
Unequal Sameness Theory Addenda
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Here are some additional theorems more firmly establishing USM.

1 The Natural Log of Two is Zero

Theorem: ln(2) = 0
Proof: Consider the series equivalent of ln 2.
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Adding the first two series gives
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and the proof is complete.

2 The logarithm of -1 is zero

Theorem: log(-1) = 0
Proof: Two evaluations of log(-1) follow. The first uses the property that

log(a2) = 2log(a).
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= 2log(−1).

Since the square of -1 is 1, and the log of one is zero, we can also write
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(
(−1)2

)
= log(1) = 0.

Equating completes the proof.
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3 The Sequential Equality Theorem: All Inte-
gers are Equal to Their Next Successive Inte-
ger

Theorem:

n = n + 1 (1)

Proof:

(n + 1)2 = n2 + 2n + 1.

Equivalently

(n + 1)2 − (2n + 1) = n2.

Substract n(2n + 1) from both sides and factoring gives

(n + 1)2 − (n + 1)(2n + 1) = n2 − n(2n + 1).

To complete the square, add 1
4 (2n + 1)2 to both sides.
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