
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

16 Heuristics for Improving Generalization

Given that data are limited and may be sampled in nonrandom ways, and that little is
known about the “complexity” of the target function, the problem is to produce a system
that fits the data as accurately as possible. One of the first tasks is to choose a network
architecture. Even when generalization is not explicitly mentioned, the intent is usually
to find a network that is powerful enough to solve the problem but simple enough to
train easily and generalize well. Generalization criteria usually favor choosing the smallest
network that will do the job, but in small networks back-propagation, for example, may
be more likely to become trapped by local minima and may be more sensitive to initial
conditions. If the algorithm cannot find a solution that does well on the training set, the
solution it does find is not likely to do well on the test set either and generalization will
be poor. Given limitations in the learning algorithm, a network that learns the problem
reliably may be more complex than absolutely necessary and may not generalize as well as
possible. Thus, additional techniques are often needed to aid generalization.

The following sections discuss some specific techniques that have been suggested as
ways to improve generalization. Some are based on theoretical principles while others are
more heuristic. Purely numerical techniques are considered first, followed by techniques
using domain-dependent prior information.

16.1 Early Stopping

Figure 14.9 shows that generalization performance can vary with time during training.
When the network is underconstrained, the generalization error may reach a minimum but
then increase as the network fits peculiarities of the training set that are not characteristic of
the target function. One approach to avoid overfitting is to monitor the generalization error
and stop training when the minimum is observed. The generalization error is commonly
estimated by simple cross-validation with a holdout set although more sophisticated esti-
mates may be used. In [243, 371, 337], the generalization ability of the network is estimated
based on its pre- and post-training performance on previously unseen training data. Early-
stopping is compared to a number of other nonconvergent training techniques by Finnoff,
Hergert, and Zimmermann [123, 122]. A practical advantage of early stopping is that it is
often faster than training to complete convergence followed by pruning.

Although early stopping can be effective, some care is needed in deciding when to
stop. As noted in section 14.5.3, the validation error surface may have local minima that
could fool simple algorithms into stopping too soon [16]. The generalization vs. time curve
may also have long flat regions preceding a steep drop-off [16]. It should also be noted
that figure 14.9 represents an idealized situation; the training curves are often noisy and
may need to be filtered. A simple way to avoid many of these problems is to train until

266 Chapter 16

the network is clearly overfitting, retaining the best set of weights observed along the
trajectory.

Although early stopping helps prevent overfitting, the results apply only to the chosen
network. To achieve the best possible generalization, it is still necessary to test other
network configurations and additional criteria will probably be needed to choose among
them. The fact the overtraining is not observed in one training trial does not mean that it
will not occur in another and is not proof that a suitable network size has been selected.

It can be argued that part of the reason for the relative success of back-propagation with
early stopping is that it has a built-in bias for simple solutions because, when initialized
with small weights, the network follows a path of increasing complexity from nearly con-
stant functions to linear functions to increasingly nonlinear functions. Training is normally
stopped as soon as some nonzero error criterion is met, so the algorithm is more likely
to find a simple solution than a more complex solution that gives the same result. Cross-
validation is a method for comparing solutions, but stopping when the validation error is
minimum takes advantage of these special dynamics. It may be less effective for systems
initialized with large weights or second-order algorithms that make large weight changes
at each iteration.

16.2 Regularization

A problem is said to be ill-posed if small changes in the given information cause large
changes in the solution. This instability with respect to the data makes solutions unreliable
because small measurement errors or uncertainties in parameters may be greatly magnified
and lead to wildly different responses. In contrast, a problem is well-posed if (i) it has a
solution, (ii) the solution is unique, and (iii) the solution varies continuously with the given
data. Violation of any of these conditions makes the problem ill-posed [370].

The idea behind regularization is to use supplementary information to restate an ill-posed
problem in a stable form. The result will be a well-behaved, but approximate, solution of
the original problem. Ideally, the bias introduced by the approximation will be more than
offset by the gain in reliability. In general, domain-specific knowledge will be needed to
stabilize a problem without changing it fundamentally.

Regularization has been studied extensively for linear systems. The book by Tikhonov
and Arsenin [370] is a classic reference. In the context of learning from limited data,
generalization is an unrealistic goal unless additional information is available beyond
the training samples. One of the least restrictive assumptions is that the target func-
tion is smooth, that is, that small changes in the input do not cause large changes in
the output. Given two functions that fit the data equally well, we tend to prefer the

Heuristics for Improving Generalization 267

smoother one because it is somehow simpler or more efficient. This bias is embedded
in the learning algorithm by adding terms to the cost function to penalize nonsmooth
solutions. In addition to the usual term Eo measuring the approximation error, we add
terms �(y) which measure how well the approximation function y(x) conforms to our
preferences

E = Eo + λ�(y). (16.1)

The regularizing parameter λ balances the trade-off between minimizing the approximation
error and conforming to the external constraints. A regularizer favoring smooth functions
is [300]

E = Eo + λ‖Py‖2 (16.2)

where the regularizer P is a differential operator. This rewards smooth functions (whose
derivatives are small, on average) and penalizes nonsmooth functions (those with large
derivatives).

Regularization can be fit into a Bayesian approach [274, 140]. Equation 16.2, for exam-
ple, corresponds to a prior in equation 15.6

P
[
f = y

] ∝ exp(−λ‖Py‖2). (16.3)

Approximation with radial basis functions (which are linear in their output weights)
is equivalent to classical regularization under certain conditions [274, 140]. Radial basis
functions, however, form mostly local internal representations and therefore usually do not
generalize as well as sigmoid networks (e.g., [56]). Curvature-driven smoothing using sec-
ond derivative information as a means of improving generalization in radial basis function
nets is discussed by Bishop [42].

Regularization provides a way of biasing the learning algorithm, but its success depends
on the choice of an appropriate value for the regularization parameter λ to determine how
strong the bias should be. In many of the other proposed heuristics there is a similar pa-
rameter balancing the need to minimize training error with other constraints. The parameter
has an important effect on the eventual solution and is usually determined by criteria such
as cross-validation. Although not discussed here, it is often useful to change the parameter
dynamically because overfitting usually is not a problem until the later stages of learning.
In many cases, it helps to impose the constraints only after the network has made some
progress in reducing the initial error. In difficult problems, for example, there may be long
periods before the network makes any significant progress. If a strong weight decay rule
were in force during this period, the network might never escape from the initial set of
weights around w = 0.

268 Chapter 16

16.3 Pruning Methods

Pruning algorithms are surveyed in chapter 13. The following paragraphs outline a few
main points. Because the target function is unknown, it is difficult to predict ahead of
time what size network will learn the data without overtraining. Not knowing the op-
timum network configuration, one can train many networks and choose the smallest or
least complex one that learns the data. Although simple, this approach can be inefficient
if many networks must be trained before an acceptable one is found. Even if the optimum
size is known, the smallest networks just complex enough to fit the data may (depend-
ing on the learning algorithm) be sensitive to initial conditions and learning parameters.
It may be hard to tell if the network is too small to learn the data, if it is simply learn-
ing very slowly, or if it is stuck in a local minima due to an unfortunate set of initial
conditions or parameters. Thus, even if one finds a small network that will reliably learn
the data, there might be a still smaller network that would work but is very difficult to
train.

The pruning approach is to train a network that is somewhat larger than necessary
and then remove unnecessary elements. The large initial size allows the network to learn
reasonably quickly with less sensitivity to initial conditions and local minima while the
reduced complexity of the trimmed system favors improved generalization. In several
studies, e.g., [345, 344], pruning techniques produced solutions for small networks that
generalized well and were not reliably obtainable by training the reduced network with
random weights.

Although pruning techniques provide a means to simplify a network, they must be
guided by other criteria to decide how simple the network should be. That is, there
is still a need for external information and theoretical criteria to decide when to stop
pruning.

16.4 Constructive Methods

Pruning methods train a larger-than-necessary network and then remove unneeded ele-
ments. The opposite approach is to build a network incrementally, adding elements un-
til a suitable configuration is found. The two approaches are complementary and often
used together. Like pruning, constructive techniques are a means of adjusting the size
of a network rather than a method for deciding what size is appropriate. Other crite-
ria are still necessary to decide when to stop adding elements. A number of construc-
tive methods are discussed in chapter 12. Cascade-correlation [120] is often cited as an
example.

Heuristics for Improving Generalization 269

16.5 Weight Decay

One way to implement a bias for simple or smooth functions is to favor networks with small
weights over those with large weights. Large weights tend to cause sharp transitions in the
node functions and thus large changes in output for small changes in the inputs. A simple
way to obtain some of the benefits of pruning without complicating the learning algorithm
much is to add a decay term like −βw to the weight update rule. Weights that are not
essential to the solution decay to zero and can be removed. Even if they aren’t removed,
they have no effect on the output so the network acts like a smaller system. Weight decay
rules have been used in many studies, for example, [299, 388, 387, 227]. Several methods
are compared by Hergert, Finnoff, and Zimmermann [165].

Weight decay can be considered as a form of regularization (e.g., [227]). Adding a
β

∑
i w2

i regularizing term to the cost function, for example, is equivalent to addition of a
−βwi decay term to the weight update rule. A drawback of the

∑
i w2

i penalty term is that
it tends to favor weight vectors with many small components over those with a few large
components, even when this is an effective choice. An alternative [386, 387, 388] is

λ
∑

i

w2
i /w

2
o

1 + w2
i /w

2
o

. (16.4)

When λ is large, this is similar to weight decay methods. For |wi| � wo, the cost is small
but grows like w2

i while, for |wi| � wo, the cost of a weight saturates and approaches
a constant λ. (The developers call this form ‘weight elimination’ to differentiate it from
simple weight decay.)

Soft weight sharing [286, 285] is another method that allows large weights when they are
needed by using a penalty term that models the prior likelihood of the weights as a mixture
of Gaussians. In practice, a number of Gaussians are used and their centers and widths
are adapted to minimize the cost function. This reduces the complexity of the network by
increasing the correlation among weight values.

Hard weight sharing is commonly used in image processing networks where the same
kernel is applied repeatedly at different positions in the input image. In a neural network,
separate hidden nodes may be used to compute the kernel at different locations and the
number of weights could be huge. Constraining nodes that compute the same kernel to
have the same weights greatly reduces the network complexity [91].

Example Figure 16.1 illustrates effects of weight decay. A 2/50/10/1 network was
trained on 31 points using normal batch back-propagation (learning rate 0.01, momentum
and weight decay 0). The network is very underconstrained. After 200 epochs the weight

270 Chapter 16

Figure 16.1
Effect of training with weight decay. A 2/50/10/1 network was trained using normal back-propagation for 200
epochs. Then weight decay was set to 1E-4 and training resumed for a total of 5000 epochs. Unlike figure 14.5,
the decision surface is very simple and does not show obvious signs of overtraining.

decay was set to 1E-4 and training resumed for a total of 5000 epochs. Unlike figure 14.5
the decision surface is simple and smooth and doesn’t show obvious signs of overtraining
in spite of long training times. The response is basically that of a single sigmoid unit.

Figure 16.2 shows another example. Figure 16.2(a) shows the response of a network
trained by normal batch back-propagation (learning rate 0.03, momentum and weight de-
cay 0) until all patterns were correctly classified (error less than 0.1) at about 11,000
epochs. The network is underconstrained and the boundary is complex with steep tran-
sitions. Another net was trained with the same initial weights and learning rate but with
weight decay increasing from 0 to 1E-5 at 1200 epochs, to 1E-4 at 2500 epochs, and to
1E-3 at 4000 epochs after which it was held constant. Figure 16.2(b) shows the response
after 20,000 epochs. The surface is smoother and transitions are more gradual, but it could
be argued that the data are still somewhat overfitted. Figure 16.2(c) shows the response
after the learning rate was reduced to 0.01 and training resumed for another 1000 epochs.
Further smoothing occurs because of the shift in balance between error minimization and
weight decay.

In addition to showing the smoothing effects of weight decay, these examples show that
the results may be hard to predict a priori. As in other regularization or penalty-term meth-
ods, there is a complex interaction between error minimization and constraint satisfaction.
The particular value of the weight decay parameter (or regularization parameter in gen-
eral) determines where equilibria occur, but it is difficult to predict ahead of time what
value is needed to achieve desired results. The value 0.001 was chosen rather arbitrarily
because it is a typically cited round number, but figure 16.2(b) is still perhaps somewhat
overfitted.

Heuristics for Improving Generalization 271

Figure 16.2
Effects of weight decay: (a) response of a 2/50/10/1 network trained by batch back-propagation until all patterns
were correctly classified at about 11,000 epochs; (b) response after 20,000 epochs of a network trained from the
same starting point with weight decay increasing to 0.001 at 4000 epochs; and (c) response of the network in (b)
after 1000 more epochs with the learning rate decreased to 0.01.

16.6 Information Minimization

A heuristic for improving generalization based on the idea of information minimization is
described by Kamimura, Takagi, and Nakanishi [205]. The uncertainty of a sigmoidal node
is taken to be maximum when its activation is 0.5. A pseudo-entropy of the network for a
particular set of patterns is defined as

H = −
K∑
k

M∑
i

[
vk
i log vk

i + (1 − vk
i) log(1 − vk

i)
]

(16.5)

where K is the number of input patterns, M is the number of hidden units, and vk
i is the

activation of unit i for pattern k. The information in the network is given as

I = Hmax − H

= KM log 2 + H .

The entropy is used as a penalty function to minimize the information contained in the
network so the augmented error function is

E′ = βEo + αH

where Eo is the standard sum of squared errors. Minimizing E′ adds the term

φk
i = vk

i (1 − vk
i) log

1 − vk
i

vk
i

272 Chapter 16

to the weight adjustment rule, giving

1wij = − ∂E

∂wij

=
∑

k

(αφk
i + βδk

i) vk
j .

Here, δk
i = ∂Ek/∂ai is the back-propagation delta term calculated in section 5.2. The use

of H as a penalty term makes this an example of a regularization method. This also has
effects similar to weight decay because (i) the entropy of a sigmoidal node is maximum
when its output is 0.5, (ii) the output is 0.5 when the input is 0, and (iii) the input is 0 when
the input weights are 0; that is, minimizing the weights would tend to minimize −H .

16.7 Replicated Networks

Another idea for improving generalization is to combine the outputs of several systems
that differ in how they classify novel examples [245, 298, 189, 238, 63, 36, 111]. (Though
not about neural networks per se [83] surveys many methods for combining forecasts.)
The subsystems may differ due to variations in configuration, size, initialization, variations
in the learning algorithm, differences in training data, and so on, or because they use
completely different approximation models. The important factor is that they represent a
variety of solutions to the same problem. There is no benefit in evaluating multiple models
that all predict the same thing, after all.

With a mean-square error function, the best generalization would be expected when the
system generates the expected value of all possible consistent functions, weighted by their
probability of occurrence. That is

f ∗(x) =
∫

f (x)pf (f) df . (16.6)

Averaging the output of different systems is a simple approximation to this expected value
and tends to damp out extreme behaviors that might not be justified by the data. Addi-
tional advantages are improved fault-tolerance and the ability to retrain poorly performing
subsystems using the ensemble average as the target.

Although more sophisticated combination methods are possible, a simple average may
do as well as other methods in many cases [83]. A weighted average is often suggested∑

k

ckfk(x). (16.7)

Heuristics for Improving Generalization 273

The weighting factors ck may be determined by a linear regression or depend on how well
each subsystem performs on its training data; there are other possibilities. Because similar
systems trained on similar data are likely to make similar predictions, colinearity of the
fk(x) could make the linear regression ill-conditioned and result in a bad choice of c values.
(This is one suggestion for why a simple average often does as well as more complicated
methods.) Use of a convex linear combination in which

∑
k ck = 1 is suggested in [60] for

this reason.
Stacked-generalization [409] is a related method for improving generalization. Rather

than simply averaging the outputs of several systems, the outputs are combined in more
complex ways to maximize generalization.

The idea that replicating networks could help generalization might seem counterintuitive
because N replicated networks would have N times as many weights and thus might need
many more examples to constrain. The networks are trained independently, however, so the
number of examples needed to train each does not change. If identical networks are trained
on different subsets of the data (each net having a different holdout set used to control
overfitting) and their outputs averaged to obtain the global output, this is similar to doing
k-fold cross-validation or bootstrapping in parallel.

In general, a training set can contain regularities on many scales. Different subsystems
with different biases, but trained with the same goals, are likely to agree about the large
scale regularities that are obviously “supported by the data” while disagreeing mostly on
smaller factors. An overtrained subsystem could choose a very idiosyncratic solution that is
unlikely to match the real target function, but there are a huge number of ways to overfit the
data and independent subsystems are likely to choose different ones. By averaging many
responses, the total system expresses the consensus about obvious regularities recognized
by most subsystems while avoiding extreme solutions in areas where there is disagreement.

A problem with this approach is that the number of systems that may need to be averaged
in order to improve generalization significantly could be very large, particularly when
the systems are complex; that is, the estimated mean in equation 16.6 could have a high
variance. There is also still a need for external information to bias the learning algorithm
to produce subnetworks that share the bias pf (f).

16.8 Training with Noisy Data

Many studies (e.g., [299, 118, 310, 387, 345, 246, 287, 267]) have noted that adding
small amounts of input noise (jitter) to the training data often aids generalization and
fault tolerance. Training with small amounts of added input noise embodies a smoothness
assumption because we assume that slightly different inputs give approximately the same

274 Chapter 16

output. If the noise distribution is smooth, the network will interpolate among training
points in relation to a smooth function of the distance to each training point.

With jitter, the effective target function is the result of convolution of the actual target
with the noise density [307, 306]. This is typically a smoothing operation. Averaging the
network output over the input noise gives rise to terms related to the magnitude of the
gradient of the transfer function and thus approximates regularization [307, 306, 45].

Training with jitter helps prevent overfitting in large networks by providing additional
constraints because the effective target function is a continuous function defined over
the entire input space whereas the original target function is defined only at the specific
training points. This constrains the network and forces it to use excess degrees of freedom
to approximate the smoothed target function rather than forming an arbitrarily complex
surface that just happens to fit the sampled training data. Even though the network may be
large, it models a simpler system.

Training with noisy inputs also gives rise to effects similar to weight decay and gain
scaling. Gain scaling [228, 171] is a heuristic that has been proposed as a way of improving
generalization. (Something like gain scaling is also used in [252] to “moderate” the outputs
of a classifier.) Effects similar to training with jitter (and thus similar to regularization) can
be achieved in single-hidden-layer networks by scaling the sigmoid gains [305, 306]. This
is usually much more efficient than tediously averaging over many noisy samples. The
scaling operation is equivalent to

w → w√‖w‖2σ 2 + 1

where σ 2 is the variance of the input noise. This has properties similar to weight decay. The
development of weight decay terms as a result of training single-layer linear perceptrons
with input noise is shown in [167]. Effects of training with input noise and its relation to
target smoothing, regularization, gain scaling and weight decay are considered in more
detail in chapter 17.

16.9 Use of Domain-Dependent Prior Information

The methods considered so far are mostly numerical techniques that make no use of
problem-specific information. Another powerful way of favoring good generalization is
through the use of domain-dependent prior information.

As noted earlier, samples alone are not enough to uniquely specify the target function
in the absence of other constraints. In many applications where neural nets are considered,
there is significant human knowledge that could be useful even though it is incomplete or

Heuristics for Improving Generalization 275

only partially reliable. There may be existing techniques that give reasonable but imperfect
solutions or we may know certain rules that should be satisfied by any correct solution.
When the goal is to develop a working application, it makes sense to use as much of this
information as possible.

The following sections review some ways of using domain-dependent prior information
in a neural network. Some are based on the idea of adapting a good non-neural solution
to provide the starting point for further fine tuning in a neural network structure. It should
be noted that whether or not this leads to good generalization depends on many factors;
in some cases it may merely accelerate learning by giving the network a good headstart,
without really improving generalization.

16.10 Hint Functions

One way to provide additional constraints is through the use of “hints” [361, 416]. In
addition to outputs for the function of interest, extra output nodes are added to the network
and trained to learn certain hint functions. The hint functions should be related to the
function of interest and are usually designed to be easier to learn. The extra functions may
speed convergence by generating nonzero derivatives in regions where the original function
has plateaued. They may also aid generalization by providing additional constraints and
removing certain local minima of the original function. They discourage the choice of a
solution that somehow matches the original function on the training samples but does not
include intermediate concepts embedded in the hints. After training, the hint output nodes
can be removed because they usually are not of interest in the overall system.

The term hints is usually used to refer to augmented outputs, but hint information can
also be provided in the form of targets for the (normally) hidden nodes. Hints can also be
provided by shaping the target function dynamically [193]. The initial target function is
an easy to learn, coarse approximation of the desired function which is gradually made
more similar to the desired function as the learner masters each stage. This is a standard
technique in animal training.

16.11 Knowledge-Based Neural Nets

Rule-based systems, such as expert systems, have been used quite successfully in many
applications. These systems use human information efficiently and there is interest in
developing hybrid systems combining the high-level information processing abilities of
symbolic systems with the adaptability of neural nets. A useful feature of expert systems
which neural networks generally lack is the ability to explain the reasoning behind its
conclusions.

276 Chapter 16

One approach [342, 375] is to embed symbolic rules in the initial structure of a neu-
ral network by translating the AND, OR, and NOT terms into corresponding network
structures with appropriate weights. (Simple variable-free propositional rules are easily
translated to neural network structures.) Additional links with small random weights are
provided to let the system add other terms that may be useful. The network is then trained
from examples to improve its performance. Because the embedded symbolic rules are often
classifications, the cross-entropy error function may work better than the mean-squared-
error function [342].

Besides faster training due to a good initial solution, improved generalization has been
observed in spite of imperfect embedded rules. This is attributed to “(1) focusing attention
on relevant input features, and (2) indicating useful intermediate conclusions (which sug-
gest a good network topology)” [342]. Given a sufficient number of examples, a standard
network initialized with random weights should converge to the same asymptotic perfor-
mance, but the knowledge-based networks generalize better when examples are sparse.
Evidently “the initial knowledge is ‘worth’ some number of training examples” [342].
Some references for ways of using forms of prior knowledge other than symbolic rules
are provided by Shavlik [342].

16.12 Physical Models to Generate Additional Data

When there is no theoretical understanding of the target function, training from examples
is one of few options. In many cases, however, there may be a physical model that can
provide useful information even if it is not completely accurate. Possibilities include

. a rough model exists that accounts for the main variables only and ignores small details;

. an accurate model exists, but is too cumbersome to use in practice; or

. an exact model exists, but it is difficult or expensive to measure all the variables needed
by the model.

Models can be useful to generate artificial training data for cases where it is difficult to
obtain real training data. In physical control systems, for example, it may not be practical to
obtain data for unusual operating modes such as process faults. Use of a model to generate
additional artificial data for unusual operating modes of a steel rolling mill is described by
Röscheisen, Hofmann, and Tresp [323].

This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	chap16.pdf
	chap16-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

	notice.pdf

