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Foreword 

Circuits and Devices Magazine is featuring three sequen- 
tial articles on the current status of artificial neural network 
implementation technol- 
ogy. The current offering, 
on  optronic implementa- 
tion of artificial neural net- 
works, is the second entry 
in this trilogy. It is sand- 
wiched between the pre- 
vious overview on analog 
implementation a n d  the 
upcoming survey of digital 
artificial neural networks. 

Nabil H. Farhat, w h o  
penned this overview, is a 
co-author of the 1985 arti- 
cle in Optics Letters and 
follow-up paper in Applied Optics that broke ground for 
modern optical implementation of artificial neural net- 
works. 

Ralvrt 1. Mmks I1 

Introduction 

Neural net models and their analogs offer a brain-like 
approach to information processing and representation that 
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is distributed, nonlinear and iterative. Therefore they are 
best described in terms of phasespace behavior where one 
can draw upon a rich background of theoretical results de- 
veloped in the field of nonlinear dynamical systems. The 
ultimate purpose of biological neural nets (BNNs) is to sus- 
tain and enhance survivability of the organism they reside 
in, doing so in an imprecise and usually very complex en- 
vironment where sensory impressions are a t  best sketchy 
and difficult to make sense of had they been treated and 
analyzed by conventional means. Embedding artificial neural 
nets (ANNs) in man-made systems endows them therefore 
with enhanced survivability through fault-tolerance, ro- 
bustness and speed. Furthermore, survivability implies 
adaptability through self-organization,' knowledge accu- 
mulation and learning. I t  also implies lethality. 

All of these are concepts found at play in a wide range 
of disciplines such as economics, social science, and even 
military science which can perhaps explain the widespread 
interest in neural nets exhibited today from both intellec- 
tual and technological viewpoints. I t  is widely believed that 
artificial neurocomputing and knowledge processing sys- 
tems could eventually have significant impact on infor- 
mation processing, pattern recognition, and control. 
However, to realize the potential advantages of neuro- 
morphic processing, one must contend with the issue of 
how to carry out collective neural computation algorithms 
at speeds far beyond those possible with digital computing. 
Obviously parallelism and concurrency are essential ingre- 
dients and one must contend with basic implementation 
issues of how to achieve such massive connectivity and 
parallelism and how to achieve artificial plasticity, i.e., 
adaptive modification of the strength of interconnections 
(synaptic weights) between neurons that is needed for 
memory and self-programming (self-organiza tion and 
learning). The answers to these questions seem to be com- 
ing from two directions of research. One  is connection ma- 
chines in which a large number of digital central processing 
units are interconnected to perform parallel computations 
in VLSl hardware; the other is analog hardware where a 
large number of simple processing units (neurons) are con- 
nected through modifiable weights such that their phase- 
space dynamic behavior has useful signal processing func- 
tions associated with it .  

Analog optoelectronic hardware implementation of neural 
nets (see Farhat et al. in list of further reading), since first 
introduced in 1985, has been the focus of attention for sev- 
eral reasons. Primary among these is that the optoelectronic 
or photonic approach combines the best of two worlds: the 
massive interconnectivity and parallelism of optics and the 
flexibility, high gain, and decision making capability (non- 
linearity) offered by electronics. Ultimately, it seems more 
attractive to form analog neural hardware by completely 
optical means where switching of signals from optical to 
electronic carriers and vice versa is avoided. However, in 
the absence of suitable fully optical decision making devices 
(e.g., sensitive optical bistability devices), the capabilities 
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of the optoelectronic approach remain quite attractive and 
could in fact remain competitive with other approaches when 
one considers the flexibility of architectures possible with 
it.‘ In this paper we concentrate therefore on the optoelec- 
tronic approach and give selected examples of possible ar- 
chitectures, methodologies and capabilities aimed a t  
providing an appreciation of its potential in building a new 
generation of programmable analog computers suitable for 
the study of non-linear dynamical systems and the imple- 
mentation of mappings, associative memory, learning, and 
optimization functions at potentially very high speed. 

We begin with a brief neural net primer that emphasizes 
phase-space description, then focus attention on the role 
of optoelectronics in achieving massive interconnectivity 
and plasticity. Architectures, methodologies, and suitable 
technologies for realizing optoelectronic neural nets based 
on optical crossbar (matrix vector multiplier) configurations 
for associative memory function are then discussed. Next, 
partitioning an optoelectronic analog of a neural net into 
distinct layers with a prescribed interconnectivity pattern 
as a prerequisite for self-organization and learning is dis- 
cussed. Here the emphasis will be on stochastic learning 
by simulated annealing in a Boltzmann machine. Stochastic 
learning is of interest because of its relevance to the role of 
noise in biological neural nets and because it provides an 
example of a task that demonstrates the versatility of optics. 
We close by describing several approaches to realizing the 
large-scale networks that would be required in analog so- 
lution of practical problems. 

Neural Nets-A Brief Overview 

In this section, a brief qualitative description of neural 
net properties is given. The emphasis is on energy land- 
scape and phase-space representations and behavior. The 
descriptive approach adopted is judged best as background 
for appreciating the material in subsequent sections with- 
out having to get involved in elaborate mathematical ex- 
position. All neural net properties described here are well 
known and can easily be found in the literature. The view- 
point of relating all neural net properties to energy land- 
scape and phase-space behavior is also important and useful 
in their classification. 

A neural net of N neurons has (N’-N) interconnections 
or (N2-N)/2 symmetric interconnections, assuming that a 
neuron does not communicate with itself. The state of a 
neuron in  the net, i.e., its firing rate, can be taken to be 
binary (0, 1)  (on-off, firing or not firing) or smoothly vary- 
ing according to a nonlinear continuous monotonic func- 
tion often taken as a sigmoidal function bounded from above 

- 
‘It is worth mentioning here that recent results obtained in our 

work show that networks of logistic neurons, whose response re- 
sembles that of the derivativc of a sigmoidal function, exhibit rich 
and interesting dynamics, including spurious state-free associative 
recall, and allow the use of unipolar synaptic weights. The net- 
works can be realized in a large number of neurons when imple- 
mented with optically addressed reflection-type liquid crystal spatial 
light modulators. However, the flexibility o f  such an approach 
versus that o f  the photonic approach is yet to be determined. 

“From here on it will be taken as understood that whenever the 
subscripts (i or j) appear, they run from 1 up to N where N is the 
number of neurons in the net. 
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and below. Thus the state of the i-th neuron in the net can 
be described mathematically by 

s, = flu,} i = 1, 2, 3 . .  .N” (1) 

where f{-} is a sigmoidal function and 
N 

U, = 2 WiiSi - 6, + 1, (2) 
I .  I 

is the activation potential of the i-th neuron, Wii is the 
strength or weight of the synaptic interconnection between 
the j-th neuron and the i-th neuron, and Wii=O(i.e., neu- 
rons d o  not talk to themselves). 8, and I, are, respectively, 
the threshold level and external or control input to the i-th 
neuron, thus W+Si represents the input to neuron i from 
neuron i and the first term on  the right side of (2) represents 
the sum of all such inputs to the i-th neuron. For excitatory 
interconnections or synapses, W,, is positive, and it is neg- 
ative for inhibitory ones. For a binary neural net, that is, 
one in which the nurons are binary, i.e., si[O,l], the smoothly 
varying function f{.} is replaced by U{.}, where U is the unit 
step function. When W,, is symmetric, i.e., Wii = W,,, one 
can define (see J. J. Hopfield’s article in list of furthtr read- 
ing) a Hamiltonian or energy function E for the net by 

1 1 
2 ,  I 

= - - c w,is,s, - - 2 ,  1 (6. - IJS, (3) 

The energy is thus determined by the connectivity matrix 
Wii, the threshold level 8; and the external input 1,. For 
symmetric Wi, the net is srable; that is, for any threshold 
level 6, and given “strobed” (momentarily applied) input 
I,, the energy of the net will be a decreasing function of the 
neurons state si of the net or a constant. This means that 
the net always heads to a steady state of local or global 
energy minimum. The descent to an energy minimum takes 
place by the iterative discrete dynamical process described 
by Eqs. (1) and (2) regardless of whether the state update 
of the neurons is synchronous or asynchronous. The min- 
imum can be local or global, as the “energy landscape” of 
a net (a visualization of E for every state s,) is not monotonic 
but will possess many uneven hills and troughs and is 
therefore characterized by many local minima of various 
depths and one global (deepest) minimum. The energy 
landscape can therefore be modified in accordance with Eq. 
(3) by changing the interconnection weights W,, and/or the 
threshold levels Bi a n d o r  the external input I,. This ability 
to ”sculpt” the energy landscape of the net provides for 
almost all the rich and fascinating behavior of neural nets 
and for the ongoing efforts of harnessing these properties 
to perform sophisticated spatio-temporal mappings, com- 
putations, and control functions. Recipes exist that show 
how to compute the W,, matrix to make the local energy 
minima correspond to specific desired states of the net- 
work. As the energy minima are stable states, the net tends 
to settle in one of them, depending on  the initializing state, 
when strobed by a given input. For example, a binary net 
of N = 3 neurons will have a total of 2” = 8 states. These are 
listed in Table 1. They represent all possible combinations 
s,, s2 and s, of  the three neurons that describe the state 
vector s=[s , ,s~ ,s , , ]  of the net. For a net of N neurons the 
state vector is N-dimensional. For N = 3 the state vector can 
be represented as a point (tip of a position vector) in 3-D 
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. ._ . . -, 
IL - NUMBER OF DlETWOUtSHADLE 
LEVELS IN UEURON RESPONSE: Y I 
NU- OF NEUDONSI 

CONTWOUS PHASE.SPACL 
TRAJECTORY FAUING M I W H E R E  
Y61D~ UNIT CUBE 

spice. Tlie cight state vectors listed i n  T.ible I tall then on 
the vcrtices of a unit cube as illustrated i n  Fig. I(a). As the 
net ch,iiigt~s i ts statc, the tip of the state vector jumps from 
vertex to vertex describing a discrete traiectory as depicted 
by thr brcikcn trajectory starting from the tip of thc initial- 
king state vector si and ending at  the tip of the final state 
\sector sI. f o r  any symmctrir connectivity matrix assuined 
f o r  the three-neuron net example, cacli cif  the right states 
in Table I yields a value ot the energy E. A listinfi (it' these 
values for each state represents the energy landscape of the 
net. 

For a nonbinary neural net whose neurons have nor-  
maliLed sigiiioidal response s8e[0,1],i.e., s, \:aries smoothly 
between zero arid one, the phase-space tr+ctory is con- 
tinucws and is always contained within the unit cube a s  
illustrated in Fig. 1(b). The neural net is governed then by 

set of  continuous differential equations rather than the 
discrete update relations of Eqs. ( I )  and (1). Thus onc can 
talk cif  nets with either discrete or  continuous dynamics. 
The above phase-space representation is extendable t o  a 
neural net o f  N neurons where one considers discrete tra- 
jcctciries between the vertices cif a unit hypercube in  N-  
di nreiisional space or a sin oot h trajectory con fined within 
the iinit hyercube for discrete and continuous neural ncts, 
respectively. 

The stable states of the nct, described betow as minima 
ot the energy landscape, correspond to points in the phase- 
spact. towards which the state of the net tcnds to evolve in 

SI S: 5.1 

0 0 0 
0 0 1 
0 1 0 
1 (1 0 
0 (1 1 
I 0 I 
1 1 0 
1 1 1 

time when the net i s  iterated iron1 an  arbitrary initial statc. 
Such stable points are called "attractors" or "limit points" 
of the not, to borrow from twms used in  the description uf 
nonlinear dynamicdl sys;tctns. Attractors in phase-space are 
characterized by lxisins of attraction cii given size and shape. 
Initidizing the nct trotn a state falling within the basin ot' 
attraction of a giwn attractor and thus rcprded  as an  in- 
complete or noisy version of the attractor, leads to <i tra- 
jectory that converges tci  that attractor. This is a many to 
one mapping or an associative search operation that leads 
to an associative memory attribute o f  neural nets. 

Local minima in '111 energy landscape (w attractors in phase- 
spce  can br fixrd by forming W,, in accordance with the 
Hcbhian learning rule (sec both Hehb and Hopfield in  list 
of further rcading), i.e., by taking the sutn of the outer 
products of  the bipolar versions o f  the state vector we wish 
to store in  tlie net 

1 1  

1 (4) 
w,, Ei 2 \ y ~ \ w 3 *  

1,1 I 

wherr 

LANDSCAPE 
LOCAL 
MINIM A GLOBAL MINIMUM 

are M bipolar binary N-vectors we wish to store in the net. 
I'rovided that s,'"" are uncorrelated and 

N MS- 4PnN 

the M stored state s""' will become attractors i n  phase-space 
of the nct or equivalently their associated energies \vi11 be 
local minima in the energy landscape of the net as illus- 
trated conceptually in Fig. 2. As M increases beyond thr 
valur given by (h), the memory is riverloaded, spurious 
local minima are created in addition to the desired ones 
and the p"ahility of correct recall from partial or noisy 
inicirmation deteriorates, compromising operation of the 
net as an associative memory (see R.J. McEliece et al. in 
list of further reading). 

The net can also be formed in such a way as to lead to 
hetero-associative storage and recall firncticw by setting thc 
interronnection weights in accordance with 

111 

where 7'"' and R""' are associdted N-vectors. Networks of 
this nr ic ty  can hc used as feedforward nctworks only and 
this precludes tlie rich dynamics encountered in ieedback 
o r  recurrent networks from being observed. Nevertheless, 
they are usetul for  simple mapping and representation. 
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Energy landscape considerations are useful in devising 
formulas for the storage of sequences of associations or a 
cyclic sequence of associations as would be required for 
conducting sequential or cyclic searches of memories. 

Learning in biological neural nets is thought to occur by 
self-organization where the synaptic weights are modified 
electrochemically as a result of environmental (sensory and 
other (e.g., contextual)) inputs. All such learning requires 
plasticity, the process of gradual synaptic modification. 
Adaptive learning algorithms can be deterministic or sto- 
chastic; supervised or unsupervised. An optoelectronic 
(Boltzmann machine) and its learning performance will be 
described in the section on large scale networks as an il- 
lustration of the unique capabilities of optoelectronic hard- 
ware. 

Neural Nets Classification and Useful 
Functions 

The energy function and energy landscape description 
of the behavior of neural networks presented in the pre- 
ceding sections allows their classification into three groups. 
For one group the local minima in the energy landscape 
are what counts in the network‘s operation. In the second 
group the local minima are not utilized and only the global 
minimum is meaningful. In the third group the operations 
involved d o  not require energy considerations. They are 
merely used for mapping and reduction of dimensionality. 
The first group includes Hopfield-type nets for all types of 
associative memory applications that include auto-associ- 
ative, hetero-associative, sequential and cyclic data storage 
and recall. This category also includes all self-organiring 
and learning networks regardless of whether the learning 
in them is supervised, unsupervised, deterministic, or sto- 
chastic as the ultimate result of the fact that learning, whether 
hard or soft, can be interpreted as shaping the energy land- 
scape of the net so as  to “dig” in it  valleys corresponding 
to learned states of the network. All nets in this category 
are capable of generalization. An input that was not learned 
specifically but is within a prescribed Hamming distance‘ 
to one of the entities learned would elicit, in the absence 
of any contradictory information, an output that is close to 
the outputs evoked when the learned entity is applied to 
the net. Because of the multilayered and partially intercon- 
nected nature of self-organizing networks, one can define 
input and output groups of neurons that can be of unequal 
number (See section on large scale networks). This is in 
contrast to Hopfield-type nets which are fully intercon- 
nected and therefore the number of input and output neu- 
rons is the same (the same neurons define the initial and 
final states of the net). The ability to define input and out- 
put groups of neurons in multilayered nets enables addi- 
tional capabilities that include learning, coding, mapping, 
and reduction of dimensionality. 

The second group of neural nets includes nets that per- 
form calculations that require finding the global energy 
minimum of the net. The need for this type of calculation 

‘The Hamming distance between two binary N-vectors is thc 
number of dements in which they differ. 

“A chaotic attractor is manifested by a phasc-space trajectory 
that is completcly unpredictable and is highly sensitive to initial 
conditions. I t  could ultimately turn out to play a role in cognition. 
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often occurs in combinatorial optimization problems and in 
the solution of inverse problems encountered, for example, 
in vision, remote sensing, and control. 

The third group of neural nets is multilayered with lo- 
calized nonglobal connections similar to those in cellular 
automata where each neuron communicates within Its layer 
with a pattern of neurons in its neighborhood and with a 
pattern of neurons in the next adjacent layer. Multilayered 
nets with such localized connections can be used for map- 
ping and feature extraction. Neural nets can also be cate- 
gorized by whether they are single layered or multilayered, 
self-organizing or nonself-organizing, solely feedforward 
or involve feedback, stochastic or deterministic. However, 
the most general categorization appears to be in terms of 
the way the energy landscape is utilized, or in terms of the 
kind of attractors formed and utilized in its phase-space 
(limit points, limit cycles, or chaotic“). 

Implementations 

The earliest optoelectronic neurocomputer was of the fully 
interconnected variety where all neurons could talk to each 
other. It made use of incoherent light to avoid interference 
effects and speckle noise and also relax the stringent align- 
ment required in coherent light systems. An optical cross- 
bar interconnect (see Fig. 3) was employed to carry out the 
vector matrix multiplication operation required in the sum- 
mation term in Eq. 2.  (see Farhat et al. (1985) in list of 
further reading). In this arrangement the state vector of the 
net is represented by the linear light emitting array (LEA) 
or equivalently by a linear array of light modulating ele- 
ments of a spatial light modulator (SLM), the connectivity 
matrix W,, is implemented in a photographic transparency 
mask (or a 2-D SLM when a modifiable connectivity mask 
is needed for adaptive learning), and the activation poten- 
tial U, is measured with a photodiode array (PDA). Light 
from the LEA is smeared vertically onto the W,, mask with 
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the aid of an anamorphic lens system (cylindrical and 
spherical lenses in tandem not shown in the figure for sim- 
plicity). Light passing through rows of W,, is focused onto 
the PDA elements by another anamorphic lcns system. To 
realim bipolar transmission values in incoherent light, pos- 
itive elements and negt ive  elements ot any row of W,, are 
assigned to two separate subrows of the mask and light 
passing through each subrow is focused onto adjacent pairs 
cif photosites of the I’DA whose outputs are subtracted. hi 
Fig. 3, both the neuron threshold 8, and external input I, 
are injected optically with the aid o f  a pair of LEAS whose 
light is focused on the PDA. Note that positive valued I. is 
assumed here and therefore its LEA clenicnts are shown 
positioned to focus onto positive photosites of the PDA 

This architecture w a s  successfully employed in the iirst 
implementation of a 32 neuron net (scc Farhat et al. (1985) 

36 
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in list of further reading). Fig. 3 also shows a third LEA for 
injection of spatio-temporal noise into the net as would be 
required, for cxaniple, in the implementation o f  a noisy 
threshold scheme for the Boltzmann learning machine to 
be discussed later. The net o f  Fig. 3 behaved as an associ- 
ative memory very much as expected and was tound to 
exhibit correct recovery of three neurons stored from partial 
intornmation and showed robustness with element failure 
(two of its 32 neurons were accidentally disabled, 2 I’DA 
elements broke, and no noticeable degradation in perform- 
ance was observed). 

In the arrangetnent of Fig. 3, the neurons are fully inter- 
connected. To implement learning in a neural net, one needs 
to impart structure to the net, i.e., be able to partition the 
net into distinct input, output, and hidden groups or layers 
of  neurons with a prescribed pattern o f  communication or 
interconnections bptween them which is trot possible in A 

fully interconnrcted or single layer network. A simple but 
effective way of partitioning a fully interconnected opto- 
electronic net into scvcral layers to forni a partially inter- 
connected net is shown in Fig. -t(a). This is done simply by 
blocking certain portions of the W,i matrix. 

In the example shown, the blocked subinntrices serve to 
prevent nciirons from the input group VI and the output 
group V, from talking to each other dirtsctly. They can do 
so only via the hidden or buffer group of neurons H. Fur- 
thermore, neurons within H can not talk to each other. This 
partition scheme enables arbitrary division oi neurons among 
laytvs and can be rapidly set when a progranimable non- 
volatile SLM under computer control is used to implement 
the connectivity weights. Neurons in the input and output 
groups are called visible neurons because they interface 
with the environment. 

The architecture of Fig. 4 can bc used in supervised learn- 
ing where, beginning from an arbitrary W,,, the net is pre- 
sented with an input vector trom the training set ot’vectors 
it is required t o  learn through VI and its convergent output 
state is observed on VI and compared with the desired 
output (association) to produce an error signal which is 
used in turn according to a prescribed formula to update 
the weights matrix. This process of error-driven adaptive 
weights modification is repeated a sufficient numbtv of tinies 
for each vector and all vectors of the training set until in- 
puts evoke the correct desired output or association a t  the 
output. At that tinir the net can be declared as hatping 
captured the underlying structure ot the environment (the 
vectors presented to it) by forming an internal represen- 
tation of the rules governing the.mappings of  input5 into 
the required output associations. 

Many error-driven learning algorithms hiwe been pro- 
p s c d  and studied. The most widely used, the error back- 
projection algorithm (see Werbos, Parker, and Rumelhart 
et al. in list of further reading), is suited for use in feed 
forward multilayered nets that are void of feedback be- 
tween the neurons. The architecture o f  Fig. 4(a) has btwi 
successfully employed in the initial demonstration of su- 
pervised stochastic learning by simulated anncaling. Our 
interest in stochastic learning stemmed from a desire to 
better understand the possible role of noise in  RNNs and 
to find nineins for accelerating the simulated annealing 
process through the use of optics and optoelectronic hard- 
ware. For any input-output association clamped on V I  and 
V2 and bcginning from an arbitrary W,, that could be ran- 
dom, the net is annealed t h r ~ ~ i g h  the hidden neurons by 
subjecting them to optically injected iioisr in the torni of a 
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noise component added to the threshold values of the neu- 
rons as depicted by R,,i in Fig. 3. 

The source of controlled noise used in this implementa- 
tion was realized by imaging a slice of the familiar ”snow 
pattern” displayed on an empty channel of a television 
receiver;whose brightness could be varied under computer 
control, onto the PD array of Fig. 4(a). This produces con- 
trolled perturbation or “shaking“ of the energy landscape 
of the net which prevents its getting trapped into a state 
of local energy minimum during iteration and guarantees 
its reaching and staying in the state of the global energy 
minimum or one close to it. This requires that the injected 
noise intensity be reduced gradually, reaching zero when 
the state of global energy minimum is reached to’ ensure 
that the net will stay in that state. Gradual reduction of 
noise intensity during this process is equivalent to reducing 
the ”temperature” of the net and is analogous to the an- 
nealing of a crystal melt to arrive at a good crystalline struc- 
ture. It has accordingly been called simulated annealing by 
early workers in the field. 

Finding the global minimum of a “cost” or energy func- 
tion is a basic operation encountered in the solution of op- 
timization problems and is found not only in stochastic 
learning. Mapping optimization problems into stochastic 
nets of this type, combined with fast annealing to find the 
state of global “cost function” minimum, could be a pow- 
erful tool for their solution. The net behaves then as  a sto- 
chastic dynamical analog computer. In the case considered 
here, however, optimization through simulated annealing 
is utilized to obtain and list the convergent states at the 
end of annealing bursts when the training set of vectors 
(the desired associations) are clamped to Vi and V,. This 
yields a table or listing of convergent state vectors from 
which a probability Pij of finding the i-th neuron and the j- 
th neuron on at the same time is computed. This completes 
the first phase of learning. The second phase of learning 
involves clamping the V,  neurons only and annealing the 
net through H and V,, obtaining thereby another list of 
convergent state vectors at the end of annealing bursts and 
calculating another probability I“,, of finding the i-th and j- 
th neurons on at the same time. The connectivity matrix, 
implemented in a programmable magneto-optic SLM 
(MOSLM), is modified then by AWii = c(Pii - Yii) computed 
by the computer controller where c is a constant controlling 
the learning rate. This completes one learning cycle or ep- 
isode. The above process is repeated again and again until 
the Wii stabilizes and captures hopefully the underlying 
structure of the training set. Many learning cycles are re- 
quired and the learning process can be time-consuming 
unless the annealing process is sufficiently fast. 

We have found that the noisy thresholding scheme leads 
the net to anneal and find the global energy minimum or 
one close to it in about 35 time constants of the neurons 
used. For microsecond neurons this could be 1O4-1O9 times 
faster than numerical simulation of stochastic learning by 
simulated annealing which requires random selection of 
neurons one at a time, switching their states, and accepting 
the change of state in such a way that changes leading to 
an energy decrease are accepted and those leading to en- 
ergy increases are allowed with a certain controlled prob- 
ability . 

The computer controller in Fig. 4 performs several func- 
tions. I t  clamps the inputhutput neuron3 to the desired 
states during the two phases of learning, controls the an- 
nealing profile during annealing bursts, monitors the con- 
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vergent state vectors of the net, and computes and executes 
the weights modification. For reasons related to the ther- 
modynamical and statistical mechanical interpretation of its 
operation, the architecture in Fig. 4(a) is called a Boltzmann 
learning machine. A pictorial view of an optoelectronic 
(photonic) hardware implementation of a fully operational 
Boltzmann learning machine is shown in Fig. 4(b). This 
machine was.built around a MOSLM as  the adaptive weights 
mask. 

The interconnection matrix update during learning re- 
quires small analog modifications AW,, in W,,- Pixel trans- 
mittance in the MOSLM is binary, however. Therefore a 
scheme for learning with binary weights was developed 
and used in which W,, is made 1 if (Pi, - I”,,) > M  regardless 
of its preceeding value, where M is a constant, and made 
- 1 if (Pi, - Yii) < - M regardless of its preceeding value, 
and is left unchanged if -Mz(P i i -P* , J~M.  This intro- 
duces inertia to weights modification and was found to 
allow a net of N-24 neuron partitioned into 8-8-8 groups 
to learn two autoassociations with 95 percent score (prob- 
ability of correct recall) when the value of M was chosen 
randomly between (fl-.5) for each learning cycle. This score 
dropped to 70 percent in learning three autoassociations. 
However, increasing the number of hidden neurons from 
8 to 16 was found to yield perfect learning (100 percent 
score). 

Scores were collected after 10fl learning cycles by coni- 
puting probabilities of correct recall of the training set. Fast 
annealing by the noisy thresholding scheme was found to 
scale well with size of the net, establishing the viability of 
constructing larger optoelectronic learning machines. In the 
following section two schemes for realizing large-scale nets 
are briefly described. One obvious approach discussed is 
the clustering of neural modules or chips. This approach 
requires that neurons in different modules be able to com- 
municate with each other in parallel, if fast simulated an- 
nealing by noisy thresholding is to be carried out. This 
requirement appears to limit the number of neurons per 
module. to the number of interconnects that can be made 
from it to other modules. This is a thorny issue in VLSI 
implementation of cascadeable neural chips (see Alspector 
and Allen in list of further reading). It provides a strong 
argument in favor of optoelectronic neural modules that 
have no such limitation because communication between 
modules is carried out by optical means and not by wire. 

Large Scale Networks 

To date most optoelectronic implementations of neural 
networks have been prototype units limited to few tens o r  
hundreds of neurons. Use of neurocomputers in practical 
applications involving fast learning or solution of optimi- 
zation problems requires larger nets. An important issue, 
therefore, is how to construct larger nets with the pro- 
grammability and flexibility exhibited by the Boltzmann 
learning machine prototype described. In this section we 
present two possible approaches to forming large-scale nets 
as examples demonstrating the viability of the photonic 
approach. One is based on the concept of a clusterable 
integrated optoelectronic neural chip or module that can 
tw optically interconnected tu form a larger net, and the 
second is an architecture in which 2-D arrangement of neu- 
rons is utilized, instead of the 1-D arrangement described 
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in earlier sections, in order to increase packing density and 
to provide compatibility with ZD sensory data formats. 

Clusterable Photonic Neural Chips 
The concept of a clusterable photonic neural chip, which 

is being patented by the University of Pennsylvania, is ar- 
rived at by noting that when the connectivity matrix is sym- 
metrical, the architectures we described earlier (see Figs. 3 
or 4(a)) can be modified to include internal optical feedback 
and nonlinear “reflection” (optoelectronic detection, am- 
plification, thresholding and light emission or modulation) 
on both sides of the connectivity mask W or nonvolatile 
SLM (e.g., a MOSLM) as  depicted in Fig. 5 (see Farhat 
(1987) in list of further reading). The nonlinear reflector 
arrays are basically retro-reflecting optoelectronic or pho- 
tonic light amplifier arrays that receive and retransmit light 
on the same side facing the MOSLM. 

Two further modifications are needed to arrive at the 
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concept of clusterable integrated optoelectronics or pho- 
tonic neural chips. One is replacement of the LEDs of the 
nonlinear reflector arrays by suitable spatial light modula- 
tors of the fast ferroelectric liquid crystal variety for ex- 
ample, and extending the elements of the nonlinear reflector 
arrays to form stripes that extend beyond the dimensions 
of the connectivity SLM, and sandwiching the latter be- 
tween two such striped nonlinear reflector arrays oriented 
orthogonally to each other a s  depicted in Fig. 5(c). This 
produces a photonic neural chip that operates in an am- 
bient light environment. Analog integrated circuit (IC) 
technology would then be used to fabricate channels of 
nonlinear (thresholding) amplifiers and SLM drivers, one 
channel for each PD element. The minute IC chip thus 
fabricated is mounted as  an integral part on each PDNSLM 
assembly of the nonlinear reflector arrays. Individual chan- 
nels of the IC chip are bonded to the PDA and SLM ele- 
ments. Two such analog IC chips are needed per neural 
chip. The size of the neural chip is determined by the num- 
ber of pixels in the SLM used. 

An example of four such neural chips connected optoe- 
lectmnically to form a larger net by clustering is shown in 
Fig. 5(d). This is achieved by simply aligning the ends of 
the stripe PD elements in one chip with the ends of the 
stripe SLM elements in the other. It is clear that the hybrid 
photonic approach to forming the neural chip would ulti- 
mately and preferably be replaced by an entirely integrated 
photonic approach and that neural chips with the slightly 
different form shown in Fig. 5(e) can be utiliLed to form 
clusters of more than four. Large-scale neural nets pro- 
duced by clustering integrated photonic neural chips have 
the advantage of enabling any partitioning arrangement, 
allowing neurons in the partitioned net to communicate 
with each other in the desired fashion enabling fast an- 
nealing by noisy thresholding to be carried out, and of 
being able to accept both optically injected signals (through 
the PDAs) or electronically injected signals (through the 
SLMs) in the nonlinear reflector arrays, facilitating com- 
munication with the environment. Such nets are therefore 
capable of both deterministic or stochastic learning. Com- 
puter controlled electronic partitioning and loading and up- 
dating of the connectivity weights in the connectivity SLM 
(which can be of the magneto-optic variety or the nonvol- 
atile ferroelectric liquid crystal (FeLCSLM) variety) is as- 
sumed.  This approach to realizing large-scale fully 
programmable neural nets is currently being developed in 
our laboratory, and illustrates the potential role integrated 
photonics could play in the design and construction of a 
new generation of analog computers intended for use in 
neurocomputing and rapid simulation and study of nonlin- 
ear dynamical systems. 

Neural Nets with Two-Dimensional Deployment of 
Neurons 

Neural net architectures in which neurons are arranged 
in a two-dimensional (2-D) format to increase packing den- 
sity and to facilitate handling 2-D formatted data have re- 
ceived early attention (see Farhat and Psaltis (1987) in list 
of further reading). These arrangements involve a 2-D N 
x N state “vector” or matrix s,, representing the state of 
neurons, and a four-dimensional (4-D) connectivity “ma- 
trix” or tensor T,,,, representing the weights of synapses 
between neurons. A scheme for partitioning the 4-D con- 
nectivity tensor into an N x N array of submatrices, each 
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of which has N x N elements, to enable storing it in a flat 
2-D photomask or SLM for use in optoelectronic imple- 
mentation has been developed (see Farhat and Psaltis 1987 
in list of further reading). Several arrangements are possi- 
ble using this partitioning scheme (see Fig. 6). 

In Fig. 6(a), neuron states are represented with a 2-D LED 
array (or equivalently with a 2-D SLM). A two-dimensional 
lenslet array is used to spatially multiplex and project the 
state vector display onto each of the submatrices of the 
partitioned connectivity mask. The product of the state ma- 
trix with each of the weights stored in each submatrix is 
formed with the help of a spatially integrating square pho- 
todetector of suitable size positioned behind each subma- 
trix. The (i-j)th photodetector output represents the activation 
potentials uii of the (i-j)th neurons. These activation poten- 
tials are nonlinearly amplified and fed back in parallel to 
drive the corresponding elements of the LEU state array of 
those of the state SLM. In this fashion, weighted intercon- 
nections between all neurons are established by means of 
SEPTEMBER 1989 

the lenslet array instead of the optical crossbar arrangement 
used to establish connectivity between neurons when they 
are deployed on a line, 

Both plastic molded and glass micro-lenslet arrays can 
be fabricated today in 2-D formats. Class micro-lenslet ar- 
rays with density of 9 to 25 lenslets/mm2 can be made in 
large areas using basically photolithographic techniques. 
Resolution of up  to -50 eplmm can also be achieved. 
Therefore, a micro lenslet array of (100~ 100)mm'. for ex- 
ample, containing easily 10" lenslets could be used to form 
a net of lo1 neurons provided that the required nonlinear 
light amplifiers (photodetector/thresholding amplifierLED 
or SLM driver arrav) become available. This is another in- 
stance where integrated optoelectronics technology can play 
a central role. We have built a 8 x 8 neuron version of the 
arrangement in Fig. 6(a) employing a square LED array, a 
square plastic lenslet array, and a square PDA, each of 
which has 8 x 8 elements in which the state update was 
computed serially by a computer which sampled the acti- 
vation potentials provided by the PDA and furnished the 
drive signals to the LED array. The connectivity weights in 
this arrangement were stored in a photographic mask which 
was formed with the help of the system itself in the follow- 
ing manner: Starting from a set of unipolar binary matrices 
b,, to be stored in the net, the required 4 D  connectivity 
tensor was obtained by computing the sum of the outer 
products of the bipolar binary versions v , ~  = 2b,, - 1. The re- 
sulting connectivity tensor was partitioned and unipolar 
binary quantized versions of its submatrices were displayed 
in order by the computer on the LED display and stored 
at their appropriate locations in a photographic plate placed 
in the image plane of the lenslet array by blocking all ele- 
ments of the lenslet array except the one where a particular 
submatrix was to be stored. This process was automated 
with the aid of a computer controlled positioner scanning 
a pinhole mask in front of the lenslet array so that the 
photographic plate is exposed to each submatrix of the con- 
nectivity tensor displayed sequentially by the computer. 
The photographic plate was then developed and positioned 
back in place. Although time-consuming, this method of 
loading the connectivity matrix in the net has the advantage 
of compensating for all distortions and aberrations of the 
system. 

The procedure fur loading the memory in the system can 
be speeded up considerably by using an array of minute 
electronically controlled optical shutters (switches) to re- 
place the function of the mechanically scanned pinhole. 
The shutter array is placed just in front or behind the lenslet 
array such that each element of the lenslet array has a corre- 
sponding shutter element in register with it. An electron- 
ically addressed ferroelectric liquid crystal spatial light 
modulator (FeLCSLM) (see Spatial Light Modulators and 
Applications in list of further reading) is a suitable candi- 
date for this task because of its fast switching speed (a few 
microseconds). Development of FeLCSLMs is being pur- 
sued worldwide because of their speed, high contrast, and 
bistability which enables nonvolatile switching of pixel 
transmission between two states. These features make 
FeLCSLMs also attractive for use as programmable con- 
nectivity masks in learning networks such as the Boltz- 
mann machine in place of the MOSLM presently in use. 

Because the connectivity matrix was unipolar, an adap- 
tive threshold equal to the mean or energy of the iterated 
state vector was found to be required in computing the 
update state to make the network function as an associative 
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