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\...if an inch may be divided into an in¯nite number of parts the sum
of those parts will be an inch; and if a foot may be divided into an
in¯nite number of parts the sum of those parts must be a foot; and
therefore, since all in¯nities are equal, those sums must be equal,
that is, an inch equal to a foot." Sir Isaac Newton (see Figure 1)
at Trinity College, January 17, 1692, anticipating unequal sameness
theory, in a letter to Bentley at the Palace of Worcester. (accurately
quoted out of context.)[10]

\Men read maps better than women because only men can under-
stand the concept of an inch equaling a hundred miles." Roseanne
Barr. [1]

Unequal sameness theory (UST) addresses modeling of the sameness, or
equivalence, of unequal quantities. Twins have the same parents, but are not
equal to each other. All tofu tastes the same - but is acquired at di®erent (un-
equal) costs. UST also considers the converse proposition. Two equal quantities
may not be the same. Four quarters, for example, is equal to one dollar. Four
quarters, though, are clearly not the same as a dollar bill. In terms of sameness,
4 6= 1. In terms of equality, 4 = 1.1

¤Visit the UST web site at <http://cialab.ee.washington.edu/Marks-
Stu®/UST/index.html>. Key Words: Gleason's approximation, emergent truth, unequal
sameness theory, integer derivatives, Ocum's derivative, Glossglossnovitch's lemma, the
Orwell limit, Gray superposition, Damborg's temporal displacement engine, anticipatory
causality, El-Sharkawi's proof, oxymoronic doubleshpeak, Arabshai di®raction, Bermuda's
triangles, Bertrand's equivalent inequalities, the Pythagorean dilemma, Reynold's unbalanced
wheel, far far ¯eld

Invited paper. Presented at the First Annual Transnational Unequal Sameness Theory
Meeting (TrUST Me), Seattle, WA, May 2001. c°2001 by R.J. Marks II, r.marks@ieee.org.

1See the Orwell limit later in this discourse.
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Figure 1: Sir Isaac Newton, UST pioneer.

Figure 2: Cleveland Gleason: September 17, 2000.

The precise modeling of items that are unequal, though still the same, is the
goal of UST.

1 Historical Development

UST is historically traced to Gleason's approximation. The relationship is
named for Cleveland Gleason (not his real name -see Figure 2)2 - a gradu-
ate student in Electrical Engineering at Stanford (not his real university) in the
late 1970's.3 The story is foundational in UST folklore. Gleason's approxima-
tion was popularized when Gleason, formerly a high tech investment councilor
and dot com CFO, was given a take-home examination in advanced electromag-

2Because the theory is controversial, many contributors to what is now known as unequal
sameness theory choose, under threat o law suit, not to reveal their names.

3Ironically, the story itself is an example of UST. It is simultaneously whimsical and his-
torically serious.
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Figure 3: Dr. M.A. El-Sharkawi.

netics. Professor Oliver Onemug (not his real name - see Fig 4), author of the
exam, orally informed the class the answer to the last and most di±cult prob-
lem was one erg when, in fact, it was two ergs. Gleason became frustrated. No
matter how he worked the problem, the answer was two ergs. After two nearly
sleepless nights, before handing in his work, Gleason, in frustration, scribbled
at the bottom of his test paper the following. \The answer is 2 ergs ¼ 1 erg for
small 2." Onemug gave Gleason full credit in the ¯rst historical substantiation
of the celebrated Gleason's approximation.4

2 ¼ 1 for small 2: (1)

2 Foundations of UST

Let H0 denote an event with features fh0[n]j1 ∙ n ∙ N0g and H1 denote an
event with features fh1[n]j1 ∙ n ∙ N1g. If there exists a p and a q such that

4The El-Sharkawi (see Figure 3) Proof of Gleason's Approximation. Take the
equality version of (1) and multiply both sides by x. The result can be written

2x = x:

It follows that, if z = x and arbitrary y,

2x(z ¡ y) = x(x¡ y):
Expanding gives

2xz ¡ xy ¡ x2 = x(2z ¡ y ¡ x)
= 0

or, equivalently
2z ¡ y ¡ x = 0:

Substituting the special case x = y gives

2z ¡ 2x = 2(z ¡ x) = 0:
Reimposing the equality z = x gives the desired result

0 = 0

and the proof is complete.
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Figure 4: Dr. Oliver Onemug, circa 1960.

h0[p] = h1[q] for h0[p] 2 H0 and h1[q] 2 H1, the events H0 and H1 are said to
be the same. If there exists an n such that h0[n] 6= h1[n] for h0[n] 2 H0 and
h1[n] 2 H1, the eventsH0 andH1 are said to be unequal. Using these de¯nitions,
it is other than unmeaningless not to speak simultaneously of events as not being
the same and unequal.
As is the case for most insightful revelations, a °urry of theoretical con-

tributions ensued building on the foundation laid by Gleason's approximation.
Three most substantive are Glossclossnovitch's lemma, the Orwell limit and the
introduction of the fragility measure on the logic of a UST proposition.

2.1 Glossclossnovich's Lemma

Trevor Q. Glossclossovitch (not his real name - see Figure 5) o®ered an impor-
tant lemma motivated by Gleason's approximation. The celebrated Glosscloss-
novitch's lemma is5

For any number x and for small 2; x ¼ 1: (2)

2.2 The Orwell Limit

French historian and ameteur logician Robert B»oughb (not his real name - see
Figure 6) proposed that, in the limit, as 2 becomes smaller and smaller

lim2!1 2 = 1: (3)

This eloquently stated though self evident result brings one to the startling
conclusion that all real numbers, although not the same, are equal. Indeed,
they are all real. B»oughb proposed naming his lemma after political novelist

5 Proof of Glossclossnovitch's Lemma. Subracting one from both sides of (1)gives

1 ¼ 0 for small 2:
Multiply both sides by x¡ 1 and solving for x gives Glossclossnovitch's Lemma in (2).
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Figure 5: Trevor Q. Glossclossovitch.

Figure 6: Left to right: Robert B»oughb, George Orwell and Dr. Nomar Hedging.

George Orwell (see Figure 6) who, in his classic book Animal Farm [16], had
a communist pig proclaim that, although all animals in the new communist
regime were equal, some were more equal than others.

2.3 The Fragility of a UST Proposition

In a classic proposition on unequal arbitrage sameness theory, University of
Chicago economist Nomar Hedging (see Figure 6) recognized some UST propo-
sitions were more sound than others. She proposed a measure for this varia-
tion. The fragility, F [p; q], of a UST proposition feature pair, h0[p] 2 H0 and
h1[q] 2 H1, is a measure of the unsoundness - or fragility6- of the logic of a
UST proposition.

3 Example Manifestations

There exist numerous fascinating manifestations of UST in science, law, ¯nance,
mathematics, sociology and even humor.

6We later show that fragility is the complement of emergent truth.
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Figure 7: Left to right: Dr. Bawbby Bermuda and Leonhard Euler.

3.1 UST in Law

Men and women, legally, are equal. A cursory inspection reveals, however, they
are not the same. On a constitutional level, all men are created equal although
all are not the same.7

3.2 UST in Analysis and Geometry

3.2.1 Bermuda's Triangles

Italian geometrist Bawbby Bermuda (see Figure 7) proposed the triangles in
Figure 8 which, with the same components, rearranges into unequal areas. Each
of the shapes in the top and bottom triangles are congruent. The bottom
triangle has more area. The extra square on the bottom is shown shaded black.

3.2.2 Euler's Log

A well known identity in complex variables following directly from Euler's (see
Figure 7) equation is

ej2¼ = 1:

Taking the natural logarithm of both sides gives

j2¼ = 0:

We

² divide both sides by j2¼ and
² add one to both sides.

In this example, Orwell's limit is achieved. The fragility of this UST example,
however, is high.

7Contrast, for example, John Wayne and Pee Wee Herman.
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Figure 8: Bermuda's triangles with the same components yield unequal area.
The bottom triangle has one extra unit of area. It is shown as a black square.

Figure 9: Illustration of the Pythagorean Dilemma.

3.2.3 The Pythagorean Dilemma

The Pythagorean Dilemma illustration of the Orwell limit is shown in Figure 9.
A unit square is shown in Figure 9a. The distance from point A to point B isp
2. In Figure 9b, we can get from point A to point B using the path shown.

The length of the path is 2 units. An alternate path, shown in Figure 9c, also is
of length 2. So is the path shown in Figure 9d. In the limit shown in Figure 9e,
therefore, the distance from point A to point B is 2. Thus 2 =

p
2. Squaring

both sides and dividing by two gives the Orwell limit in Equation (3). The
fragility of the Pythagorean dilemma is low.
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Figure 10: Omar Ocum.

3.3 UST in Elementary Calculus

3.3.1 Ocum's Derivative

The most celebrated manifestation of UST is Ocum's derivative . We consider
evaluation of

d

dn
n2 = 2n: (4)

Note, however, that

d

dn
n2 =

d

dn
(n£ n)

=
d

dn
(n+ n+ n+ :::+ n)

= (1 + 1 + 1 + :::+ 1)

= n: (5)

Equating (4) and (5), followed by dividing by n completes Ocum's derivative
derivation of an equality form of Gleason's Approximation.

3.3.2 Painting Hollow Glass Flagpoles

The hollow glass °agpole problem is illustrated in Figure 11. A function, f(x),
is rotated around the z axis to form a °agpole. The problem is to determine the
amount of paint needed to paint the °agpole. Since the °agpole is made of glass,
this can be accomplished by ¯lling the hollow °agpole with paint. The results,
from the outside, are the same as painting the inside of the glass °agpole. The
amount of paint required, however, is unequal. In some cases, an in¯nite amount
of paint is required to paint the surface while a ¯nite amount of paint is needed
to ¯ll the °ag pole with paint.
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Figure 11: Geometry for the painted °ag pole problem.

To ¯nd the surface area of the °agpole, we note, with reference to Figure 11,
that

d` =

sµ
df(r)

dr

¶2
+ 1 dr

The surface area for the annulus from r to r + dr is then

ds = 2¼rd`

= 2¼r

r³
df(r)
dr

´2
+ 1 dr:

If the base of the °agpole has a unit radius of one, then the total surface area
of the °agpole is

S =
R 1
r=0 ds

= 2¼
R 1
r=0

r

r³
df(r)
dr

´2
+ 1 dr:

(6)
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The volume of corresponding to the annulus from r to r + dr is

dv = f(r)da

= 2¼rf(r)dr:

The total volume of the °agpole is therefore

V =
R 1
r=0

dv

= 2¼
R 1
r=0 rf(r)dr:

(7)

To illustrate the unequal sameness of the problem, let f(r) = r¡1. The
volume of the °ag pole, from (7), is

V = 2¼
R 1
r=0 dr

= 2¼

(8)

whereas, since d
dr f(r) = ¡r¡2, we have, from (6),

S = 2¼
R 1
r=0

r
q
1 + 1

r4 dr

¸ 2¼
R 1
r=0

r
q

1
r4 dr

= 2¼
R 1
r=0

1
r dr

= 1:

(9)

Thus, as promised, the volume from (8) is ¯nite and the °ag pole can be ¯lled
with paint. The °ag pole, though, from (9), has an in¯nite surface area and can
therefore not be painted.

3.3.3 Integer Derivatives

Interesting unequal sameness insight is obtained from integer derivatives. To
illustrate, consider a di®erentiable function, y = f(t), such that f(2) = 4. It is
therefore not unmeaningless to speak of derivatives of the type

d

d2
4 = lim¢!0

4(2 + ¢)¡ 4(2)
¢

:

² Since 4 = 2 + 2, it follows that
d
d24 = d

d22 +
d
d22

= 1 + 1

= 2

(10)

10



² Consistent with this result is the case where 4 = 2£ 2. Since d
dx2x = 2 we

have, for x = 2,
d

d2
4 = 2; (11)

a result consistent with (10).8

² Since 4 = 22 and
d
dxx

x = d
dxe

xln(x)

= xx d
dx (xln(x))

= xx(ln(x) + 1)

we have, for x = 2,
d
d24 = d

d22
2

= (1 + ln(2))22

= 4£ (1 + ln(2))

= 6:77258872:::

Although the integer derivative problems are the same, the result here is unequal
to that in (10).

3.4 Set Theoretic UST

3.4.1 Cantor's Same but Unequal Squares

Using UST, the two squares illustrated in Figure 12 can be shown to be equal to
each other. Each point in the 1£ 1 square has one and only one corresponding
point in the 12£ 1

2 square on the left. To illustrate, visualize both squares oriented
in the ¯rst quadrant with the lower left corner at the origin. Choose a point in
the 1 £ 1 square, say (x1£1; y1£1) = (0:26414843410 ¢ ¢ ¢ ; 0:441288642684 ¢ ¢ ¢).
The unique point in the 1

2
£ 1

2 square are these numbers divided be two. In this
case (x 1

2£ 1
2
; y 1

2£ 1
2
) = (0:13207421705 ¢ ¢ ¢ ; 0:220644321342 ¢ ¢ ¢). The converse

is also true. Any point in the 1
2
£ 1

2 square has a single corresponding point in
the 1£1 square. The x and y coordinates are simply doubled to ¯nd the point's
location. This observation clearly demonstrates that the number of points in
any pair of squares is exactly equal even though the squares are not the same.

3.4.2 Cantor's Manifestation

Georg Ferdinand Ludwig Philipp Cantor (his real name - see Figure 13) showed
that some in¯nities are bigger than others. The smallest order of in¯nity, @0,
corresponds to any in¯nity that is countable. Cantor showed there is a one to

8In the parlance of UST, the same results were obtained in (10) and (11) although the
approaches are drastically unequal.
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Figure 12: Illustration of Cantor's same but unequal squares.

Figure 13: Georg Ferdinand Ludwig Philipp Cantor.

one correspondence between the elements of the set of all integers and the set
of all even numbers. Both are countable, or @0, in¯nities. Thus

@0 = 2£ @0:

Dividing both sides by @0 yields Orwell's limit.9

3.5 Probabilistic UST

3.5.1 Bertrand's Equivalent Inequalities

An inspired application of UST applied to probability is credited to Bertrand
[8]. The fragility of the proposition is extremely low.
Consider the circle in the NW corner of Figure 14. Inscribed is an equalateral

triangle. Inscribed in the triangle is a smaller shaded circle. If the circle has
radius r, then each side of the triangle is

p
3r and the diameter of the small

9Conservative mathameticians, resistant to the paradigm shift o®ered by UST, often point
out that division by 1 is not allowed. We can formalize Cantor's manifestation, however,
with ¯nite values by noting that

@0 = limn!1n = limn!1(2n)

which, for any intermediate value, or in the limit, establishes Orwell's limit.
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Figure 14: Illustration of Bertrand's UST applied to probability.

shaded circle is r. Choose a chord to randomly intersect the circle. Let the
length of the chord be `. What is the probability, p that a ` ¸ p3r? In other
words, ¯nd

p = Prob[` ¸
p
3r]:

Bertrand, in a UST trifecta, shows that

1

2
= p =

1

3
= p =

1

4
(12)

Northeast Solution With no loss of generality, we can, after the random
chord is chosen, rotate the circle to view the chord horizontally. Consider, then,
the circle shown in the NE corner of Figure 14. The probability the chord, thus
oriented, exceeds

p
3r, is equal to the probability the chord has a midpoint on

the line segment joining points B and C. Thus

p =
length of BC
length of AD

= 1
2

(13)

Southwest Solution Let, as shown in the SW corner of Figure 14, the chord
enter the circle at point E. The probability the chord exceeding

p
3r is then

equal to the probability the other end of the chord exits the circle in the arc
FG. This is given by the arc length of FG divided by the circle's circumference.
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Then

p =
arc length of FG

2¼r

= 1
3

(14)

Southeast Solution Lastly, we note, in order for the chord length to exceedp
3r, the midpoint of the chord must lie within the shaded circle. This is

illustrated in the SE corner of Figure 14. Thus

p = area of shaded circle
area of large circle

=
¼( r2 )

2

¼r2

= 1
4

(15)

Equation (12) follows immediately from (13), (14) and (15).

3.6 Engineering Applications of UST

3.6.1 Gray Superposition

During his short but turbulent tenure at the Jet Propulsion Lab in Pasadena Cal-
ifornia, Andrew Gray (see Figure 15) applied UST to increase antenna e±ciency.
The impact of the contribution to NASA is incalculable. The fundamental of
Gray's proposition, dubbed Gray superposition, is illustrated in Figure 16. In
System #1, two identical antennas are fed a current of Acos(!t). Each antenna

therefore generates power A2

2 for a total power of

P1 = 2£ A
2

2
= A2

delivered by antennas X and Y. System #2 combines the currents before be-
ing input into antenna. The current delivered to antenna Z in Figure 16 is
(2A)cos(!t) and the corresponding power is

P2 =
(2A)2

2
= 2A2 = 2P1:

Therefore, even though the same current is used, System #2 generates twice
the power as System #1.

3.6.2 Anticipatory Causality: Damborg's Temporal Displacement
Engine

All temporal systems are causal (or nonanticipatory) in that a response cannot
occur prior to an input stimulation. The simple (temporally causal) circuit
illustrated in Figure 18 demonstrates anticipatory causality: a positive delay in
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Figure 15: Dr. Andrew A. Gray.

Figure 16: Illustration of Gray superposition applied to an elementary system
of antennas.

Figure 17: Dr. Mark Damborg.
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Figure 18: Damborg's temporal displacement engine, e.g. time machine.

time can result in a negative overall temporal shift at the system level into the
future. The circuit was ¯rst proposed by Mark Damborg (see Figure 17). The
input to the system in Figure 18 is u(t). The signal, e(t), if fed to a short and
a time delay of ¿ the results of which are summed to give the output signal

y(t) = e(t) + e(t¡ ¿ ): (16)

The system output is fed to the input resulting in

e(t) = u(t) + y(t):

Substiting (16) gives

e(t) = u(t) + [e(t) + e(t¡ ¿ )]

from which we conclude
u(t) = ¡e(t¡ ¿ ):

The input to the system is therefore anticipatory of the system state, e(t), by ¿
seconds into the future, thereby demonstrating the UST princpal of anticipatory
causality.
Damborg showed that demonstration of his anticipatory causality system in

the lab was futile. The circuitry, when stimulated, would simply disappear into
thin air ¿ seconds before it was activated. Since the important UST operational
aspects of the system occur during its nonexistence, experimental veri¯cation
of anticipatory causality is not possible.

3.6.3 Arabshahi Transpositional Far Far Field Di®raction

Let an two dimensional aperture, (e:g: a phased array) be a single wavelength
(i:e: monochromatic) source with ¯eld amplitude f(x; y). In both electromag-
netics and acoustics, if f(x; y) is coherent and su±ciently localized, the far ¯eld
(a.k.a. Fraunhofer - see Figure 19) di®raction patten is proportional to the two
dimensional Fourier transform

F (!x; !y) =

Z 1

¡1

Z 1

¡1
f(x; y)e¡j(!xx+!yy)dxdy: (17)
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Figure 19: Left to right: Jean Baptiste Joseph Fourier, Joseph von Fraunhofer
and Payman Arabshahi.

The coordinates, for wavelength ¸, of the far ¯eld are

(!x; !y) =

µ
2¼x

¸z
;
2¼y

¸z

¶
:

The far ¯eld occurs when z >> ¸ so that each component point of the source
maps approximately into a plane wave [3].
We denote the Fourier (see Figure 19) transform relationship in (17) by

f(x; y)$ F (!x; !y):

The duality theorem of Fourier theory states that the Fourier transform of a
Fourier transform is the transposition of the original signal [5]. That is

F (x; y)$ (2¼)2f(¡x;¡y):

Payman Arabshahi (see Figure 19), the famous o±ce mate of the junior
Andrew Gray (see Gray superposition and Figure 15), noted that, if one went
to the far far ¯eld, one simultaneously had (a) the really far ¯eld and (b) the
far ¯eld of the far ¯eld (a.k.a. Arabshahi di®raction). Suppose, for example,
the far ¯eld occurs at a distance of z from the source. The far far ¯eld would
occur at some z2 >> z. For the really far ¯eld mani¯station of the far far ¯eld,
the ¯eld amplitude is proportional to

far far ¯eld / F
µ
2¼x

¸z2
;
2¼y

¸z2

¶
: (18)

For the far ¯eld of the far ¯eld mani¯station of the far far ¯eld, the ¯eld am-
plitude is proportional to the Fourier transform of the far ¯eld. Let C be a
constant of proportionality. Then

far ¯eld = F
¡
2¼x
¸z ;

2¼y
¸z

¢
$ far far ¯eld = Cf

³
¡zx
z2¡z ;

¡zy
z2¡z

´
:

(19)
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Figure 20: Reynold's unbalanced wheel.

The far far ¯eld here is the transposition of the original di®racting aperture.
Equations (18) and (19) are the same far far ¯eld and they are clearly unequal.10

3.6.4 Reynold's Unbalanced Wheel

Reynolds [9] has applied UST to the taboo ¯eld of perpetual motion. Consider
the wheel pictured in Figure 20. The wheel, initially turning counterclockwise,
has, at its top, a 9kg mass. At the bottom is a 6kg mass. As the wheel turns,
the masses will invert. The 6kg mass, when it nears the top, will become 9kg.
Conversely, the 9kg mass at the top will invert to 6kg as it nears the bottom
of the wheel.11 The process will continue giving, remarkably, perpetual motion.
In Reynold's unbalanced wheel, are 6kg and 9kg are simultaneously the same
but not equal and not the same but equal.
At a 1987 public demonstration of his unbalanced wheel in Bellevue, Wash-

ington, the experiment failed. After in depth analysis, Reynolds determined the
machine would not work within the borders of the United States due to nonuse
of the metric system.12

There remains open questions concerning Reynold's unbalanced wheel. Specif-
ically, could he have used 6 lb and 9 lb masses? Opponents of the technology
claim Reynold's unbalanced wheel is ill-conditioned. Speci¯cally, if. instead of
6kg, the mass was 6.01kg and the 9kg mass was 9.001kg, the inversions would
be 10.9 and 100.6kgs respectively. The fragility of Reynold's unbalanced wheel
is dangerously high.

10An urban myth has been widely circulated that, at the discovery of Arabshahi di®raction,
Arabshahi quoted Dickens' Tale of Two Cities [2]: \It is a far far better thing I do, than I
have ever done." Arabshahi denies saying this - but admits he wishes he had.
11It is straightforward to show that the inversion of the 6kg mass is 9kg and not 9kg¡1.
12The 6kg mass is 13.2lb and 9kg is 19.8lb. The values 13.2 and 19.8, unlike 6 and 9, are

not invertable. Unfortunately for UST, Reynolds was unable to raise capital to support a trip
to Paris to repeat his experiment in a country where the metric system is in common use.
Because of the inability to demonstrate, his application to the United States Patent O±ce
was subsequently rejected.
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Figure 21: Left to right: Mohamed, Izzy, Bob, Stella Nixon and Mani.

3.7 UST in Finance

3.7.1 Mani's missing $10

The following true story illustrates UST in ¯nance. Mohamed, Izzy and Bob
(see Figure 21) attended the 2000 summer meeting of the IEEE Power Engi-
neering Society in Seattle. They paid $100 cash each for their three rooms
at the Seattle Sheraton. Payment was made to Stella Nixon (see Figure 21.) at
the hotel's reception desk in the lobby. A bell hop named Mani (see Figure 21)
escorted the three to their room but was given no tip. Mani had been sti®ed -
and didn't like it. Meanwhile, Stella remembered the conference special: three
rooms for $250. She gave Mani ¯fty dollars in ten dollar bills and asked he
return the money to Mohamed, Izzy and Bob. Mani, though, was

1. bad at math, and

2. still mad at being sti®ed.

Mani therefore pocketed $20 and returned $10 each to Mohamed, Izzy and Bob.
Consider the following °awlless UST logic.

² After their refund Mohamed, Izzy and Bob paid a total of $90 each for
their rooms.

² Mani kept the other $20.
² Thus, the total accounting is 3£ $90 = $270 plus the $20 Mani kept totals
$290.

² Since a total of $300 was initially spent, we have lost $10.
The fragility of this proposition is high. The process can be explained with

more conventional results using standard logic. This does not diminsh the im-
pact and power of the UST logic of the above reasoning sequence.
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Figure 22: VC.

3.8 UST in Linguistics

3.8.1 Same Sounding Antonyms

Same sounding antonyms are words that are their own antonyms. In English,
the term cleave, as is the case with any object, is equal to itself. Cleave means
to join, e:g: a child cleaving to its mother. Cleave also means to separate as
is done with a cleaver: Both cleaves are the same, but are unequal. Indeed,
since cleave means both to separate and to join, they are opposites. Similarly,
a citation is negative if received from a police o±cer - positive if received from
a professional society.

3.8.2 Clever Converses

Clever converses are second order puns of the ¯rst type where reversal of the
same words results in unequal meanings. For clever converses, the emergent
truth of the phrase is the complement of its fragility.13 There are two types of
clever converses: word reveral and auto context. Word reversal converses with
low fragility include [1]

² \If you fail to plan then you plan to fail."
² \Some eat to live while others live to eat.",
² \The more unpredictable the world becomes, the more we rely on predic-
tions," Steve Rivkin.

² \When a man brings his wife °owers for no reason - there's a reason,"
Molly McGee.

² \In theory, theory and reality are the same. In reality, they are not."
² \Why do we drive on the parkway and park on the driveway?" Gallagher.
² \You have to live life to love life, and you have to love life to live life. It's
a vicious circle." (see Figure 22).

Typical reaction to a clever converse is a slight smile with simultaneous small
amplitude head bobbing and mono-hand chin rubbing. A phrase of the sort
\Babies who mind being changed occasionally do not occasionally change their
minds" is an example of a converse that, as a result of having little or no
emerging truth, has high fragility.

13For example, if the emergent truth is 0.75, the fragility is 1.0-0.75=0.25.
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Figure 23: Yogi Berra.

Auto-context clever converses, although still reversing word meanings, use
the same words in doing so. An example with high fragility is \I hate to feel
pain". The statement can be from a masochist who joyfully su®ers when dis-
playing extreme emotions - or a patient conveying concern to his dentist. Lower
fragility statements with high emergent truth include [1]

² \Life! Can't live with it, can't live without it." Cynthia Nelms.
² \An empty taxi stopped and Bill Clinton got out".
² \Too many pieces of music ¯nish too long after the end," Igor Stravinsky.
² \The purpose of a life is a purpose," Robert Bryne.
² \You can make a killing as a playwright in America, but you can't make a
living," Sherwood Anderson.

A rich source of auto-context clever converses is Yogi Berra (see Figure 23).
These include

² \It isn't over until it's over".
² \Toots Shor's restaurant is so crowded nobody goes there anymore."
² \If the world were perfect, it wouldn't be."
² \The future ain't what it used to be."
² \It gets late early out here."

3.8.3 Oxymoronic Doublespeak

UST is foundational in the theory of oxymoronic doublepeak popularized in
George Orwell's (see Figure 6) book, 1984 [6]. Citizen's were taught such
phrases as \slavery is freedom". Here, antonyms are linked into a UST oxy-
moronic truth. Other examples include [1]

² \Truth is the safest lie".
² \We're all in this alone," Lilly Tomlin.
² \I am a deeply super¯cial person," Andy Warhol.

² \Nothing fails like success," Gerald Nachman.
² \Microsoft Works".
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3.9 UST in Theology

3.9.1 UST and Atheistic Apologetics

Paradigm shifts are often used to see atheistic apologetics in a new light.14

Although Sir Isaac Newton anticipated UST15, he was unenlightened by the use
of UST by proponents of atheism. Newton reveals his position in the following
quote.

\Atheism is so senseless and odious to mankind that it never had many profes-
sors" [10].

Irish-German UST enthusiast and atheist, M.M. O'Hairy (see Figure 24), con-
versely declares,

\The cruelty and injustice in the world is incontrovertible proof of the non-
existence of God."

O'Hairy asks how a just and loving God could allow the unspeakable horror and
su®ering imposed by the ebola virus, war, mass murderers and accordion music.
The statement assumes \cruelty" and \injustice" have meaning.16 An analy-
sis of Herr O'Hairy's statements reveals UST-rich self-contradiction. British
Professor, C.S. Lewis (see Figure 24), explains it this way.

\If the universe has no meaning, we should never have found out that
it has no meaning: just as, if there were no light in the universe and
therefore no creature with eyes, we should never know it was dark.
Dark would be without meaning." [4]

Modern UST, as is the case with applied situational ethics, allows suspension
of such contradictory arguments to justify continuity of logic thereby giving
proponents of atheism new favor.

3.9.2 A Theological Clever Converse

\God is dead!", Friedrich Nietzsche.17

\Friedrich Nietzsche is dead!" , God.

3.10 Other Work

\Logic is in the eye of the logician", Gloria Steinem.

1. The business school at Evergreen State College has presented preliminary
results in application of UST to balancing

14\We had seen the light at the end of the tunnel, and it was out", John C. Clancy.
15See the quote by Newton at the beginning of this paper.
16If you chuckled inside when you read \accordion music" in the previous line, you have

evidence that, along with \unspeakable horror" and \su®ering", `cruelty" and \injustice" do,
indeed, have meaning.
17See Figure 24.
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Figure 24: Left to right: M.M. O'Hairy, C.S. Lewis and Friedrich Nietzsche.

(a) personal check books.

(b) the national debt.

2. The political science department at Washington State University is applying
UST to explain the logic used by nay voting members of the United States
Senate when they failed to convict an impeached Bill Clinton.

3.11 UST in Humor

We end this tutorial discourse with a truism exemplifying UST in humor. Al-
though humorous, the statement's emergent truth is remarkable high.

\There are three types of people in the world: those who can count and those
who can't."
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