {~ck}. 42

5.2 Illustration of the set covering problem. 43

5.3 Illustration of a translatable, rotatable rectangle with adaptive aspect

ratio. 44

5.4 Coverage of an irregular shape with K = 5 rectangles of equal area. . 45

iv

5.5 Snapshots of the process of coverage of a circle with K = 2 equal area

rectangles. The entire circle cannot be covered. Each small block is

representative of the coverage of circular target by 2 moving deformable

boxes at the initial generation, 2nd generation, 15th generation, 20th

generation, 35th generation, 50th generation, 587th generation, 630th

generation, and the final generation, respectively, starting from upper

left to lower right block. 47

5.6 Snapshots of MAC using TOCS for 4 boxes covering a circle. Each

small figure is representative of the coverage of circular target by 4

moving deformable boxes at the initial generation, 11th generation,

19th generation, 24th generation, 58th generation, 109th generation,

243rd generation, 5628th generation, and the final generation, respec-

tively, starting from upper left to lower right block. 48

5.7 MAC by TOCS as applied to sonar. The vector of environmental pa-

rameters, ~e, is fixed. For the given environmental parameters, the

combination of control vectors, {~ck | 1 ≤ k ≤ K}, giving a combi-
nation maximal area of ensonification are desired. The control vector

contains the parameters to be varied. The overall fitness value is equal

to the area covered by the ensonification. A generic genetic algorithm

is used to perform the search over the K vectors. 51

5.8 Population of genetic algorithm for sonar ping coverage optimization. 53

5.9 Fitness function convergence using different probabilities of crossover

and mutation. 54

5.10 Modular Maximal Area Coverage Using a Neural Network Bank for

Multiple Sonar Ping Problem (Best 4 different sonar pings contribute

the maximal coverage after the convergence of GA fitness evaluations) 55

v

5.11 an experiment with SE map of sonar data 1. Best 2 sonar control sets

are searched through the genetic algorithm to maximize the combined

sonar coverage. 56

A.1 A sample SE map. 66

A.2 A sample TL map. 66

A.3 A sample SE map - simplfied version. 67

vi

LIST OF TABLES

3.1 Training of ART2 pre-clustered data sets. 20

3.2 Training of a single neural network. 21

A.1 Environmental and control parameters used as inputs to train the

neural network. 65

A.2 Environmental and control parameters used as inputs to train the

neural network - simplified version. 67

vii

ACKNOWLEDGMENTS

First, I would like to acknowledge that this work is supported by the Office of Naval

Reserach.

I would like to express my sincere thanks and deepest appreciation to my advisor,

Professor Robert J. Marks II, for his support and guidance throughout my studies and

during the writing of this dissertation. This work would never have been completed

without him.

I would also like to offer a special thanks to Professor Mohamed A. El-Sharkawi for

the insightful comments and the solid guidance, without which this work would not

be the same. Also, thank you to Professor Warren L. J. Fox for all the advice and

helpful comments.

I would further like to offer a gratitude to my previous advisor, Il-Hong Suh, at

Hanyang University in Korea for his thoughtful criticism and advice that helped

build in-depth foundation of the course of my research.

I want to thank all of the members of Applied Physics Lab at the University of

Washington, who were so generous in their support at various stages of this study.

Especially, many thanks to Robert Miyamoto, Warren Fox, Greg Anderson, Chris

Eggen, and Megan Hazen for their helpful comments and feedbacks along the way.

viii

I wish to thank my colleagues of the Computational Intelligence Applications Lab-

oratory at the University of Washington for sharing my memory and all the helpful

feedbacks.

I cannot thank my parents enough for providing emotional, physical and mental nour-

ishment throughout the years as well as the advice that helped set the course I am

currently taking in life.

Finally, but most importantly, I would like to appreciate my wife, Kyung-Ja Shin, for

her patience, understanding and encouragement throughout the long process.

ix

1

Chapter 1

INTRODUCTION

1.1 Adaptive sonar

The objective of this dissertation is to explore sonar system adaptation and characteri-

zation through neural network training, inversion, and sensitivity analysis, and also to

explore optimization techniques utilizing several forms of computational intelligence,

including neural networks and evolutionary algorithms.

In underwater sonar surveillance, it is often required to determine a set (or subset)

of sonar control parameters (such as the waveform to be transmitted or the depth at

which to deploy the sonar) that maximize sonar performance over some part of the

water column. In this work, the surveillance area considered is a two dimensional

vertical slice of the ocean. Performance maps are calculated that show how the

sonar will perform against hypothetical targets located at grid points within this

vertical slice. The actual performance map is dependent on both sonar control and

environmental parameters. A computationally intensive software model is typically

used to emulate the acoustic propagation and scattering that go into determining the

performance map.

For high fidelity acoustic models, however, it takes an enormously long time to

generate even a single performance map, making the emulator not suitable for real

time sonar control. One possible solution for this problem is the use of a neural net-

work for a replacement of the intensive software model. There are, however, significant

challenges in training neural networks in the presence of the huge dimensionality of

2

input-output relationship and varying bathymetry. This work introduces the devel-

opment of a neural network training algorithm for this problem. The trained neural

networks can then be used for inverting desired sonar performance to the optimal con-

trol parameters, and for determining sensitivity of performance to the various control

and environmental parameters.

1.2 Neural networks and evolutionary algorithms

Neural networks offer several key advantages over conventional computing techniques

that make them an excellent candidate for highly complex, nonlinear problems in-

cluding the abilities as:

• learning from examples without a need for an explicit model of the problem,

• very fast execution time after training,

• performing well in a noisy environment,

• generalizing well,

• adapting to a changing environment via incremental training, and

• extracting useful information after training.

Evolutionary computation refers to a class of algorithms that seek to mimic the

theory of biological evolution. Evolutionary algorithms operate on a population of

potential solutions in parallel. By iteratively performing operations such as selection,

mating and mutation, the population is altered with the intention of improving its

overall fitness. An example of the most commonly used evolutionary algorithm is re-

ferred to as the genetic algorithm [5, 7, 13, 14, 16, 17, 30, 40]. Evolutionary algorithms

are typically used in complex, high dimensional optimization problems. Evolutionary

algorithms offer several advantages over traditional methods including:

3

• The ability to solve highly complex, nonlinear, discontinuous problems,

• The ability to handle complex constraints,

• The ability to scale well to high dimensional problems,

• They are relatively easy to understand and program.

1.3 Organization of dissertation

This dissertation is made up of 6 chapters. Chapters 2-4 provide don’t care training

and sonar performance adaptation and analysis through inversion and nonlinear sen-

sitivity. Chapter 5 provides the maximal area coverage optimization problem using

evolutionary algorithm. Finally, conclusion of this work is discussed in chapter 6.

Additionally, sonar data sets regarding the training, inversion, and optimization in

chapters 2-5 are given in the Appendix. The followings are brief descriptions of the

contents of each of the chapters.

Chapter 2 of this dissertation introduces the development of the training technique

for feed forward multi-layered perceptron neural networks, which allows a single neural

network to train varying output node dimension. It includes don’t care training with

step size modification. Don’t care training technique has irregularly selective weight

update rule and step size modification compensates for the possible over training.

An a posteriori probability that shows how often the weights associated with each

output neuron are updated is obtained from the training data set and is used to evenly

distribute the opportunity for weight update to each output neuron.

In addition to the training, the inversion of the trained neural network is presented

in chapter 3. Gradient-based searching technique is applied to invert the trained

neural network. ART2 unsupervised training is used for clustering in the output

dimension so that several neural networks specializing in different output features are

inverted using gradient descent technique.

4

Chapter 4 presents the neural network sensitivity analysis. It introduces two def-

initions of nonlinear function sensitivity including absolute and relative (logarithmic)

sensitivity. Local gradients are accumulated by chain rule to get the change of surveil-

lance output nodes with respect to the change of control parameters as the operating

point or/and environment is provided.

In chapter 5, an evolutionary algorithm-based approach is applied to maximize

the maximal area coverage described by the best combination of the finite number

of systems, each of which provides local coverage map that needs not be the best

coverage by itself. This modular multi-objective optimization problem accommodates

a bank of trained neural networks. The computational intensity required for searching

through multi dimensional solution space is significantly reduced by the architecture

with the property of distributed modularity and genetic algorithms.

Chapter 6 presents conclusions and ideas for future work that are drawn from this

work.

5

Chapter 2

NEURAL NETWORK TRAINING

FOR VARYING OUTPUT NODE DIMENSION

Considered is the problem of neural network supervised learning when the number

of output nodes can vary for differing training data. This work proposes irregular

weight updates and learning rate adjustment to compensate for this variation. In order

to accommodate for possible over training, an a posteriori probability that shows how

often the weights associated with each output neuron are updated is obtained from the

training data set and is used to evenly distribute the opportunity for weight update

to each output neuron. The weight space becomes smoother and the generalization

performance is significantly improved.

Multilayer perceptions (ML’s) typically use a fixed network topology for all train-

ing patterns in a same data set. We consider the case where the dimension of the

output can vary from training pattern to training pattern. Let the input-target out-

put training data be {~i[n],~t[n] | 1 ≤ n ≤ N}. By different output dimensionality,
we mean the dimensions of the output vector, ~t[n], can vary as a function of n. We

assume the dimension, M [n], of each output is known.

A modular neural networks structure [18][21][22] containing local experts for dif-

ferent dimension-specific training patterns can be applied to this problem. Here, each

component neural network is trained with the subset of data corresponding to a fixed

number of outputs. It becomes increasingly difficult, however, to implement a large

number of neural networks for a large number of experts in the absence of ample train-

ing data. If a single neural network is to be used for the problem the output must be

6

made sufficiently large to handle the longest of target vectors. Let M = maxnM [n].

We define a new output vector set of length M with elements, ~τ [n], as the vector

concatenation

~τ [n] =

 ~t[n]

~tDC [n]

 (2.1)

where the vector ~tDC [n] (the DC is for don’t care), of lengthM−M [n], corresponds to
output values not in the active region. If the nth output is partitioned into Activen

and Don’t Caren, then (2.1) can equivalently be written as

τm[n] = (~τ [n])m

=

 tm[n], m ∈ Activen³
~tDC [n]

´
m
, m ∈ Don’t Caren

(2.2)

One possible approach to use a single neural network is filling ~tDC [n] with arbitrary

constant values, and then training it as if it had a fixed output node dimension us-

ing conventional training. The problem, however, is that undesirously abrupt change

between ~t[n] and ~tDC [n]. This artifact makes the neural network do unnecessary ef-

fort during the training so the overall performance is not expected so good. Another

alternate approach is replacing ~tDC [n] with their adjoining neighborhood in ~t[n] by

extrapolation. Although this smearing method makes more sense than the first ap-

proach, the output dimension is still unnecessarily stretched out to fix the output

dimension. Therefore, a novel approach is required.

2.1 Don’t care training

For don’t care training, the partition of the output, varying for each training data

pair, is that in (2.1). The input representation is augmented. The first component,

~i[n], of the augmentation contains the conventional input training data. The second

7

Figure 2.1: The neural network training architecture.

component,~iDC [n], dubbed the don’t care input, contains characterization and statis-

tics of those output values with a ”don’t care” status. The assignment of each output

neuron to either ~tDC [n] or ~t[n], for example, is determined by~iDC [n]. The dimensions

of ~t[n] and ~tDC [n] vary with n as dictated by ~iDC [n]. The dimensions of ~iDC [n] and

~i[n] are static. The don’t care input is not used as conventional neural network input

data but, rather, is used in

• training to alter learning parameters as a function of n, and

• testing to specify which of the output neurons have don’t care values and there-

fore should be ignored.

2.2 Step size modification

During error back-propagation training, the weights connected to the don’t care out-

put neurons are not updated while other weights are updated with a modified step

size. An empirical a posteriori probability showing how often the weights associated

with each output neuron are updated is obtained from the training data set and

8

is used to give the even amount of opportunity for weight update to every output

neuron. The empirical probability of weight update associated with the mth output

neuron is defined as the ratio of the frequency of weight update associated with the

output neuron m, denoted by fo[m], to the total number of training patterns, N .

po[m] =
fo[m]

N
. (2.3)

It is reasonable to give a large gain to the weight that has less opportunity of correc-

tion. Thus, the step size modification (SSM) is defined by


ηom = η

po[m]
, for active output neurons;

ηom = 0, for don’t care output neurons;

ηh = η, for all other neurons.

(2.4)

where η is a global learning rate used for the weight update of ordinary error back

propagation, ηom is the modified learning rate for the weights of output neuron m and

ηh is the step size for all other weights.

The difference between the target output value, t[n], and the actual output, o[n],

of neuron n included in o[n] at the nth training pattern vector is used to take the

instantaneous sum of squared errors of the network.

A commonly used variation is batch-mode learning. The nth pattern is evaluated

to obtain the derivative terms, ∂E(n)
∂w

, which are summed to obtain the total derivative,

∂E

∂w
=

NX
n=1

∂E(n)

∂w
,

used in batch mode training. For don’t care training, the sum is

∂E

∂w
=

X
tm[n]∈Activen

∂E(n)

∂w
.

9

The step size is modified to η̂om = η̂
po[m]

, for every output neuron m;

η̂hm = η̂, otherwise.
(2.5)

where η̂ is a global learning rate used for the batch-mode weight update of ordinary

error back propagation, η̂om is the modified learning rate for the weights of output

neuron m and η̂h is the step size for all other weights.

The mean squared error (MSE) is obtained by summing E[n] over all n and then

normalized with respect to the set size N [5],[6]. Specifically

E(n) =
1

2

X
m∈ Active

(tm[n]− om[n])2 , (2.6)

and

EMSE =
1

N

NX
n=1

E(n). (2.7)

The MSE, however, is an inappropriate representaion of training error for variable

output dimensionality. For don’t care training, rather, the average mean squared

error (AMSE), representing the mean squared error per each output element, is more

appropriate.

EAMSE =
1

N

NX
n=1

E(n)

fo[n]
. (2.8)

An output neuron, even when sparsely used, is represented equally in the composite

error totally.

10

2.3 Performance contrast: A sonar example

Sonar data corresponding to various environmental and sonar control parameters was

generated from an computationally intensive acoustic model. The ensonification1 map

is arranged in a 75 (range)× 20 (depth) pixel image2. There are therefore (a maximum

of) 1500 = 75 × 20 values for each training data pair output. The bathymetry 3 is

one of the environmental parameters varied. When a neural network is trained with

the ensonification map as output, neurons assigned to pixels lying below the ocean

bottom cannot be ensonified and are therefore classified as don’t care output neurons.

Twenty eight environmental and control parameters, detailed in Table A.1, were used

as inputs. A total of 5000 input-output profiles were used in the training of the neural

network and 3000 were reserved for testing.

The comparison of typical training performance with the algorithms using fixed

arbitrary numbers and smearing method as stated earlier is shown in Figure 2.2. The

top curve corresponds to fixing the don’t care pixels to arbitrary values. The next

plot, corresponding to a sequence of dots, results from replacing column of pixels

under the bathymetry equal to the deepest pixel value in the column. We did this

procedure as smearing. The second plot from the bottom, shown as a broken line,

is for don’t care training without SSM. The bottom solid plot is don’t care training

with SSM. Don’t care training invariably outperforms the other algorithms in terms

of training error as well as convergence time.

Figure 2.3 illustrates the most important characteristics of don’t care training.

When SSM is not used in don’t care training, the testing error starts to increase

at 5000 epochs whereas the other testing error curve with SSM keeps decreasing.

1As measured by the acoustic signal excess or transmission loss. More details about the acoustic
emulation are in Jensen et.al.[8].

2The range is from 0 to 15 km. The depth is from 0 at the surface of the water to 400 m. Sampling
is uniform. See Appendix A for details of sonar data 1.

3The shape of the ocean’s floor. The science of sounding or measuring depths in the ocean.

11

Therefore, it is obvious that the generalization capability is improved by applying

SSM to don’t care training. The testing error curves in Figure 2.3 are very typical

for this problem.

Figures 2.4 and 2.5 shows testing examples where the neural networks and their

absolute errors are compared with the desired values. Points below the bathymetry

correspond to unspecified output nodes ascribed a don’t care status for this specific

pattern. The plot labeled Target is desired ensonification map, NNA is the neural

network trained using arbitrary fixed numbers, NNB is the neural network trained

smearing, and NNC is the neural network trained by the SSM training technique and

the ASME error in Equation 4.8. The output nodes adjoining unspecified region have

big errors in NNA, whereas NNB improved this problem significantly. However, NNB

still has a big error on the rest of the region. If we take a look at maps on the right

hand side column illustrating absolute differences, it is obvious that NNC, in terms

of final accuracy, outperforms the other two techniques.

12

Figure 2.2: Training performance comparisons with other training algorithms where
pixels below the bathymetry are treated differently.

13

Figure 2.3: Test error for don’t care training with and without SSM. Both cases used
EAMSE in Equation 4.8. The results of 5̃%, shown here, are typical for this problem.

14

Figure 2.4: Neural network performance comparison using a testing pattern 1.

15

Figure 2.5: Neural network performance comparison using a testing pattern 2.

16

Chapter 3

INVERSION OF NEURAL NETWORK

Feedforward layered perceptron neural networks seek to capture a system mapping

inferred by training data. A properly trained neural network is not only capable of

mimicking the process responsible for generating the training data, but the inverse

process as well. Neural network inversion procedures seek to find one or more input

values that produce a desired output response for a fixed set of synaptic weights.

There are numerous methods for performing neural network inversion. Multi-element

evolutionary inversion procedures are capable of finding numerous inversion points

simultaneously [8]. Constrained neural network inversion requires that the inversion

solution belong to one or more specified constraint sets. In many cases, iterating

between the neural network inversion solution and the constraint set can successfully

solve constrained inversion problems. Neural network inversion is illustrated by its

use as a tool in query based learning and sonar performance analysis

Inversion of a system that produces appropriate inputs from the given desired

target outputs is useful in many areas. The notion of single-element network inversion

via the gradient approach was first proposed by Williams [41] and later by Linden

and Kinderman [28][29]. Their idea is based on the standard error back-propagation

optimization. As is of the case with many gradient technique, gradient descent error

back propagation is a deterministic algorithm used for energy minimization suffering

from a fundamental weakness : it may get stuck in one of the local minima that are

not globally optimum. But, in many important cases, the selection of different initial

points and/or heuristically adaptive step size usually solve the problem in practice.

Neural network inversion is highly dependent on its training performance because

17

the inversion process needs to use the trained neural network whose weights are

clamped after the network is fully trained. From the iterative inversion process,

the optimal input vector is obtained to satisfy the specified output performance.

When a single training data is divided into smaller data clusters by appropriate

similarity measurement, each cluster can have different characteristics from the others.

Hence, the training of each individual neural network performs better than a single

neural network trained by the entire data set, because each data cluster is composed

of its unique pattern vectors. Thus, the corresponding neural network learns only

similar input-output relationship within the same cluster.

The choice of suitable classifier is very important, but highly problem dependent.

Basically, every classification technique falls into two types based on the existence of

a priori information of the number of clusters. For examples, the K-nearest neighbor

method needs specific a priori information about the actual data class, and SOFM

(Self-Organizing Feature Map) [27] and ART [4][3] are useful when no information

about the actual class is physically available.

Besides, the mixture of experts by Jordan and Jacob [21][22] employs a set of

expert networks and gating network structure. The gating network modulates the

outputs of the expert networks to produce a single modular network output. Both

the gating network and expert networks are typically single layer linear perceptrons

since simple models are desired for localized fits. The mixture of experts can be

viewed as modeling the conditional probability of the desired target output given the

network input from the training data set, and this a posteriori probability is back-

propagated to adjust the weights of both the expert networks and gating network.

hierarchical mixture of experts was proposed to solve nonlinear supervised learning

problems [22]. The architecture is a tree in which the gating networks sit at the

nonterminals of the tree, while the expert networks sit at the leaves of tree. The

output vectors from each expert network proceed up the tree, being blended by the

gating network outputs. However, the computational cost increases as the spawning

18

of the branches from the tree so that more gating and expert networks need to be

trained. For the sonar acoustics analysis problem, pre-clustering of the sonar data set

in the output space using ART2 network and its neural network inversion are shown

to work better than a single neural network.

3.1 ART2: unsupervised training for clustering

ART is widely used unsupervised learning network developed by Carpenter and Gross-

berg in 1987 [4][3]. While ART1 is designed for clustering binary vectors, ART2 ac-

cepts continuous-valued vectors. With ART, the number of clusters is automatically

and adaptively selected using a vigilance parameter that allows the users to control

the degree of similarity of patterns placed on the same cluster.

Figure 3.1 illustrates the basic structure of ART2 neural network composed of

three layers. The F1 layer is an input processing field comprising the input portion

and the interface portion. The F2 layer is a cluster unit that is a competitive layer

in that the units compete in a winner-take-all mode for the right to learn each input

pattern. The third layer is a reset mechanism that controls the degree of similarity

of patterns placed on the same cluster.

In the sonar acoustic data clustering of sonar data 21, every 390 dimensional

output SE vector is provided to the F1 layer of ART2 network and unsupervised

ART2 learning is performed to classify the entire data set into smaller pieces of sub

sets. This process is depicted in Figure 3.2. The SE maps of the entire data set

are, therefore, split into 5 smaller clusters in the output space using the vigilance

parameter.

1See Appendix for details of input output relationship

19

Figure 3.1: Structure of ART2 Neural Network

Figure 3.2: Basic Architecture of ART2 Pre-clustering and Training

20

Table 3.1: Training of ART2 pre-clustered data sets.

Cluster Number of Neural Network Training Average Training

ID Patterns Topology Epochs RMS Error Algorithm

1 499 5-10-30-390 100,000 1.95625 Quick Prop

2 585 5-10-30-390 100,000 1.57272 Quick Prop

3 409 5-10-30-390 100,000 1.69862 Quick Prop

4 286 5-10-30-390 100,000 1.58875 Quick Prop

5 221 5-10-30-390 100,000 1.89689 Quick Prop

3.2 Training comparison with a single network

When the entire data set is used to train a single network without pre-clustering,

a bigger neural network structure is needed. In our application, the structure of 3

hidden layers is found to be the best in terms of training and testing errors. With the

same training parameters and training algorithm, the network training error for single

network is worse than those for ART2 pre-clustered neural networks. Furthermore,

with simpler network topology, ART2 pre-clustered neural networks achieved better

training results as illustrated in table 3.1 and 3.2. The results are shown in Figure 3.3

which illustrates the final RMS error of the training.

To test all the neural networks, 500 testing patterns not used by either neural

networks for trainings are applied to the networks. Figure 3.4 shows some examples

of testing results randomly picked from the testing data set. The values of six patterns

are color coded. The cluster identifications appear on the left most labels on the left

side of the first column. The desired target patterns are in the first column. The

actual testing output patterns from the single network without pre-clustering are

21

Table 3.2: Training of a single neural network.

Number of Neural Network Training Average Training

Patterns Topology Epochs RMS Error Algorithm

2,000 5-12-12-30-390 100,000 2.19659 Quick Prop

Figure 3.3: Comparison of RMS Errors.

22

shown in the second column. The third column has the absolute differences between

the desired target patterns and the testing patterns. The fourth column is for the

testing of ART2 neural networks. The last column includes the absolute differences

between the desired target output maps in the first column and the ART2 testing

output maps in the fourth column.

The testing performance of the single network is generally good, but it can miss

drastic changes or strong stripes in SE map. Especially, the first row of Figure 3.4

depicts distinct features and shows improvement compared with single neural network.

Single network didn’t catch the changing shadow area that has very low SE values

on the right part of SE map, while the ART2 pre-clustered network that fell into

the fourth cluster achieved much better improvement in such locally concentrated

error beside the numerical achievement in average RMS error. This observation is

consistent with several other test patterns.

3.3 Inversion of single neural network

A neural network approach to the inversion is illustrated in Figure 3.5. Once the

neural network is trained, the inverted neural network can provide the control input

parameter that reproduces the desired SE values in a specified surveillance region. In

figure 3.5, the environmental parameters such as wind speed, surface sound speed,

bottom sound speed, and bottom type are assumed fixed and are therefore clamped to

specific values. The target region is a subset of SE map. The remaining region is in the

don’t care category and is allowed to float in the inversion process to arbitrary values

typically constrained to lie within a specified range. The network is inverted to specify

the best sonar settings for a fixed set of environmental parameters using iterative

gradient inversion technique. After the optimal sonar parameter was obtained, the

feed forward neural network is used to evaluate the inversion accuracy.

The gradient approaches for the inversion of multilayer perceptrons make use

23

Figure 3.4: Sample SE Maps of Testing.

24

Figure 3.5: Architecture of neural network inversion (shaded arrows represent clamped
subsets while empty arrows involve iterative searching).

of the well known back-propagation algorithm [12][20][34][37][39][42]. The inversion

performance highly depends on the initial input vector. In practice, if the inversion

error is not within small range and is stuck in a local minima, a new initial input

vector is generated until the desired performance is achieved. When we want to find

a subset of input vector, i, so that minimize the objective function, E(i), which can

be denoted as follows.

E(i) =
1

2
(oi − ti)2 (3.1)

where oi is the neural network output for input I, and ti is the desired output for

input i. The search is initialized with an input vector i0. If itk is the k
th component

of the vector ~it, then gradient descent suggests the recursion

it+1
k = itk − η

∂E

∂itk
(3.2)

25

where η is the step size and t is the iteration index. Assuming a general feed-forward

topology, the iteration for inversion in the equation above can be solved as follows,

∂E

∂ik
= δk, k ∈ I (3.3)

Therefore, the gradient information for any neuron j is,

δj =

ϕ
0(netj)(oj − tj), j ∈ O
ϕ0(netj)

P
m∈H,O δjwjm, j ∈ I,H. (3.4)

where,

I,H,O are the sets of input, hidden, and output neurons respectively,

wjm is the weight value connecting the neuron j to the neuron m,

ϕ0 is the derivative of the jth neuron squashing function,

oj is the activation of the j
th neuron,

tj is the desired output of the j
th neuron, and

netj is the weight sum of the incoming signal to the jth neuron.

Note the neuron derivatives, δj , must be solved in a backward order from output to

input similar to the standard back-propagation algorithm. The inversion performance

is highly dependent on the initial input vector i0. In practice, if the inversion error is

not within small range and looks like being stuck in a local minimum, a new initial

input vector should be generated until the desired performance is achieved.

26

3.3.1 Single element inversion

The subset of outputs to be inverted is confined in one output pixel at a time during

an inversion process while other outputs are floated2. The network can be inverted

to find the best sonar depth to achieve the inversion target SE value that is given as

a clamped value. To illustrate, four environmental parameters are clamped (fixed)

to specific values of wind speed = 7m/s, sound speed at surface = 1500m/s, sound

speed at bottom = 1500m/s, and bottom type = 9(soft mud). The optimum input

control parameter is achieved during the iterative inversion process. This optimum

input is injected into the feed forward neural network to reproduce a SE value that

can be compared with the target SE. Therefore, 390 individual pixel inversions are

performed across the entire output surveillance area, and the reproduced output SE

values are put together in a SE map.

The comparison of the inversion result with the training result is illustrated in

Figure 3.6. Three plots in the left column represent training target SE map, neural

network output map, and absolute errors between two SE maps, respectively. In-

version target SE map, inversion result after 390 individual inversions, and absolute

errors between two SE maps are shown in the right column respectively. In most cases,

the inversion process provided the best sonar depth, and the sonar depth coupled with

clamped environment reproduced the desired SE values.

3.3.2 Multiple parameter inversion and maximizing the target area.

In general, the subset of input parameters to be inverted need not be confined only

a single input parameter. Besides, multiple output SE values can be inverted at a

time. In this experiment, the input parameter set includes wind speed, sound speed

at surface, sound speed at bottom, bottom type and sonar depth. Values of these

parameters are inverted. The output target area is tiled with 2x2 pixel regions. Thus,

2SE maps of sonar data 2 are used in this experiment. See Appendix A for details.

27

Figure 3.6: Neural network training and single output pixel inversion.

28

2x2 output pixel groups are inverted one at a time to find out the best combination

of these 5 input parameters to satisfy the corresponding SE values. This 2x2 kernel

window moves after each inversion until the entire SE map is covered without overlap.

Practically, for a given target area, the exact SE values to which to be inverted are

not known. Rather, the maximum deliverable SE is desired. This can be achieved by

setting the output region of interest to values that are the maximum achievable SE

values as determined by the training data set. In such a case, the objective function

can not always reach zero, because the training was not perfect. This limitation

obtains the maximum values given by the training data set. The minimum value

reached by the error function, however, corresponds to inverted input values that

produce the maximum SE in the output target region.

Three plots on the left column in Figure 3.7 show (1) the inversion target whose

pixels are the maximum achievable SE values, (2) inversion result reproduced from

both four inverted input parameters and a clamped input parameter, and (3) the

absolute error between two maps, respectively. The other column of plots shows the

normalized representation of inversion results when each pixel is normalized from 0

to 1. The actual inversion error appearing in the lower left SE map of Figure 3.7 is

caused primarily by the imperfect training of a huge single neural network. However,

it is obvious that the better the training is the less the inversion error. Inversion of

ART2 modular neural networks that have better training performance is discussed in

the next section.

3.4 Inversion of ART2 modular networks

Because the inversion process makes use of a trained neural network, it is obvious that

the better training performance, the less inversion error. The limitation to reach the

maximum value using a single neural network can be improved when we employ the

inversion of ART2 modular neural networks. Suppose that the original pre-clustering

29

Figure 3.7: Multi Input Parameter Inversion and Maximizing Target Area.

30

Figure 3.8: Inversion of ART2 Modular Neural Networks (ANN 2 is selected when the
Euclidian distance between the desired output and each cluster’s centroid is measured
in this example).

was done in N dimensional hyper space and we have M (≤ N) dimensional desired

output vector to be clustered. Then, N dimensional cluster centroids can be projected

onto M dimensional sub space, and the distance from the desired output vector to

each cluster centroid is measured as a metric. Each cluster has its own centroid.

Euclidian distance between a given vector and each projected centroid can be used

as a metric for computational simplification to select the inversion target network as

illustrated in Figure 3.8.

Figure 3.9 shows the improved inversion result by pre-clustering. Every inversion

scheme is the same as that used in the previous section: which 4 pixels are maximized

by sliding a 2x2 kernel window through the entire SE map in order to get the best

combination of 5 input parameters. According to the location of the 2x2 kernel

window, a neural network is selected by the Euclidian metric for inversion, and it

moves after each inversion until the entire SE map is covered without overlap.

Three plots in the left column of Figure 3.9 show (1) the inversion target whose

31

Figure 3.9: Multi input parameter inversion and maximizing target area using pre-
clustered training by ART2.

32

pixels are the maximum achievable SE values, (2) inversion result which is reproduced

from both four inverted input parameters and a clamped input parameter, and (3) the

absolute error between two maps, respectively. The other column of plots includes the

normalized representation of inversion results when each pixel is normalized from 0 to

1. The actual error in the lower left map of Figure 3.9 is less than that of Figure 3.7,

due to the optimal selection of better neural network.

33

Chapter 4

NEURAL NETWORK SENSITIVITY ANALYSIS

The sensitivity of neural network is investigated in this chapter. Sensitivity analy-

sis is very useful, especially, for the following issues.

• Sensitivity analysis can be used for feature selection as neural network is being
trained or after the training. Also, it is found useful to eliminate superfluous

input parameters, thereby reducing the dimension of the decision space and

increasing speed and accuracy of the system [2].

• It is possible to develop a neural network that can ideally be trained to per-
form high precision computation. However, when implemented in hardware, the

non-linearity occuring in the operation of various network component may prac-

tically make a network impossible to train significantly, depending on the overall

system architecture. The sensitivity analysis procedure is very important in the

investigation of these non-ideal effects. In other words, the sensitivity analysis

of neural network is an important issue from the view point of engineering [23].

• Once neural network is trained, it is very important to determine which of
the control parameters are critical to the decision making at a certain operating

point such that environmental situation or/and control constraints are provided.

This can be done through input parameter sensitivity analysis.

Above all, the last issue of the sensitivity analysis will be mostly studied in this

chapter.

34

Figure 4.1: Illustration of the neural network sensitivity analysis at the given operat-
ing point ik with respect to the target surveillance output OT .

4.1 Neural network non-linear sensitivity

To obtain the sensitivity of the neural network with respect to input parameter I,

let’s define the absolute sensitivity of non-linear function, f , as

S =
∂

∂I
f(I) =

∂O

∂I
. (4.1)

where I is a set of the input parameters and O is a set of the output parameters of

the neural network.

Especially, as depicted in Figure 4.1, at a given operating point ik, the neural

network sensitivity of target output nodes OT which is a subset of O is defined as

δk = S|I=ik,O=OT
=
∂O

∂I

¯̄̄̄
I=ik,O=OT

. (4.2)

Besides, the relative (logarithmic) sensitivity is sometimes useful depending on the

specific problems and defined as

35

Ŝ = ∂ log f(I)
∂ log I

= ∂ logO
∂ log I

= ∂O/∂I
O/I

=
³
O
I

´
S.

(4.3)

Also, at a given operating point ik, the relative sensitivity of target output nodes OT

is defined as

δ̂k = Ŝ|I=ik,O=OT
=
µ
OT
ik

¶
δk. (4.4)

Hence, we will focus on δk, the absolute sensitivity at input node k with respect to

OT , as of now in this chapter due to the representing convenience, because the relative

sensitivity is obtained from δ̂k directly. Again, note that the neuron derivatives must

be solved in a backward order from output to input similar to the standard back-

propagation algorithm. This sensitivity analysis assumes that the neural network is

fully trained and its weights are clamped.

4.1.1 Output node local gradient.

Local gradient of output node i is obtained by taking the gradient of squashing func-

tion ϕ(neti) as illustrated in Figure 4.2.

δi =
∂oi
∂neti

= ϕ0(neti). (4.5)

where

ϕ(neti) = 1/(1 + exp(−neti)), and
ϕ0(neti) = ϕ(neti)(1− ϕ(neti)) for the generic sigmoid squashing function.

36

Figure 4.2: Local gradient at the output node i.

4.1.2 Hidden node local gradient.

Local gradient of hidden node j is obtained in (4.6) by chain rule collecting the

gradient of its squashing function, ϕ(netj), and weighted sum of the output node

local gradients described in (4.5). Figure 4.3 illustrates the procedure.

δj = ϕ
0(netj)

X
i∈O
δiwji. (4.6)

Figure 4.3: Local gradient at the hidden node j.

4.1.3 Input node local gradient.

Local gradient of input node k is obtained in (4.7) by collecting the weighted sum of

the local gradient at hidden nodes in (4.6). Figure 4.4 illustrates the procedure.

37

δk =
X
j∈H

δjwkj. (4.7)

Figure 4.4: Local gradient at the input node k.

Therefore, the local gradient at the input node k with respect to output OT is

obtained as

δk =
X
j∈H

µ
ϕ0(netj)

X
i∈O
ϕ0(neti)wji

¶
wkj. (4.8)

(4.8) is for single hidden layer. However, the sensitivity of the neural network with

multiple hidden layers can also be obtained by attaching the local gradients among

hidden nodes by chain rule.

4.2 Sensitivity analysis for adaptive sonar neural network

Adaptive sonar neural network trained using SE maps of sonar data 1 is used for the

sensitivity analysis. The objective of this analysis is to see how the output surveillance

area, OT , changes sensitively as each of the control parameters changes, provided that

the environmental situation is fixed.

38

Figure 4.5 shows the absolute sensitivities of 5 control input parameters and their

output changes when each input was marginally increased by ∆ik of the full scale

respectively as the rest 23 environmental parameters are clamped. The original SE

map at current operating point is on top of the left hand side column labeled O.

O1, O2, O3, O4, and O5 represent the SE map generated by the marginal change of the

1st, 2nd, 3rd, 4th, and 5th input parameter respectively as,

O1 = f(i1 +∆i1, i2, i3, i4, i5),

O2 = f(i1, i2 +∆i2, i3, i4, i5),

O3 = f(i1, i2, i3 +∆i3, i4, i5),

O4 = f(i1, i2, i3, i4 +∆i4, i5),

O5 = f(i1, i2, i3, i4, i5 +∆i5).

(4.9)

It is more obvious that the 5th control parameter is the most sensitive and the 3rd the

least among the others if you see the absolute error maps on the right side column

of Figure 4.6, which is consistent with the sensitivity chart on top of them. This is

very important information for the operator for decision making at a given situation

whether he/she may take the least sensitive way of control, or vice versa.

Figure 4.6 depicts the sensitivities of 5 control parameters in a different environ-

mental situation as well as a different operating point. In this example, the 3rd control

parameter is the most sensitive among the others.

39

−20

0

20

O

Original SE

20 40 60

10

20

−20

0

20

O
1

20 40 60

10

20 0

0.5

1

|O
 −

 O
1
|

20 40 60

10

20

−20

0

20

O
2

20 40 60

10

20 0

0.5

1
|O

 −
 O

2
|

20 40 60

10

20

−20

0

20

O
3

20 40 60

10

20 0

0.5

1

|O
 −

 O
3
|

20 40 60

10

20

−20

0

20

O
4

20 40 60

10

20 0

0.5

1

|O
 −

 O
4
|

20 40 60

10

20

−20

0

20

O
5

20 40 60

10

20 0

0.5

1

|O
 −

 O
5
|

20 40 60

10

20

1 2 3 4 5
0

5
Sensitivity Plot

Figure 4.5: Sensitivity analysis for adaptive sonar neural network at a given environ-
mental situation 1 (the absolute sensitivities of 5 control input parameters and their
output changes when each input was marginally increased by 2% of the full scale
respectively as the rest 23 environmental parameters are fixed).

40

−20

0

20

O

Original SE

20 40 60

10

20

−20

0

20

O
1

20 40 60

10

20 0

0.5

1

|O
 −

 O
1
|

20 40 60

10

20

−20

0

20

O
2

20 40 60

10

20 0

0.5

1
|O

 −
 O

2
|

20 40 60

10

20

−20

0

20

O
3

20 40 60

10

20 0

0.5

1

|O
 −

 O
3
|

20 40 60

10

20

−20

0

20

O
4

20 40 60

10

20 0

0.5

1

|O
 −

 O
4
|

20 40 60

10

20

−20

0

20

O
5

20 40 60

10

20 0

0.5

1

|O
 −

 O
5
|

20 40 60

10

20

1 2 3 4 5
0

2

4
Sensitivity Plot

Figure 4.6: Sensitivity analysis for adaptive sonar neural network at a given environ-
mental situation 2 (the absolute sensitivities of 5 control input parameters and their
output changes when each input was marginally increased by 2% of the full scale
respectively as the rest 23 environmental parameters are fixed).

41

Chapter 5

TEAM OPTIMIZATION OF COOPERATING SYSTEMS

When a plurality of cooperating solutions are aggregated into a single performance

criterion, the set of the best component solutions is not necessarily the best set of

component solutions [6], i.e. the best team does not necessarily consist of the best

players. The composite effort of the system team, rather, is significantly more impor-

tant than a single player’s individual performance. We consider the case wherein each

player’s performance is tuned to result in maximal team performance for the specific

case of maximal area coverage (MAC). The approach is first illustrated through solu-

tion of MAC by a fixed number of deformable shapes. An application to sonar is then

presented. Here, sonar control parameters determine a range-depth area of coverage.

The coverage is also affected by known but uncontrollable environmental parameters.

The problem is to determine K sets of sonar ping parameters that result in MAC. The

forward problem of determining coverage given control and environmental parameters

is computationally intensive. To facilitate real time cooperative optimization among a

number of such systems, the sonar input-output is captured in a feed-forward layered

perceptron neural network

5.1 Preliminaries

A generic model for the team optimization of cooperating systems (TOCS) is illus-

trated in Figure 5.1. A total of K identical systems are replicated. The kth system

has control input parameters listed in the vector ~ck and corresponding output response

~ak. The outputs are aggregated (e.g. combined). The aggregation is interpreted by a

42

Figure 5.1: Team optimization of cooperating systems (TOCS) for maximal area
coverage (MAC). The K systems, in response to stimuli generate respective area
coverages of {~ak}. These coverages are combined and a fitness function is evaluated.
The fitness provides input to the control which, in turn, generates changes in the
control vectors, {~ck}.

fitness evaluation. The fitness function is used to change {~ck | 1 ≤ k ≤ K} in a man-
ner that increases and ultimately maximizes the fitness measure. We use evolutionary

computing for optimizing although any one of numerous optimization algorithms can

also be used [34].

Although numerous combinatorial optimization problems, such as the packing prob-

lem and set-covering problem [14] can be couched in the TOCS architecture of Fig-

ure 5.1, we investigate its application only to MAC. Such problems appear in many

areas. Consider, for example, the placement of cellular antennas each having area

coverage controlled by tunable parameters. When locations are fixed, finding the

antenna parameters to find MAC is a TOCS problem. Alternately, for antenna de-

ployment, antenna locations can be included in the set of adjustable parameters in

the TOCS. In this paper, a related problem of MAC from a sequence of sonar pings

is considered.

The architecture in Figure 5.1 has the property of distributed modularity im-

43

Figure 5.2: Illustration of the set covering problem.

portant when the component systems require computational intensity. The proce-

dure also has the advantage of straightforward implementation in object-oriented

languages.

5.2 Set covering problem

Set covering problems [1][40][14] are one of the typical combinatorial optimization

problems. Here, we illustrate application to set covering problem as shown in Fig-

ure 5.2. K integers, {~nk | 1 ≤ k ≤ K}, are expressed as their binary equivalents
in the vectors {~bk | 1 ≤ k ≤ K}. The Kronecker union of all the binary vectors
followed by a count of the ones in the union constitutes the step of aggregation. The

result of the aggregation is a scalar, a. To illustrate with toy dimension, let K=4 and

{~nk | 1 ≤ k ≤ K} = {5, 9, 11, 3}, then

h
~b1 | ~b2 | ~b3 | ~b4

i
=



0 1 1 1

1 0 1 0

0 0 0 0

1 1 1 0

 (5.1)

The objective of the problem is to maximize a as a function of ~u while simultaneously

44

Figure 5.3: Illustration of a translatable, rotatable rectangle with adaptive aspect
ratio.

minimizing the input cost as

min c(~u) =
KX
k=1

uknk (5.2)

where the solution vector, ~u, has 1 if column k is in the solution and 0 otherwise

(k = 1, 2, . . . , K) such that uk ∈ {0, 1}, k = 1, 2, . . . ,K. The Kronecker union is

equal to the logical union of elements in each row of this matrix. In this example,

simple observation leads to the solution with the cost of 8 covering 3 rows (a = 3).

Besides, appropriate fitness functions can be formed to satisfy min c(~u) such that

KX
j=1

bijuj ≥ 1, for i = 1, 2, . . . ,K, (5.3)

which ensures each row is covered by at lest one column. Generally, F (~u) = a(~u) +

λ/(c(~u) + 1) allows optimization along the efficient frontier as parameterized by λ.

45

Figure 5.4: Coverage of an irregular shape with K = 5 rectangles of equal area.

5.3 Area coverage with deformable shapes

The MAC by TOCS procedure is applicable to area coverage with deformable shapes.

To illustrate, consider the following instructive problem. K rectangular shapes of

the type shown in Figure 5.3 each have fixed area, A, but can vary in accordance to

aspect ratio rk, rotation angle θk, and central of mass coordinates ~µk = [µxk, µyk]
T .

As is illustrated in Figure 5.4, the problem for a given shape is to situate K

rectangles in such as a manner as to maximally cover the shape. This problem is

straightforwardly implemented using the architecture in Figure 5.1. The kth control

vector is ~ck = [θk, rk, µxk, µyk]
T .

For example, if we assume that the area of every box is fixed to A = lk · wk and
the aspect ratio is defined as rk = wk/lk, then wk and lk are easily acquired as follows.

lk =
A
wk
= A

rk·lk , l2k =
A
rk

wk =
A
lk
= rk·A

wk
, w2

k = A · rk
(5.4)

Thus, the box in Figure 5.3 can be described by 2 rectangle functions as

fxy(θk, rk, µxk, µyk) =
QÃ (x−µxk) cos θk+(y−µyk) sin θk

lk

!

·QÃ (y−µyk) cos θk+(x−µxk) sin θk

wk

! (5.5)

46

where lk =
q
A/rk, wk =

√
A · rk, and Q

(τ) =

(
1, if |τ | ≤ 12;
0, otherwise.

. Therefore, the

aggregation of N different boxes is

gxy(θk, rk, µxk, µyk) =
K[
k

fxy(θk, rk, µxk, µyk) (5.6)

Now, the optimization problem is to search the best combination of K different box

parameter sets so that the process maximizes the coverage determined by the in-

tersection between the aggregation and fixed circular target area, and its evaluation

function is defined as

Evaluation = max(gxy(θk, rk, µxk, µyk) · txy(x0, y0, R)) (5.7)

where txy(x0, y0, R) =
Qµ (x−x0)2+(y−y0)2

2R2

¶
representing the circular target area to be

maximally covered, (x0, y0) is the center of gravity, and R is the radius of circular

target area respectively. Therefore, the system outputs are representations of the

areas covered by the K deformable rectangles. Aggregation is the union of these

areas. The fitness value is the total area corresponding to the intersection of the

aggregation with the target shape.

In order to solve this problem with large state space to be searched, genetic algo-

rithms are used to maximize the evaluation function defined in (5.7). They belong

to the class of probabilistic algorithms, yet they are very different from traditional

random algorithms as they combine elements of directed and stochastic search. The

operation of genetic algorithms commonly begins with a population of potential solu-

tions (chromosomes) of the problem, and undergoes alterations by means of crossover

and mutation, to obtain new generations of solutions which are better than the pre-

vious ones at least.

Examples of the evolution for MAC using TOCS is shown in Figures 5.5 and

5.6 for the cases of two and four rectangles, respectively, covering a circle. In both

47

Figure 5.5: Snapshots of the process of coverage of a circle with K = 2 equal area
rectangles. The entire circle cannot be covered. Each small block is representative of
the coverage of circular target by 2 moving deformable boxes at the initial generation,
2nd generation, 15th generation, 20th generation, 35th generation, 50th generation,
587th generation, 630th generation, and the final generation, respectively, starting
from upper left to lower right block.

48

Figure 5.6: Snapshots of MAC using TOCS for 4 boxes covering a circle. Each small
figure is representative of the coverage of circular target by 4 moving deformable
boxes at the initial generation, 11th generation, 19th generation, 24th generation,
58th generation, 109th generation, 243rd generation, 5628th generation, and the final
generation, respectively, starting from upper left to lower right block.

cases, due to the circle’s symmetry, the number of solutions in the continuous version

of the problem is infinite. A generic genetic algorithm was used in both cases for

optimization.

5.4 Maximizing sonar area coverage

A more interesting problem of MAC using TOCS is in area coverage maximization

by a plurality of sonar pings. Consider a sonar target area defined as a planar region

under water of depth and range. The degree to which a single sonar ping covers a

desired target area is a function of both environment and sonar control parameters.

Given these parameters, computationally intensive emulations evaluate acoustic beam

trajectories to evaluate acoustic signal strength at a plurality of depths and ranges.

49

Relevant environmental parameters include wind speed and bottom type, bathym-

etry, and sound speed profile. The positions of the submerged sonar transmitter and

receiver also affect the ensonification. These two depths, in addition to the sonar ping

parameters, constitute the control parameters of the problem. The sonar parameters

can be controlled. The environmental parameters can’t.

The sonar problem under consideration is this. For a given environment, we desire,

with K pings of the sonar, to observe as large an area in range and depth as possible.

This is equivalent to design of theK ping parameters, {~ck | 1 ≤ k ≤ K}, in Figure 5.1.
The systems in Figure 5.1 are the emulators that, for given environmental conditions,

compute coverage of the sonar. In range and depth, the output of each system in

Figure 5.1 is the signal excess (SE) corresponding to the imposed control parameters.

The SE is akin to a signal to noise ratio and measures the ability to detect a target.

When the SE exceeds a prescribed threshold, coverage is assumed. Otherwise, it is

not. The individual outputs can be thus characterized as binary maps - one for where

coverage is made and zero otherwise.

As in the case of the previous example, aggregation is the union of the binary

maps emerging from each of the systems. The fitness of the control parameters is

equal to the total area covered by the K sonar pings.

The forward problem for each of the K system modules in Figure 5.1 is performed

using Applied Physics Laboratory Acoustic Simulation Software (APLASS) [8]. The

APLASS software is computationally intensive and several minutes are required to

analyze the forward problem: the signal excess in range and depth as a function of

the input environmental and control parameters. In order to speed up the optimiza-

tion, APLASS data was used to train a layered perceptron1. The result is that the

perceptron, after proper training, emulates the same results as APLASS - but much

more quickly. K identical neural networks trained to emulate APLASS are then used

1Details of the training of the neural network using APLASS data is given by Reed [34], Jensen
et. al.[8] and Jung et. al.[9]

50

in the architecture in Figure 5.1.

The resulting optimal control parameters in conjunction with environmental pa-

rameters will maximize the combined coverage and individual coverage maps and

corresponding cumulative maps as is illustrated in Figure 5.7. The outputs from each

bank can be characterized as binary maps - one for where coverage is made and zero

otherwise. As in the case of the previous example, aggregation can be the union of the

binary maps emerging from each of the systems. The fitness of the control parame-

ters is equal to the total area covered by the K pings. The neural networks denoted

as 1 to K in Figure 5.6 are identical but placed in parallel to distinguish different

outcomes. The fitness function is determined by appropriate aggregation procedure

from the K output signal excess (SE) maps (~O1, ~O2, ..., ~OK), which are acquired from

a set of K input vectors whose elements include a sonar control parameter and fixed

environmental parameters. The aggregation procedure translates K output SE maps

into a value that corresponds to the sonar ping coverage to be compared with desired

coverage performance.

The MAC procedure consists of three steps of operations. The maximum SE map,

~Omax, is calculated by taking maximum value in each element of K output SE maps

respectively.

Omax,j =
K
max
k=1

Ok,j (5.8)

where Ok,j is the j
th element of the kth output SE map, ~Ok, and Omax,j is the j

th

element of maximum SE map ~Omax. This maximum SE map is fed into the nonlinear

squashing function. Hence, in lieu of a strict binary representation, every element

in the maximum SE map lies between 0 and 1 based on the specific threshold value

implying whether the SE values are large enough to be considered covered or not2.

2Such representation also allows the use of gradient based search techniques.

51

Figure 5.7: MAC by TOCS as applied to sonar. The vector of environmental parame-
ters, ~e, is fixed. For the given environmental parameters, the combination of control
vectors, {~ck | 1 ≤ k ≤ K}, giving a combination maximal area of ensonification are
desired. The control vector contains the parameters to be varied. The overall fitness
value is equal to the area covered by the ensonification. A generic genetic algorithm
is used to perform the search over the K vectors.

52

The jth element of the maximum SE map, ~O0max, is denoted as

O0max,j =
1

1 + exp−α(Omax,j−θ) (5.9)

where α is a sensitivity parameter of sigmoid slope, and θ is a prespecified soft thresh-

old value3. All elements in the composite maps are summed up to give a global

coverage

A =
NX
j=1

O0max,j (5.10)

Accordingly, the fitness is calculated by normalizing the resulting aggregation with

the desired aggregation, Adesired, which is N .

Fitness =
A

Adesired
(5.11)

For example, assuming 4 sonar pings problem (K=4), a single sonar control para-

meter, sonar depth, is implemented by bit stream with required precision of places

after the decimal point. Thus, the required number of bits for each depth is 17. (See

Figure 5.8).

Several genetic algorithm emulations using different probabilities are performed

and their fitness functions converged in all cases to the same values. The algorithm, for

this problem, was remarkably insensitive to initialization and algorithm parameters.

Convergence for a number of cases is shown in Figure 5.9 as a function of generation.

The resulting optimal sonar control parameters in conjunction with environmental

parameter maximize the combined global sonar ping coverage. Physical limitations

imposed by the fixed environment prohibits 100% of target surveillance area no matter

3Alternately, if strictly binary maps are desired, a hard limiter can be used.

53

Figure 5.8: Population of genetic algorithm for sonar ping coverage optimization.

how many pings are used. Figure 5.10 illustrates coverage maps of best 4 sonar pings

and their contributions (cumulative coverage) as each sonar ping coverage map is

added.

Figure 5.11 shows an experiment with SE map of sonar data 1. Best 2 sonar

control sets are searched through the genetic algorithm to maximize the combined

sonar coverage. The first row contains a set of 5 control parameters which is one

of the best 2 sets, SE map reproduced by that control set coupled with current

environment, and its binary coverage map. The next row has the other control set,

SE map, and its coverage map, respectively. The last row includes the convergence

map, the combined SE map taken by pixel-wise maximum from 2 SE maps above,

and the cumulative coverage map, respectively.

54

Figure 5.9: Fitness function convergence using different probabilities of crossover and
mutation.

55

Figure 5.10: Modular Maximal Area Coverage Using a Neural Network Bank for
Multiple Sonar Ping Problem (Best 4 different sonar pings contribute the maximal
coverage after the convergence of GA fitness evaluations)

56

Figure 5.11: an experiment with SE map of sonar data 1. Best 2 sonar control sets
are searched through the genetic algorithm to maximize the combined sonar coverage.

57

Chapter 6

CONCLUSIONS

6.1 Contributions

This dissertation has made several contributions to the state of the art including:

• A novel neural network learning algorithm for data sets with varying output

dimension is proposed in this paper. The possible memorization problem caused

by irregular weight correction is avoided by employing step size modification.

• A new neural network inversion algorithm was proposed whereby several neural
networks are inverted in parallel. Advantages include the ability to segment the

problem into multiple sub-problems which each can be independently modified

as changes to the system occur over time. The concept is similar to the mixture

of experts problem applied to neural network inversion.

• The sensitivity of neural network is investigated in this work. Sensitivity analy-
sis is very useful. Once neural network is trained, especially, it is very important

to determine which of the control parameters are critical to the decision making

at a certain operating point such that environmental situation or/and control

criteria is given. This can be done through input parameter sensitivity analysis.

• There exist numerous generalizations of the fundamental architecture of maxi-
mal area coverage problem that allow application to a larger scope of problems.

1. The systems need not be replications of each other but can, for example,

specialize in different aspects of appeasing the fitness function.

58

2. The search can be constrained[8]. In Figure 5.1, for example, a constraint

imposing module can be inserted between the search box and the inputs

to the systems. A simple example of constraint imposition is requirement

that each element of each lie within specified operating limits.

6.2 Ideas for future work

Several areas exist for future work including:

• More work could be done for more accurate training of sonar data, especially, if
the decision logic associated with the probability of detection [%] is important

instead of signal excess [dB]. Multi resolution neural networks could help extract

discrete detection maps.

• Data pruning using nearest neighbor analysis before training or query-based
learning using sensitivity analysis during training could improve the training

time or/and accuracy.

• Extensive research for the use of evolutionary algorithms to improve the inver-
sion speed and precision. Particle swarm optimization or genetic algorithms

could be considered for more flexibility on imposing feasibility constraints.

59

BIBLIOGRAPHY

[1] M. Aourid and B. Kaminska. Neural networks for the set covering problem: An

application to the test vector compaction. IEEE World Congress on Computa-

tional Intelligence, 7:4645—4649, 1994.

[2] Jeng-Neng Hwang Avni H. Rambhia, Robb Glenny. Critical input data channels

selection for progressive work exercise test by neural network sensitivity anay-

sis. IEEE International Conference on Acoustics, Speech, and Signal Processing,

2:1097 —1100, 1999.

[3] G.A. Carpenter and S. Grosberg. Art2: Self-organization of stable category

recognition codes for analog input patterns. Applied Optics, 26:4919—4930, 1987.

[4] G.A. Carpenter and S. Grosberg. A massively parallel architecture for a self-

organizing neural network recognition machine. Computer Vision, Graphics,

and Image Processing, 37:54—115, 1987.

[5] Mandira Chakraborty and Uday K. Chakraborty. Applying genetic algorithm

and simulated annealing to a combinatorial optimization problem. International

Conference on Information, Communications and Signal Processing, pages 929—

933, September 1997.

[6] T.M. Cover. The best two independent measurements are not the two best. IEEE

Transactions on Systems, Man and Cybernetics, 4:116—117, January 1974.

[7] Russell Eberhart and James Kennedy. A new optimizer using particle swarm

60

theory. Proceedings of the Sixth International Symposium on Micro Machine and

Human Science, pages 39—43, 1995.

[8] C.A. Jensen et. al. Inversion of feedforward neural networks: Algorithms and

applications. Proceedings of the 1999 IEEE International Conference on Robotics

and Automation, 87:1536—1549, September 1999.

[9] Jae-Byung Jung et. al. Neural network training for varying output node di-

mension. International Joint Conference on Neural Networks, 3:1733—1738, July

2001.

[10] Jae-Byung Jung et. al. Team optimization of cooperating systems: Application

to maximal area coverage. International Joint Conference on Neural Networks,

3:2212—2217, July 2001.

[11] Jenq-Neng Hwang et. al. Query-based learning applied to partially trained mul-

tilayer perceptrons. IEEE Transactions on Neural Networks, 2(1):131—136, Jan-

uary 1991.

[12] Laurene Fausett. Fundamentals of Neural Networks. Prentice Hall, 1994.

[13] D. B. Fogel. Evolutionary computation: toward a new philosophy of machine

intelligence. IEEE Press, 1995.

[14] Mitsuo Gen and Reunwei Cheng. Genetic Algorithms and Engineering Optimiza-

tion. Wiley-Interscience, 2000.

[15] Jr. Gerald W. Davis. Sensitivity analysis in neural net solutions. IEEE Trans-

actions on System, Man, and Cybernetics, 19(5):1078—1082, September 1989.

[16] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, 1998.

61

[17] Jurgen Ihlow Haoxun Chen and Carsten Lehmann. A genetic algorithm for

flexible job-shop scheduling. Proceedings of the IEEE, pages 1120—1125, May

1999.

[18] Bart L.M. Happel and Jacob M.J. Murre. Design and evolution of modular neural

network architecture. Neural Networks, 7(6):985—1004, 1994.

[19] Sherif Hashem. Optimal linear combinations of neural networks. Neural Net-

works, 10(4):599—614, 1997.

[20] Simon Haykin. Neural Networks. The IEEE Press, 1994.

[21] R.A. Jacob and M.I. Jordan. Learning piecewise control strategies in a modular

neural network architecture. IEEE Transactions on System, Man, and Cyber-

netics, 23(2):337—345, 1993.

[22] R.A. Jacob and M.I. Jordan. Hierarchical mixtures of experts and em algorithm.

Neural Computaion, 6:181—214, 1994.

[23] L.C. Jiao and Z. Bao. Neural networks via nonlinear sensitivity approach. IEEE

International Sympoisum on Circuits and Systems, 5:2542 —2545, 1991.

[24] Nandakishore Kambhatla. Dimension reduction by local principal component

analysis. Neural Computation, 9:1493—1516, 1997.

[25] Juha Karhunen and Jyrki Joutsensalo. Generalizations of principal compo-

nent analysis, optimization problems, and neural networks. Neural Networks,

8(4):549—562, 1995.

[26] James Kennedy and Russell Eberhart. Particle swarm optimization. IEEE In-

ternational Conference on Neural Networks, 4:1942—1948, 1995.

62

[27] T. Kohonen. Self-Organization and Associative Memory. Springer Series in

Information Science 8, Heidelberg, 1984.

[28] A. Linden and J. Kindermann. Inversion of multilayer nets. Proceedings of the

International Joint Conference on Neural Networks, 2:425—430, 1989.

[29] A. Linden and J. Kindermann. Inversion of neural networks by gradient descent.

Parallel Computing, pages 277—286, 1990.

[30] Zbugniw Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-

grams. Springer, 1996.

[31] Erkki Oja. Principal component analysis by homogeneous neural networks. IE-

ICE Trans. Inf. and Syst., E75-D(3):366—382, 1992.

[32] Ozcan and Chilukuri K. Mohan. Particle swarm optimization: Surfing the waves.

Proceedings of the 1999 Congress on Evolutionary Computation, 3:1939—1944,

1999.

[33] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-

Hill, 1991.

[34] R.D. Reed and R.J. Marks II. Neural Smithing: Supervised Learning in Feedfor-

ward Artificial Neural Networks. MIT Press, 1999.

[35] Elaine Rich and Kevin Knight. Artificial Intelligence. McGraw-Hill, 1991.

[36] John Salerno. Using the particle swarm optimization technique to train a re-

current neural model. IEEE International Conference on Tools with Artificial

Intelligence, pages 45—49, 1997.

63

[37] M.A. El-Sharkawi Seho Oh, R.J. Marks II. Querry-based learning in a multi-

layered perceptron in the presence of data jitter. Proceedings of the First In-

ternational Forum on Applications of Neural Networks to Power Systems, pages

72—75, 1991.

[38] Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. IEEE

World Congress on Computational Intelligence, pages 69—73, 1998.

[39] Georg Thimm and Emile Fiesler. High-order and multilayer perceptron initial-

ization. IEEE Transactions on Neural Networks, 8(2):349—359, 1997.

[40] Jorng-Tzong Horng Wen-Chih Huang, Cheng-Yan Kao. A genetic algorithm

approach for set covering problems. IEEE World Congress on Computational

Intelligence, 2:569—574, 1994.

[41] R.J. Williams. Inverting a connectionist network mapping by backpropagation

of error. 8th Annual Conference of the Cognitive Science Society, pages 859—865,

1986.

[42] Jacek M. Zurada. Artificial Neural Systems. West Info Access, 1992.

64

Appendix A

SONAR DATA

Applied Physics Laboratory’s acoustic simulation software is computationally very

intensive and even several minutes are required to analyze a forward problem. The

signal excess (SE) map or transmission loss (TL) map in range and depth as a function

of both environmental and control parameters is obtained through the sumulation of

sonar acoustic propagation. Two different versions of sonar data sets were used in

this work. One is more complex and realistic and the other is simplified version.

A.1 Sonar data 1

A surface ship controls the depth to which both transmitter and receiver are sub-

merged, pulse length, band width, and center frequency. The environmental para-

meters include 19 measurable physics (e.g., total noise, target echo duration, wind

speed, volume scattering strength, bottom type and sound speed profile) and 3-point

bathymetry listed in Table A.1.

The surveillance area assigned to the sonar is shown in Figure A.1. For analysis,

the surveillance area is divided into pixels. There are 1500 signal excess values in

[dB] corresponding to 20 depth pixels by 75 range pixels covering, respectively, a

surveillance range of 400m by 15km. A dark region on the bottom is ocean floar

described by 3-point bathymetry where signal excess can not be defined.

Figure A.2 shows a sample transmission loss (TL) map which has exactly same

dimension as signal excess map but different acoustic characteristics.

65

Table A.1: Environmental and control parameters used as inputs to train the neural
network.

No Input parameter No Input parameter

1 Transmitter depth [m] 15 Sound speed at surface

2 Receiver depth [m] 16 Sound speed at 10 [m/s]

3 Pulse Length [s] 17 Sound speed at 20 [m/s]

4 Bandwidth [Hz] 18 Sound speed at 30 [m/s]

5 Center Frequency [Hz] 19 Sound speed at 50 [m/s]

6 Total Noise [dB] 20 Sound speed at 75 [m/s]

7 Target echo duration [s] 21 Sound speed at 100 [m/s]

8 Wind speed [m/s] 22 Sound speed at 125 [m/s]

9 Volume scattering strength [dB/m] 23 Sound speed at 150 [m/s]

10 Bottom type, grain size[mm] 24 Sound speed at 200 [m/s]

11 Bathymetry 1 (depth at sonar) [m] 25 Sound speed at 250 [m/s]

12 Bathymetry 2 (range in the middle) [m] 26 Sound speed at 300 [m/s]

13 Bathymetry 3 (depth in the middle) [m] 27 Sound speed at 400 [m/s]

14 Bathymetry 4 (depth at 15 km) [m] 28 Sound speed at 500 [m/s]

66

Figure A.1: A sample SE map.

Figure A.2: A sample TL map.

67

Table A.2: Environmental and control parameters used as inputs to train the neural
network - simplified version.

No Input parameter

1 Transmitter/Receiver depth [m]

2 Wind speed [m/s]

3 Sound speed at surface [m/s]

4 Sound speed at bottom [m/s]

5 Bottom type, grain size[mm]

A.2 Sonar data 2

In this scenario, both the input and output are simplified. A surface ship now con-

trols only the depth to which both transmitter and receiver are submerged. The

environmental parameters include wind speed, bottom type, sound speed at surface

and sound speed at bottom, which are listed in Table A.2. The surveillance area

assigned to the sonar is shown in Figure A.3. For analysis, the surveillance area is

divided into pixels. There are 390 signal excess values in [dB] corresponding to 13

depth pixels by 30 range pixels covering, respectively, a surveillance range of 200m

by 6km. No ocean floar is included in the surveillance area.

Figure A.3: A sample SE map - simplfied version.

68

VITA

Jae-Byung Jung was born on November 2, 1970 in Seoul, Korea. He attended

Hanyang University and received the B.S. and M.S. degrees in 1993 and 1995 respec-

tively. He has worked for LG Industrial System Company in Korea from 1995-1996 as

an research engineer. In 2001 he earned a Doctor of Philosophy at the University of

Washington in Electrical Engineering. His research interests include computational

intelligence, neural networks, evolutionary programming, fuzzy systems, robotics and

computer vision.

