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Editorial 
Fuzzy Models-What Are They, and Why? 

T is my great pleasure to welcome you to the inaugural I issue of the IEEE TRANSACTIONS ON FUZZY SYSTEMS. 
Many of you are probably quite familiar with the basic ideas 
underlying fuzzy sets and systems that utilize fuzzy models. 
However, there will also be readers who are looking at the 
contents of this issue, wondering what it’s all about. For 
this latter group, the papers in this first issue may seem 
bewildering, for they are quite technical, and none are tutorial 
in nature. Consequently, this preface is divided into two parts. 
Section I contains a brief introduction to the basic ideas of our 
science, in hopes that this glimpse will help you understand 
the articles, but perhaps more importantly, pique your interest 
in fuzzy models. Section I1 gives a short prCcis and historical 
perspective of the field, and how it has led to the creation of 
this journal. 

I. FUZZY MODELS 

Fuzzy sets are a generalization of conventional set theory 
that were introduced by Zadeh is 1965 as a mathematical way 
to represent vagueness in everyday life [l]. The basic idea 
of fuzzy sets is easy to grasp. Suppose, as you approach a 
red light, you must advise a driving student when to apply 
the brakes. Would you say, “Begin braking 74 feet from the 
crosswalk”? Or would your advice be more like, “Apply 
the brakes pretty soon”? The latter, of course; the former 
instruction is too precise to be implemented. This illustrates 
that precision may be quite useless, while vague directions 
can be interpreted and acted upon. Everyday language is 
one example of ways vagueness is used and propagated. 
Children quickly learn how to interpret and implement fuzzy 
instructions (“go to bed about 10”). We all assimilate and use 
(act on) fuzzy data, vague rules, and imprecise information, 
just as we are able to make decisions about situations which 
seem to be governed by an element of chance. Accordingly, 
computational models of real systems should also be able to 
recognize, represent, manipulate, interpret, and use (act on) 
both fuzzy and statistical uncertainties. 

Fuzzy interpretations of data structures are a very natural 
and intuitively plausible way to formulate and solve various 
problems. Conventional (crisp) sets contain objects that satisfy 
precise properties required for membership. The set of num- 
bers H from 6 to 8 is crisp; we write H = {T E R I 6 5 
T 5 S}. Equivalently, H is described by its membership (or 
characteristic, or indicator) function (MF), VLH : R H (0. l}, 
defined as 

The crisp set H and the graph of 7 1 1 ~  are shown in the left 
half of Fig. 1. Every real number ( T )  either is in H or is not. 

Since m~ maps all real numbers T E R onto the two points 
(O,l), crisp sets correspond to two-valued logic: is or isn’t, on 
or off, black or white, 1 or 0. In logic, values of m H  are called 
truth values with reference to the question, “Is T in H?’ The 
answer is yes if and only if VLH(T)  = 1; otherwise, no. 

Consider next the set F of real numbers that are close 
to 7. Since the property “close to 7” is fuzzy, there is not 
a unique membership function for F .  Rather, the modeler 
must decide, based on the potential application and properties 
desired for F ,  what m~ should be. Properties that might seem 
plausible for this F include (i) normality ( m ~ ( 7 )  = I), (ii) 
monotonicity (the closer T is to 7, the closer ~ F ( T )  is to 
1, and conversely), and (iii) symmetry (numbers equally far 
left and right of 7 should have equal memberships). Given 
these intuitive constraints, either of the functions shown in 
the right half of Fig. 1 might be a useful representation 
of F .  m ~ 1  is discrete (the staircase graph), while m F 2  is 
continuous but not smooth (the triangle graph). One can easily 
construct a MF for F so that every number has some positive 
membership in F ,  but we would not expect numbers “far from 
7,” 20 000 987 for example, to have much! One of the biggest 
differences between crisp and fuzzy sets is that the former 
always have unique MF’s, whereas every fuzzy set has an 
infinite number of MF’s that may represent it. This is at once 
both a weakness and a strength; uniqueness is sacrificed, but 
this gives a concomitant gain in terms of flexibility, enabling 
fuzzy models to be “adjusted” for maximum utility in a given 
situation. 

In conventional set theory, sets of real objects, such as the 
numbers in H ,  are equivalent to, and isomorphically described 
by, a unique membership function such as mH. However, there 
is no set-theory equivalent of “real objects” corresponding 
to m F .  Fuzzy sets are always (and only) functions, from a 
“universe of objects,” say X ,  into [0,1]. This is depicted in 
Fig. 2, which illustrates that the fuzzy set is thefunction m F  

that carries X into [0,1]. 
As defined, every function m : X H [0,1] is a fuzzy 

set. While this is true in a formal mathematical sense, many 
functions that qualify on this ground cannot be suitably 
interpreted as realizations of a conceptual fuzzy set. In other 
words, functions that map X into the unit interval may be 
fuzzy sets, but become fuzzy sets when, and only when, 
they match some intuitively plausible semantic description of 
imprecise properties of the objects in X .  There are many good 
texts and monographs that describe various aspects of fuzzy 
sets and models; for example, interested readers may consult 
[21-[141. 

One of the first questions asked about this scheme, and the 
one that is still asked most often, concerns the relationship of 
fuzziness to probability. Are fuzzy sets just a clever disguise 
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H = Numbers between 6 and 8 F = Numbersclcse to 7 

Fig. 1 .  Membership functions for hard and fuzzy subsets of 8. 

Domain = X Range = m I XI 

Fig. 2. Fuzzy sets are membership functions. 

manb(AEU = 0.91 pmb (BEL) = 0.91 rmnbL4Er)=o.91 pmb(BEu=o.oo 

Fig. 3. Bottles for the weary traveler-disguised and unmasked! 

for statistical models? Well, in a word, NO. Perhaps an 
example will help. 

Example 1: Let the set of all liquids be the universe of 
objects, and let fuzzy subset L = {all potable (=“suitable for 
drinking”) liquids}. Suppose you had been in the desert for a 
week without drink and you came upon two bottles, A and B, 
marked as in the left half of Fig. 3 (memb = “membership,” 
and prob = “probability”). 

Confronted with this pair of bottles and given that you 
must drink from the one that you choose, which would you 
choose to drink from first? Most readers familiar with the 
basic ideas of fuzzy sets, when presented with this experiment, 
immediately see that while A could contain, say, swamp water, 
it would not (discounting the possibility of a Machiavellian 
fuzzy modeler) contain liquids such as hydrochloric acid. That 
is, a membership of 0.91 means that the contents of A are 
“fairly similar” to perfectly potable liquids (pure water). On the 
other hand, the probability that B is potable = 0.91 means that 
over a long run of experiments, the contents of B are expected 
to be potable about 91% of the trials; and the other 9%? In 
these cases the contents will be unsavory (indeed, possibly 
deadly)-about one chance in ten. Thus most subjects will opt 
for a chance to drink swamp water, and will choose bottle A. 

Another facet of this example concerns the idea of observa- 
tion. Continuing then, suppose that we examine the contents of 
A and B, and discover them to be as shown in the right half of 
Fig. 3; that is, A contains beer, while B contains hydrochloric 
acid. After observation then, the membership value for A will 
be unchanged, whilst the probability value for B clearly drops 
from 0.91 to 0.0. 

Finally what would be the effect of changing the numerical 
information in this example? Suppose that the membership 
and probability values were both 0.5 -would this influence 
your choice? Almost certainly it would. In this case many 
observers would switch to bottle B, since it offers a 50% 
chance of being drinkable, whereas a membership value this 
low would presumably indicate a liquid unsuitable for drinking 
(this depends, of course, entirely on the MF of the fuzzy set L). 

In summary, Example 1 shows that these two types of 
models possess philosophically different kinds of information: 
fuzzy memberships, which represent similarities of objects 
to imprecisely defined properties, and probabilities, which 
convey information about relative frequencies. Moreover, in- 
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terpretations about and decisions based on these values also 
depend on the actual numerical magnitudes assigned to partic- 
ular objects and events. See [ 151 for an amusing contrary view. 

Another common misunderstanding about fuzzy models 
over the years has been that they were offered as replacements 
for crisp (or probabilistic) models. To expand on this, first 
note from Figs. 1 and 2 that every crisp set is fuzzy, but not 
conversely. Most schemes that use the idea of fuzziness use 
it in this sense of embedding; that is, we work at preserving 
the conventional structure, and letting it dominate the output 
whenever it can, or whenever it must. Another example will 
illustrate this idea. 

Example 2: Consider the plight of early mathematicians, 
who knew that the Taylor series for the real (bell-shaped) 
function f(z) = 1/(1 + z2) was divergent at z = f l  but 
could not understand why, especially since f is differentiable 
infinitely often at these two points. As is common knowledge 
for any student of complex variables nowadays, the complex 
function f (z )  = 1/(1 + z 2 )  has poles at z = f i ,  two purely 
imaginary numbers. Thus, the complex function, which is an 
embedding of its real antecedent, cannot have a convergent 
power series expansion anywhere on the boundary of the unit 
disk in the plane; in particular at z = f 0 i  f 1, i.e., at the 
real numbers 2 = f l .  This exemplifies a general principle 
in mathematical modeling: given a real (seemingly insoluble) 
problem; enlarge the space, and look for a solution in some 
“imaginary” superset of the real problem; finally, specialize 
the “imaginary” solution to the original real constraints. 

In Example 2 we spoke of “complexifying” the function f 
by embedding the real numbers in the complex plane, followed 
by “decomplexification” of the more general result to solve 
the original problem. Most fuzzy models follow a very similar 
pattern. Real problems that exhibit nonstatistical uncertainty 
are first “fuzzified,” some type of analysis is done on the 
larger problem, and then the results are specialized back to the 
original problem. In Example 2 we might call the return to the 
real line decomplexifying the function; in fuzzy models, this 
part of the procedure has come to be known as defuzzification. 
Defuzzification is usually necessary, of course, because even 
though we instruct a student to “apply the brakes pretty soon,” 
in fact, the brake pedal must be operated crisply, at some 
real time. In other words, we cannot admonish a motor to 
“speed up a little,” even if this instruction comes from a fuzzy 
controller-we must alter its voltage by a specific amount. 
Thus defuzzification is both natural and necessary. Example 2 
illustrates that this is hardly an idea that is novel; instead, we 
should regard it as a device that is useful. 

Example 3: As a last, and perhaps more concrete, example 
about the use of fuzzy models, consider the system shown 
in Fig. 4, which depicts a simple inverted pendulum free to 
rotate in the plane of the figure on a pivot attached to the 
cart. The control problem is to keep the pendulum vertical 
at all times by applying a restoring force (control signal) 
F ( t )  to the cart at some discrete times ( t )  in response to 
changes in both the. linear and angular position ( x ( t ) , d ( t ) )  
and velocity ( k ( t ) ,  d ( t ) )  of the pendulum. This problem can 
be formulated many ways. In one of the simpler versions used 
in conventional control theory, linearization of the equations 

Stablllzed 
Inverted 

Pendulum 

h / 

Fig. 4. Conventional and fuzzy solutions to real control problems found 
by embedding them in “imaginary” supersets. 

of motion results in a model of the system whose stability 
characteristics are determined by examination of the real parts 
of the eigenvalues { X i }  of a 4 x 4 matrix of system constants. 
The lower track in Fig. 4 represents this case. It is well known 
that the pendulum can be stabilized by requiring Re(&) < 0, 
as shown in the middle of the lower track. This procedure is so 
commonplace in control engineering that most designers don’t 
even think about the use of imaginary numbers to solve real 
problems, but it is clear that this process is exactly the same 
as was illustrated in Example 2-a real problem is solved by 
temporarily passing to a larger, imaginary setting, analyzing 
the situation in the superset, and then specializing the result 
to get the desired answer. 

The upper track in Fig. 4 depicts an alternative solution to 
this control problem that is based on fuzzy sets. This approach 
to stabilization of the pendulum is also well known, and yields 
a solution that in some ways is much better; e.g., the fuzzy 
controller is much less sensitive to changes in parameters such 
as the length and mass of the pendulum [16]. Note again the 
embedding principle: fuzzify, solve, defuzzify, control. 

The point of Example 3? Fuzzy models aren’t really that 
different from more familiar ones. Sometimes they work better, 
and sometimes not. This is really the only criterion that should 
be used to judge any model, and there is much evidence 
nowadays that fuzzy approaches to real problems are often 
a good alternative to more familiar schemes. This is the point 
to which our discussion now turns. 

11. NOTES ON THE EVOLUTION OF FUZZY MODELS AND 
THE IEEE TRANSACTIONS ON FUZZY SYSTEMS 

Why an IEEE TRANSACTIONS ON FUZZY SYSTEMS? And 
further, why done under the aegis of the IEEE Neural Net- 
works Council (NNC)? There are several compelling an- 
swers. First, the enormous success of commercial applications 
which are at least partially dependent on fuzzy technologies 
fielded (in the main) by Japanese companies has led to 
a surge of curiosity about the utility of fuzzy logic for 
scientific and engineering applications. Over the last five or 
ten years fuzzy models have supplanted more conventional 
technologies in many scientific applications and engineering 
systems, especially in control systems and pattern recognition. 
A recent Newsweek article indicates that the Japanese now hold 
thousands of patents on fuzzy devices used in applications as 
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Fig. 5. Evolution of new technologies-time axis specialized to fuzzy 
models. 

diverse as washing machines, TV camcorders, air conditioners, 
palm-top computers, vacuum cleaners, ship navigators, subway 
train controllers, and automobile transmissions [ 171. It is 
this wealth of deployed, successful applications of fuzzy 
technology that is, in the main, responsible for current interest 
in the subject area. 

Since 1965, many authors have generalized various parts 
of subdisciplines in mathematics, science, and engineering 
to include fuzzy cases. However, interest in fuzzy models 
was not really very widespread until their utility in fielded 
applications became apparent. The reasons for this delay in 
interest are many, but perhaps the most accurate explanation 
lies with the salient facts underlying the development of any 
new technology, which is succintly captured in Fig. 5. 

The horizontal axis if Fig. 5 is time, and the vertical axis is 
expectation- whose expectation? Well, usually, of the people 
who pay for development of the technology; but here I en- 
courage you to interpret this axis in a much broader sense, for 
utility is, of course, in the eye of the user. The crucial part of 
Fig. 5 is the asymptote of reality, which bounds the delivery of 
the technology to a much lower expected value than early users 
project for it. The years shown along the time axis pertain to 
fuzzy models, and are, of course, approximate at best (with the 
exception of the initial one). When you look at this figure, you 
may enjoy deleting these years, and substituting your favorite 
new technology for the one illustrated. Each technology has 
its own evolution, and not all of them follow the pattern 
suggested by Fig. 5 (but you may be surprised to see how 
many do!). For example, try putting dates and identifying the 
people and events associated with, say, computational neural 
networks (which has an atypical, bimodal graph!); or artificial 
intelligence; or fractals; or complex numbers; and so on. 

Every new technology begins with naive euphoria-its 
inventor(s) are usually submersed in the ideas themselves; it 
is their immediate colleagues that experience most of the wild 
enthusiasm. Most technologies are overpromised, more often 
than not simply to generate funds to continue the work, for 
funding is an integral part of scientific development; without 
it, only the most imaginative and revolutionary ideas make it 
beyond the embryonic stage. Hype is a natural handmaiden to 
overpromise, and most technologies build rapidly to a peak of 
hype. Following this, there is almost always an overreaction to 
ideas that are not fully developed, and this inevitably leads to a 

crash of sorts, followed by a period of wallowing in the depths 
of cynicism. Many new technologies evolve to this point, and 
then fade away. The ones that survive do so because someone 
finds a good use (= true user benefit) for the basic ideas. What 
constitutes a “good use”? For example, there are now many 
“good uses” in real systems for the complex numbers, as we 
have seen in Examples 2 and 3, but not many mathematicians 
thought so when Wessel, Argand, Hamilton, and Gauss made 
imaginary numbers sensible from a geometric point of view 
in the later 1800’s. And in the context of fuzzy models, of 
course, “good use” corresponds to the plethora of products 
alluded to above. 

Interest in fuzzy systems in academia, industry, and gov- 
ernment is also manifested by the rapid growth of national 
and international conferences. A short list of conferences 
includes NAFIPS (North American Fuzzy Information Pro- 
cessing Society), annual, 1982-present; IFSA (International 
Fuzzy Systems Association), biannual, 1985-present; NASA, 
Fuzzy Logic and Neural Networks, biannual, 1988-present; 
MCC, Industrial Conference on Fuzzy Systems, 1992; and, 
finally, the IEEE International Conference on Fuzzy Systems, 
annual 1992-present. This latter set of conferences is orga- 
nized and sponsored by the IEEE NNC. 

As noted above, successful applications of fuzzy models 
have gained great visibility through commercial applications 
in Japan. MITI in Japan started LIFE (Laboratory of Industrial 
Fuzzy Engineering) in 1988 with an annual budget of about 
$24000000 (U.S. dollars) for seven years. Japan now has a 
very large and active professional society (SOFT, the Japanese 
Society for Fuzzy Theories), which publishes a technical 
journal in Japanese. Other professional societies include IFSA 
(International Fuzzy Systems Association); NAFIPS (North 
American Information Processing Society); and societies in 
Korea, India, and China that have an estimated combined 
membership of about 10000. Most of the European coun- 
tries also have very active societies, and there are several 
journals and newsletters associated with various organizations 
throughout Europe and Asia. 

And what about neural nets-why the NNC? There has 
been, in the last five years, a large and energetic upswing in 
research efforts aimed at synthesizing fuzzy logic with com- 
putational neural networks (CNN’ s). There are several reasons 
for this. The marriage of fuzzy logic with CNN’s has a sound 
technical basis, because these two approaches generally attack 
the design of “intelligent” systems from quite different angles. 
CNN’s are essentially low-level, computational algorithms that 
(sometimes) offer good performance in dealing with sensor 
data used in pattern recognition and control. On the other 
hand, fuzzy logic is a means for representing, manipulating, 
and utilizing data and information that possess nonstatistical 
uncertainty. Thus, fuzzy methods often deal with issues such 
as reasoning on a higher (semantic or linguistic) level than 
CNN’s. Consequently, the two technologies often complement 
each other, CNN’s supplying the brute force necessary to 
accommodate and interpret large amounts of sensor data; and 
fuzzy logic providing a structural framework that utilizes and 
exploits these low-level results. There are also many ways 
to use either technology as a “tool” within the framework 
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of a model based on the other. For example, the CNN is 
well known for its ability to represent functions. The basis of 
every fuzzy model is the membership function. So, a natural 
application of CNN’s in fuzzy models is to provide good 
approximations to the membership functions that are essential 
to the success of any fuzzy approach. Broadly speaking, then 
we may characterize efforts at merging these two technologies 
as (i) fuzzification of conventional CNN architectures and 
models and (ii) the use of CNN’s as tools in fuzzy models. 
One need look no further than the September 1992 issue of the 
IEEE TRANSACTIONS ON NEURAL NETWORKS to see evidence 
of this marriage, which is a special issue of TNN containing 
19 papers on precisely this topic. References [ 181-[24] are 
a sampler of books and articles that articulate or illustrate 
various aspects of this evolving relationship. 

There are several major journals devoted to fuzzy systems: 
the SOFT Journal (Japan), Fuzzy Sets and Systems (North Hol- 
land), and the International Journal of Approximate Reasoning 
(Elsevier). It is appropriate that the IEEE create a flagship 
publication in the area of fuzzy systems, to collect and publish 
the best research on this important new technology. The IEEE 
TRANSACTIONS ON FUZZY SYSTEMS will publish only the 
highest quality technical papers in the theory, design, and 
application of fuzzy sets and systems that use them. Readers 
are encouraged to submit papers which disclose significant 
technical knowledge, exploratory developments, and applica- 
tions of fuzzy systems. Emphasis will be given to engineering 
systems and scientific applications. The TRANSACTIONS will 
also contain a letters section, which will include information of 
current interest, as well as comments and rebuttals submitted in 
connection with published papers. Representative applications 
areas include, but are not limited to, the following aspects of 

systems: 
Fuzzy estimation, prediction, and control 
Approximate reasoning 
Intelligent systems design 
Machine learning 
Image processing and machine vision 
Pattern recognition 
Fuzzy neurocomputing 
Electronic and photonic implementations 
Medical computing applications 

10) Robotics and motion control 
1 1) Constraint propagation and optimization 
12) Civil, chemical, and industrial engineering applica- 

Well, this has been a much longer preface than most 
journals ever contain! All that is left to do is thank everyone 
who has helped make the TRANSACTIONS a reality. First and 
foremost, that includes the thousands of researchers who have 
developed the field to a point where this journal is well 
justified. There are, of course, far too many people who had 
an active hand in starting TFS for me to recognize each one 
individually. However, it is appropriate to say that what has 
been done would have been quite impossible without the able 
and professional help of the people on (and behind) the various 
publication boards and NNC committees that helped mold the 

tions 

journal into a reality. A few persons should be specifically 
mentioned. First, Bob Marks, Pat Simpson, Russ Eberhart, and 
Toshio Fukuda, who had the vision to lead the IEEE Neural 
Networks Council toward its decision to sponsor this journal. 
Second, the associate editors and advisory board, who really 
did almost all of the hard work in getting this first issue to 
press, Without them, none of this would have been possible. 
And, finally, Chris Ralston and the staff at IEEE Publishing 
Services should be credited for accounting for many of the 
tedious details that go unnoticed when things work. 

I hope you enjoy reading this inaugural issue, and that you 
find its contents useful and illuminating. Your suggestions on 
how to make this journal more valuable for the academic, 
industrlal, and governmental communities are both welcome 

appreciated-please let me know how we can improve it. 

Jim Bezdek, Founding Editor 
February 1993 
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