
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

9 Faster Variations of Back-Propagation

One of the common complaints about back-propagation is that it can be very slow. A typical
training session may require thousands of iterations. Large networks with large training
sets might take days or weeks to train. This chapter reviews a number of relatively simple
variations of the basic algorithm that are intended to speed up learning.

It should be noted that things such as the network structure, the input-output representa-
tion, the choice of error function, and so on, often have much stronger effects on learning
time (possibly orders of magnitude) than variations in the optimization method. At the time
of training, however, these choices have already been made and the goal of the methods
described next is to accelerate learning in a given network with the given data.

Many variations of the basic algorithm have been proposed and new ones continue to
appear regularly. We will not attempt to summarize them all. Many methods are heuristic
and somewhat ad hoc; others are founded on principled theory. Some are specialized to
certain problem types, for example, classification, and do not always work well on other
sorts of problems. Some draw on general optimization techniques specialized to neural
network applications. To appreciate these, it is worth reviewing the classic optimization
techniques (chapter 10).

Next, a few methods are listed that have stood up to testing and seem to work reasonably
well on a wide range of problems. Also listed are some well-known methods that deserve
mention if only to inform the reader who has heard of them and wonders what is involved.

9.1 Adaptive Learning Rate Methods

Many of the methods listed here are adaptive learning rate schemes. As noted in section 6.1,
the often recommended learning rate of η = 0.1 is a somewhat arbitrary value that may be
completely inappropriate for a given problem. For one thing, the magnitude of the gradient
depends on how the targets are scaled; for example, the average error will tend to be
higher in a network with linear output nodes and targets in a (−1000, 1000) range than in a
network with sigmoid output nodes and targets in (0, 1). Also, when sum-of-squares error
is used rather than mean squared error, the size of the error and thus the best learning rate
may depend on the size of the training set [114]. The effective learning rate is amplified by
redundancies such as near duplication of training patterns and correlation between different
elements of the same pattern, and by internal redundancies such as correlations between
hidden unit activities. The latter depend in part on the size and configuration of the network
but change as the network learns so different learning rates may be appropriate in different
parts of the network and the best values may change as learning progresses.

Given the difficulty of choosing a good learning rate a priori, it makes sense to start
with a “safe” value (i.e., small) and adjust it depending on system behavior. Some methods

136 Chapter 9

adjust a single global learning rate while others assign different learning rates for each
unit or each weight. Methods vary, but the general idea is to increase the step size when
the error is decreasing consistently and decrease it when significant error increases occur
(small increases may be tolerated).

In general, some care is needed to avoid instability. The best step size depends on the
problem and local characteristics of the E(w) surface (Chapter 8). Values that work well
for some problems and some regions of the error space may not work well for others. It has
been noted that neural networks often have error surfaces with many flat areas separated
by steep cliffs. This is especially true for classification problems with small numbers of
samples. As in driving a car, different speeds are reasonable in different conditions. A
large step size is desirable to accelerate progress across the smooth, flat regions of the error
surface while a small step size is necessary to avoid loss of control at the cliffs. If the step
size is not reduced quickly when the system enters a sensitive region, the result could be
a huge weight change that throws the network into a completely different region basically
at random. Besides causing problems such as paralysis due to saturation of the sigmoid
nonlinearities, this has the undesirable effect of essentially discarding previous learning
and starting over somewhere else.

9.2 Vogl’s Method (Bold Driver)

Vogl et al. [380] describe an adaptive learning rate method where the global learning rate
η(t) at time t is updated according to

η(t) =



φη(t − 1) if E(t) < E(t − 1)

βη(t − 1) if E(t) > 1.05E(t − 1)

η(t − 1) otherwise
(9.1)

where φ > 1 and β < 1 are constants. Suggested values are φ = 1.05 and β = 0.7. The
name “bold driver” comes from Battiti [27]; there the value β = 0.5 is suggested based on
the idea that an increase in E indicates a minimum has been overstepped and, on average
it is reasonable to guess it is halfway between the current and previous weights.

In addition to decreasing the learning rate when the error increases significantly, the
previous weight change is also retracted and the momentum parameter is reset α = 0 for
the next step. The justification for clearing α is that α > 0 makes the current weight change
similar to previous weight changes and the increase in the error indicates the need for
a change in direction. Thus α is restored to its normal value after a successful step is
taken.

Faster Variations of Back-Propagation 137

In [380], learning speed increased by a factor of about 2.5 and 30 on two test problems.
A similar method without momentum was unfavorably compared to conjugate gradient
training on parity problems of various sizes in [27]. There it appears to give results similar
to normal back-propagation with an optimally tuned fixed learning rate but without the
need to search for the optimal learning rate.

The method was empirically compared to a number of other methods on a single test
problem by Alpsan et al. [9]. In one case, learning was stopped as soon as all patterns
were correctly classified (all outputs on all patterns correct within a tolerance 0.1 of the
target values). With high momentum, it had about the same speed as optimally tuned
back-propagation, but generalization was not as good. Generalization was better without
momentum, but then learning was much slower than regular back-propagation. In a second
case where convergence criteria required the outputs to essentially match the target values,
the method converged whereas plain back-propagation did not, but it was not among the
fastest methods. In an earlier test by the same authors, it was said to be somewhat unstable
and no easier to tune than plain back-propagation.

9.3 Delta-Bar-Delta

Jacobs’ delta-bar-delta algorithm [194] is one of the more often mentioned acceleration
methods. Although some newer methods seem to perform better, it is well-known and many
other methods are based on similar ideas. It is based on four heuristics:

1. Every parameter should have its own learning rate. It is not reasonable for every param-
eter to have the same learning rate because of differences in scaling, variance, and so on in
different parts of the network.

2. Every learning rate should be allowed to vary over time because local properties of the
error surface change as the weight vector moves over it. Learning rates that are appropriate
in one area may not be appropriate in other areas.

3. The learning rate can be increased when the partial derivative of the error has the same
sign over several steps. This tends to mean that the error surface has a small curvature and
continues to slope in the same direction for some distance so it should be safe to increase
the step size.

4. The learning rate should be decreased when the partial derivative changes sign several
times in a row. This tends to mean that the weight vector is bouncing back and forth across
a minimum and corresponds to high curvature in the error surface along that direction.

These heuristics lead to the following adjustment rule. Each weight w has its own
learning rate η(t), which is adjusted after each epoch according to

138 Chapter 9

1η(t) =



κ if δ̄(t − 1)δ(t) > 0
−φη(t) if δ̄(t − 1)δ(t) < 0
0 otherwise

(9.2)

where δ(t) = ∂E
∂w

at time t and δ̄ is the exponential average of past values of δ

δ̄(t) = (1 − θ)δ(t) + θ δ̄(t − 1). (9.3)

(Note, this δ is not the δ used in back-propagation.) The learning rate is incremented by a
constant κ when δ and δ̄ have the same sign in consecutive iterations and it is decremented
by a fraction of its current value when they have different signs. Note that the increase is
linear while the decrease is exponential. The learning rate increases gradually when many
consecutive steps all move in the same direction, but decreases quickly when conditions
change.

As in normal back-propagation, the weight update is

w(t + 1) = w(t) − η(t)δ(t). (9.4)

This is no longer equivalent to gradient descent on the error surface, however, because
each weight has its own learning rate. In effect, the weights are updated based on partial
derivatives plus estimates of curvature.

Typical parameter values are obtained from simulation results for several small problems
reported by Jacobs [194]. Initial learning rates were ηo = 0.8 to 1. Typical parameter values
were κ = 0.03 to 0.1 and φ = 0.1 to 0.3 depending on the problem. Harder problems seem
to require smaller values of κ and larger values of φ. This corresponds to a cautious policy:
small increases in learning rate when things are going well and large decreases when things
go badly. The averaging parameter 0 < θ < 1 does not seem to be critical, θ = 0.7 was used
in all cases. Larger values, approaching 1, give longer averaging times.

It is noted that these heuristics can fail in certain cases. For instance, the ideal situation
would be to have separate learning rates for each direction identified by an eigenvector of
the local Hessian matrix. Instead, it has separate learning rates for each of the coordinate
directions in the E(w) space. In the case of a ravine oriented 45◦ to two weight axes, for
example, these heuristics cause the learning rates of both weights to decrease when the
best option would be for them to increase together. Because the method is based on local
computations only, the two weight changes cannot be coordinated. When changing one
weight, the behavior of other weights is not considered.

In one empirical test [9], delta-bar-delta was among the fastest methods to learn to
classify correctly (with all outputs within a loose tolerance of the desired values) but it
was slow to reduce the error to very small values. In [239], it was slower than standard
back-propagation with a carefully selected learning rate. The time difference was relatively

Faster Variations of Back-Propagation 139

small, however, and the adaptive method would probably be faster if the time spent in
tuning the learning rate for standard back-propagation were included.

According to some reports, delta-bar-delta seems to be more sensitive to parameters than
Rprop or quickprop. That is, the default values (κ , φ, θ) may work reasonably well on easy
problems, but different parameters may be needed on hard problems and it may not be easy
to find a good set.

Section 9.4 summarizes a similar method using multiplicative weight increases and
momentum. Both are said to be implementations of heuristics proposed by Sutton [363].
Minai and Williams [266] describe an extended delta-bar-delta algorithm that adapts the
momentum as well. There are more parameters to be tuned, however.

9.3.1 Justification

Justification for the seemingly ad hoc heuristic of basing the learning rate changes on
the signs of successive partial derivatives ∂E

∂w
(t) and ∂E

∂w
(t − 1) can be found in [194] and

[160: 194]. Assuming a single output node y for simplicity, the mean squared error at epoch
t is

E(t) = 1

2

〈
(d − y)2

〉
. (9.5)

The brackets 〈〉 denote the mean over the training set and are dropped in what follows. The
derivative of the error with respect to the learning rate ηij can be written

∂E

∂ηij

(t) = ∂E

∂yi

(t)
∂yi

∂ai

(t)
∂ai

∂ηij

(t) (9.6)

where ai(t) = ∑
j wij(t)yj(t) is the weighted-sum input to node i, yi(t) = f (ai(t)) is the

node output, and f is the node nonlinearity, for example, the sigmoid function. Because

wij(t) = wij(t − 1) − ηij(t)
∂E

∂wij

(t − 1) (9.7)

we have

ai(t) =
∑

j

yj(t)

[
wij(t − 1) − ηij(t)

∂E

∂wij

(t − 1)

]
. (9.8)

Differentiation with respect to ηij(t) gives

∂ai

∂ηij

(t) = −yj(t)
∂E

∂wij

(t − 1). (9.9)

140 Chapter 9

From the back-propagation derivation, equation 5.10, we know

δi = ∂E

∂yi

∂yi

∂ai

(9.10)

and

∂E

∂wij

= −δiyj . (9.11)

Combining these results allows (9.6) to be rewritten

∂E

∂ηij

(t) = ∂E

∂yi

(t)
∂yi

∂ai

(t)
∂ai

∂ηij

(t) (9.12)

= δi(t)

(
−yj(t)

∂E

∂wij

(t − 1)

)

= − ∂E

∂wij

(t)
∂E

∂wij

(t − 1).

This says that the derivative of the error with respect to the learning rate ηij is the negative
of the product of the present and previous derivatives of the error with respect to the weight
wij . Rather than being an ad hoc heuristic, this is actually a well-founded way of doing
gradient descent on the error with respect to the learning rate. The delta-bar-delta update
rule (9.2) modifies this slightly by smoothing ∂E

∂w
(t − 1).

9.4 Silva and Almeida

Delta-bar-delta is one of the more well-known adaptive learning rate methods. Silva and
Almeida [346] proposed a variation using multiplicative weight increases and momentum.
Both are said to be implementations of heuristics proposed by Sutton [363]. This is similar
to the method of Vogl et al. with a separate learning rate for each weight.

The weight update rule is

wij(t) = wij(t − 1) − ηij

∂E

∂wij

(t) (9.13)

where ηij(t) is the learning rate for weight wij at epoch t . The learning rate is adapted at
each epoch according to

Faster Variations of Back-Propagation 141

ηij(n) =




uηij(n − 1) if ∂E
∂wij

(t) ∂E
∂wij

(t − 1) > 0

dηij(n − 1) if ∂E
∂wij

(t) ∂E
∂wij

(t − 1) < 0

ηij(n − 1) otherwise (no change)

(9.14)

where constants u > 1 and 0 < d < 1 control the rate of increases and decreases. Typical
values are 1.1 < u < 1.3 and d slightly below 1/u, for example, d = 0.7. This gives a slight
preference to learning rate decreases, making the system more stable.

In contrast to Jacobs’ delta-bar-delta method where the learning rate increases incremen-
tally (additively), here both increases and decreases are multiplicative. This allows faster
increases in the learning rate and, possibly, faster convergence, but it may sometimes lead
to instability. If the learning rate becomes too large, the error may sometimes jump abruptly
(e.g., when the system oversteps a minimum and “climbs up a cliff”). To avoid instability,
the bad weight change is retracted and in most cases reapplication of the learning rate up-
date rule (9.14) using the gradient evaluated at the rejected point will reduce the learning
rate adequately to avoid the bad step in following iterations; if not, the learning rate may
need to be decreased directly. In a benchmarking test [320], it is suggested that if the al-
gorithm fails to find an error decrease after five consecutive iterations, all the learning rate
parameters should be halved.

Because the learning rate can increase quickly, there is not a huge cost in selecting
an initial rate that is too small. Ideally, the algorithm should be able to correct for an
overly large initial learning rate, but sigmoid saturation and instability may cause prob-
lems so it is probably best to start with a small value and let the algorithm increase it if
necessary.

Performance seems to deteriorate in obliquely oriented ravines in the error surface. In
order to better handle these cases, a modified weight update rule was proposed

1wij(t) = ηijνij (t) (9.15)

where the ‘smoothed gradient’ is

νij (t) = ∂E

∂wij

(t) + ανij(t − 1) (9.16)

and 0 ≤ α < 1 functions like the momentum parameter.
It has been reported [9] that methods that increase the learning rate multiplicatively

like this can be faster than methods that increase it additively, but they are less stable and
parameter tuning may be difficult.

142 Chapter 9

9.5 SuperSAB

SuperSAB [372] is another adaptive learning rate method based on the delta-bar-delta
heuristics. It is based on an earlier method called SAB, which stands for “self-adapting
back propagation.” Like the method of Vogl et al. (section 9.4), the learning rate is both
increased and decreased multiplicatively.

Parameters include the initial learning rate ηstart , an increase factor η+ > 1, and a
decrease factor 0 < η− < 1. Each weight has its own learning rate ηij(t) which changes
with time t . The algorithm is:

1. Initialize all learning rates ηij(0) = ηstart .

2. Do a back-propagation step with momentum.

3. For each weight wij

. if the sign of its derivative is unchanged then increase the learning rate, ηij(t + 1) =
η+ · ηij(t);
. otherwise (the sign changed), retract the step wij(t + 1) = wij(t) − 1wij(t), decrease
the learning rate ηij(t + 1) = η− · ηij(t), and set 1wij(t + 1) = 0 so momentum has no
effect in the next cycle.

4. Go to 2.

Typical suggested values are η+ = 1.2 and η− = 0.5. (There appear to be typographical
errors in [372]. This is based on the explanation accompanying the formula.)

Reported results have been inconsistent. In some cases SuperSAB is among the fastest
methods [9]; others have reported it to be very unstable [8]. The possibility of instability,
especially when momentum is high, is noted in the original paper. This shows itself as a
sudden large increase in the error. Sometimes the error will correct itself in subsequent
steps; otherwise a restart may be necessary. Because η increases multiplicatively and can
become large quickly, it is reasonable to set limiting values on both η and the maximum
allowed weight magnitude. Because of the instability problems and because it does not
appear to have major speed advantages, other methods may be preferable in general.

9.6 Rprop

Rprop [315, 314] stands for “resilient propagation.” The main difference between it and
most other heuristic back-propagation variations is that the learning rate adjustments and
weight changes depend only on the signs of the gradient terms, not their magnitudes. It
is argued that the gradient magnitude depends on scaling of the error function and can

Faster Variations of Back-Propagation 143

change greatly from one step to the next. On a complicated nonlinear error surface, the
magnitude is basically unpredictable a priori and there is no reason why the step size should
be proportional to the magnitude in general. In fact, it can be argued that the step size should
be inversely proportional in order to take large steps where the gradient is small and to take
small careful steps where the gradient is large [363].

Rprop is a batch update method; the weights and step sizes are changed once per epoch.
Each weight wij has its own step size, or update-value, 1ij , which varies with time t

according to

1ij(t) =




η+ · 1ij(t − 1), if ∂E
∂wij

(t − 1) · ∂E
∂wij

(t) > 0

η− · 1ij(t − 1), if ∂E
∂wij

(t − 1) · ∂E
∂wij

(t) < 0

1ij(t − 1), otherwise

(9.17)

where 0 < η− < 1 < η+. A change in sign of the partial derivative corresponding to weight
wij indicates that the last update was too big and the system has jumped over a minimum
so the update value 1ij is decreased by a factor η−. Consecutive derivatives with the same
sign indicate that the system is moving steadily in one direction so the update value is
increased slightly in order to accelerate convergence in shallow regions.

The weights are changed according to

1wij(t) =




−1ij(t), if ∂E
∂wij

(t) > 0

+1ij(t), if ∂E
∂wij

(t) < 0

0 otherwise

(9.18)

Note that the change depends only on the sign of the partial derivative and is independent
of its magnitude. If the derivative is positive, the weight is decremented by 1ij(t); if the
derivative is negative, the weight is incremented by 1ij(t).

There is one exception. If the partial derivative changes sign (indicating that the previous
step was too large and a minimum was missed), the previous weight-update is retracted

1wij(t) = −1wij(t − 1) if
∂E

∂wij

(t − 1)
∂E

∂wij

(t) < 0 (9.19)

Because this would cause another sign change on the next step, leading 1ij(t) to be
decrease, the update-value is not adapted on the next step. In software, this can be achieved
by storing ∂E

∂wij
(t − 1) = 0, which prevents the change in the next step.

All update-values are initialized to a constant 1ij = 1o, which determines the size of the
first weight change. A reasonable value is 1o = 0.1. This is somewhat affected by the size

144 Chapter 9

of the initial weights, but does not seem to be critical for simple problems. It is probably
better to err in favor of choosing too small a value because an overly large value could lead
to immediate node saturation. In [314], 1o = 0.001 was used for the two-spirals problem,
but values between 10−5 and 0.01 gave similar results.

The range of update-values is limited to 1min = 10−6 and 1max = 50 to avoid floating-
point underflow-overflow problems. Limiting 1max to smaller values, for example, 1, may
give smoother decreases in the error at the cost of slower convergence. In [314], 1max = 0.1
was used for the two-spirals problem.

The value η− = 0.5 was chosen based on the reasoning that when the system overshoots
a minimum, the minimum will be halfway between the current and previous weights, on
average, so the step size should be reduced to half its previous value.

The value η+ = 1.2 is a compromise. It should be large enough to allow fast growth in
flat regions of the error function, but not so large that the system has to immediately reduce
the update-value in the next step. The value 1.2 seems to work well on many problems and
usually is not critical.

These default values seem to work well for most problems. In most cases, no changes
are needed. In [315], only 1max = 0.001 was changed for the two-spirals problem in order
to avoid early saturation of the sigmoids. In most cases, 1o is the only other parameter that
needs to be changed and its value is not critical as long as it is not too large.

Although it is not mentioned in the derivation, momentum can be used with beneficial
effects on many problems. As usual, very high values of momentum may lead to instability.

In empirical comparisons, Rprop seems to be one of the faster and more reliable heuristic
methods for a wide range of problems. There are, of course, cases where other methods do
better, but Rprop is often a good choice for initial tests. For certain classification problems
where the error criteria are satisfied as soon as all outputs are within a tolerance (e.g., 0.1)
of their target values, it can be faster than second-order gradient methods such as conjugate
gradient or Levenberg-Marquardt. This is problem dependent, however.

The success of Rprop can be explained, in part, by two factors. First, one reason for the
slow convergence of gradient descent is that the gradient vanishes at a minimum so the
step size becomes smaller and smaller as it nears the minimum. The error tends to decrease
exponentially: fast at first, but slower later on. With Rprop, the step size does not depend
on the magnitude of the gradient so learning does not slow to a crawl in the final stages.

Second, another problem with back-propagation in layered networks is that the deriva-
tives tend to be attenuated as they propagate back from the output layer toward the inputs
(see section 6.1.8). Each layer inserts a sigmoid derivative factor that is less than 1 (≤ 0.25
for sigmoids, ≤ 1 for tanh nodes) with the result that |∂E/∂w| tends to be very small for
weights far from the outputs and learning is correspondingly slow. Deep networks with
many layers have been avoided for this reason because almost no learning occurs in the

Faster Variations of Back-Propagation 145

initial layers. Heuristic methods for setting different learning rates for each layer have been
investigated, but they are difficult to tune by hand and a fixed learning rate is not necessar-
ily appropriate anyway. Rprop seems to work better than some other adaptive learning rate
techniques in this case because the learning rate adjustments and weight updates depend
only on the signs of the derivatives, not their magnitudes. Appropriate values can be found
for each layer so early layers learn faster than they would otherwise and deep networks are
not as difficult to train.

9.7 Quickprop

Fahlman’s Quickprop [121] differs from most of the other methods mentioned here in that
it is not an adaptive learning rate technique. Like back-propagation, it is a local method;
each weight w is considered separately.

It is “based on 2 risky assumptions”:

. that E(w) for each weight can be approximated by a parabola that opens upward and

. that the change in slope of E(w) for this weight is not affected by all the other weights
that change at the same time.

The weight update rule is dominated by a quadratic term

1w(t) = S(t)

S(t − 1) − S(t)
1w(t − 1) (9.20)

where S(t) = ∂E
∂w

(t). Call the S(t)/(S(t − 1) − S(t)) term β. The numerator is the deriva-
tive of the error with respect to the weight and (S(t − 1) − S(t))/1w(t − 1) is a finite
difference approximation of the second derivative. Together these approximate Newton’s
method for minimizing a one-dimensional function f (x): 1x = −f ′(x)/f ′′(x). Sutton
[363] suggested a similar update term.

Three cases occur:

1. If the current slope has the same sign but is somewhat smaller in magnitude than the
previous one, then β > 0 and the weight will change again in the same direction. The size
of the change will depend on how much the slope was reduced by the previous step.

2. If the current slope has a different sign from the previous slope, then the weight has
crossed over the minimum and is now on the opposite side of the valley. Since β < 0, the
next step will backtrack, landing somewhere between the current and previous positions.

3. The third case occurs when the current slope has the same sign as the previous slope,
but is the same size or larger in magnitude. This indicates that the first “risky assumption”

146 Chapter 9

was not met and could occur where the function is not well-approximated by a parabola or
where the assumed parabola opens downward.

To avoid taking an infinite step or a backward uphill move in case 3, a “maximum growth
factor” parameter µ is introduced. No weight change is allowed to be larger than µ times
the previous weight change. A value of µ = 1.75 is recommended. Chaotic behavior may
result when it is too large,

For cases 1 and 3, an additional term −ηS(t) representing simple gradient descent is
added to (9.20) to bootstrap the process when the previous change 1w(t − 1) = 0. It is
ignored in case 2 when the current slope is nonzero and differs in sign from the previous
one since the quadratic term handles this case well.

In addition to these weight update rules, several other heuristics are sometimes used.

. It is argued that one of the reasons for the slow convergence of back-propagation is that
the derivatives become very small when sigmoid node nonlinearities saturate. The sigmoid-
prime heuristic simply adds 0.1 to the derivative of the sigmoid function so that it is always
nonzero. This may accelerate learning in flat regions, but it may also make it difficult to
settle to a minimum.
. Since the quadratic term may cause some weights to get very big, leading to floating-
point overflow errors, a small decay term is added to the slope S(t) calculated for each
weight. Note that this is different from normal weight-decay, which acts directly on the
weights.
. Finally, in some cases, a hyperbolic arctangent error function is used. That is, when back-
propagating the error, the true derivative of the error with respect to the activation y of an
output unit

∂E

∂y
= −(d − y)

is replaced by

−arctanh(d − y).

Strictly speaking, this is not an error function, as it modifies the calculated derivative, rather
than the error itself. This goes to ±∞ at ±1 and greatly magnifies the error for output
units that are far from their target values. It also tends to cancel the vanishing derivative for
nodes that are saturated at the wrong value, but this case is already handled by the sigmoid-
prime term. To avoid numerical problems, a value of 17 (-17) is used for inputs greater than
0.9999999 (less than -0.9999999). This assumes the errors are in (−1, +1). Simple scale
changes will be needed for tanh nonlinearities and other cases. This heuristic is somewhat
nonstandard and is not used in most cases.

Faster Variations of Back-Propagation 147

In empirical comparisons, quickprop is often one of the faster, more reliable methods
and outperforms most other heuristic variations of back-propagation on a wide range
of problems. Only Rprop seems to be consistently better; it is perhaps somewhat more
reliable, has fewer parameters to tune, and seems to be less sensitive to their values.

Quickprop does have a fixed learning rate parameter η that needs to be chosen to suit the
problem. It might be possible to use adaptive methods to control this, but no methods have
been described.

9.8 Search Then Converge

Most of the other methods mentioned in this chapter are designed for batch-mode learning.
The following describes an adaptive learning rate method for on-line learning.

As noted in section 5.3.2, the weight trajectory in on-line learning is stochastic and jitters
around the error surface. This randomness helps search more of the weight space and makes
the system more likely to find a good minimum, but it also keeps the weights from settling
to a solution so the asymptotic error may be relatively high. The standard solution is to
reduce the learning rate gradually as learning progresses.

The classic schedule used in stochastic approximation [318] is η(t) = c/t where c is a
constant. This guarantees asymptotic convergence and is optimal for c greater than some
threshold c∗, which depends on the problem [97]. There are problems with this, however.
Convergence is slow when c is small, but if c is increased too much then excessively large
parameter changes may occur at small t .

Darken and Moody [97] proposed the “search then converge” schedule

η(t) = ηo

1 + t/τ
. (9.21)

This avoids the unstable behavior at small t , yet still has the desired asymptotic behavior
c/t for t � τ . For t � τ , η(t) ≈ ηo and the system behaves like normal on-line learning
with a constant learning rate. It is hoped that by the time t ≈ τ the system will converge
to and then hover around a good minimum. At t ≈ τ , η(t) begins decreasing to allow the
weights to settle to the solution. For t � τ , η(t) ≈ c/t where c = τηo, and the learning rate
approaches the optimum stochastic approximation schedule. The schedule [98]

η(t) = ηo

1 + c
ηo

t
τ

1 + c
ηo

t
τ

+ τ t2

τ2

(9.22)

has similar behavior, but decreases η(t) faster at intermediate values of t .

148 Chapter 9

A defect of these schedules is that they require the user to choose the parameter c. The
optimal value is c∗ ≡ 1/2α where α is the smallest eigenvalue of the Hessian evaluated at
the minimum [98]. c∗ is usually unknown, however, because the minimum has not been
found yet. In theory, the Hessian could be estimated and its eigenvalues calculated, but
this is computationally intensive and may not be possible in an on-line learning situation.
(The main advantages of on-line learning are its computational simplicity and small storage
requirements).

Darken and Moody [98] propose a way to do an on-line estimate of whether c < c∗
by observing the trajectory of the weight vector. The idea is that when c is too small,
successive weight update vectors will be highly correlated. Convergence is slow because
the weight changes are small; the gradient changes little from one step to the next so
successive weight updates tend to point in similar directions.

An estimate of the drift is

D(t) ≡
∑

k

d2
k (t) (9.23)

dk(t) ≡ √
T

〈δk(t)〉T√〈
(δk(t) − 〈δk(t)〉T)2

〉
T

(9.24)

where δk(t) is the change in the kth component of the weight vector at time t , and the
brackets 〈·〉T indicate the average over T weight changes. In [98], T = at , a � 1. The
numerator is the average parameter change. The denominator is the standard deviation of
the weight changes and becomes small when weight updates are highly correlated over
time. D(t) grows like a power of t when c is too small but remains finite otherwise.

9.9 Fuzzy Control of Back-Propagation

Network training is a dynamic process and the algorithms described in this chapter can
be viewed as control systems whose purpose is to accelerate learning while avoiding
instability. Fuzzy logic is a convenient way to convert a set of heuristics into a working
algorithm and has been used with success in many simple control applications.

The main difference between fuzzy logic and conventional Boolean logic is that fuzzy
logic deals with propositions that can have varying degrees of membership between true
and false. This is useful for control applications because it allows the behavior to be de-
scribed by easily understood If–Then rules that are interpolated to give smooth transitions
between regions where different rules are active. Mechanisms of fuzzy inferencing are de-
scribed in many references, so the details will be omitted here.

Faster Variations of Back-Propagation 149

Many papers have been written on applications of fuzzy logic to neural network training.
Control of back-propagation using fuzzy logic has been proposed by Arabshahi et al. [10],
Choi et al. [81], and others. Arabshahi et al. [10] controls a single global learning rate while
Choi [81] extends control to include the momentum term. Comparisons are made with
standard back-propagation and Jacobs’ delta-bar-delta rule on the 3-bit parity problem.

The central idea is to establish a set of If–Then rules for parameter control that are
implemented using fuzzy logic. In Arabshahi et al. [10], the rule antecedants (the If parts)
are expressions involving the error E and the change in error CE = En − En−1 from one
iteration to the next while the Then parts (the rule consequents) specify 1η, how the
learning rate should change given the conditions described in the antecedent. One rule
might say that when E is low, and CE is low then the learning rate should increase by
a small amount, for example. If both E and CE were actually low then this rule would be
satisfied and the consequent would be asserted strongly. For slightly different values of E

or CE, however, for example, when E is “lowish, but not really low,” the rule would be
satisfied less well and its consequent would be asserted less strongly.

At any particular time, many different rules will be satisfied to varying degrees and
conflicts between active rules suggesting different actions are resolved by methods of fuzzy
inferencing to obtain a single overall output.

In simple applications like this, fuzzy logic is used for interpolation. That is, the de-
signer specifies the desired response at selected points on a grid in the input space and
relies on fuzzy inferencing to interpolate between the points in a reasonable way. The
designer thereby avoids the sometimes difficult problem of finding a clever algorithm or
function that generates the desired response from the given inputs. An advantage of fuzzy
systems, and local interpolation methods in general, is that the effects of each rule are
relatively localized; rules don’t interact globally so it is relatively easy to tune individual
rules to improve local performance without worry that this will cause problems in other
areas.

A fuzzy implementation of a set of heuristics, for example, the delta-bar-delta heuris-
tics, will usually have the same basic behavior as the heuristics implemented by other
means, although there may be small-scale differences. That is, the final performance of
the system is determined much more by the quality of the heuristics than by the mecha-
nisms of how they are implemented. Factors such as which input variables are considered,
how they are represented, and how they are presumed to interact in their effects on the
response will have much stronger effects on performance than whether they are imple-
mented by fuzzy logic or by some other means. Fuzzy logic does not substitute for un-
derstanding a problem, but it is a convenient way to convert understanding into a working
algorithm.

150 Chapter 9

9.10 Other Heuristics

9.10.1 Gradient Reuse

Hush and Salas [182] suggest stepping along the line of the computed gradient as long as
the error continues to decrease. This is similar to Cauchy’s method (section 10.5.2), but
it does not search for the exact minimum on the line. It uses fixed size steps along the
line rather than, say, bisection search. As in Cauchy’s method, there is a savings since
the gradient calculation is avoided for each successful step along the line. The step size is
increased when the reuse rate is high (indicating that steps are too small) and it is decreased
when it’s low (because the step size it too large).

9.10.2 Gradient Correlation

Franzini [126], Chan and Fallside [67] and Schreibman and Norris [336] describe gradient
correlation methods that monitor the angle between successive gradient vectors to control
the learning rate. An advantage of this approach is that a major change in gradient direction
can be detected and the learning rate reduced before taking a step, thus reducing the need
to retract bad steps.

The gradient correlation measures the cosine of the angle between successive values of
the gradient g(t)

cos(θ) = g(t − 1)T g(t)

‖g(t − 1)‖ ‖g(t)‖ . (9.25)

When the vectors are nearly parallel, cos θ ≈ +1 and the learning rate can probably be
increased. When cos θ < 0, the gradient has doubled back on itself to some extent and the
learning rate should be decreased.

In [126] the learning rate is adjusted according to

η(t) =
{

η(t − 1)β+ cos(θ) if cos(θ) > 0
η(t − 1)β− otherwise

(9.26)

where values of β+ = 1.005 and β− = 0.8 are suggested. This tends to keep η near the max-
imum value such that successive gradients are nearly parallel and eliminates the oscillatory
cross-stitching behavior in ravines of the error surface. In the single-problem benchmark
[9], this method was slightly slower than standard back-propagation to learn to classify the
training set, but when used with momentum, it was the fastest method to reduce the error
to near zero. Removal of the cos θ term from the η adjustment rule was suggested.

In [336], the learning rate switches between high and low values based on the correlation.
It is reduced to its minimum value (0.01) and momentum is set to 0 as soon as the

Faster Variations of Back-Propagation 151

correlation became negative. The momentum returns to its normal value (0.9) gradually.
Modifications may be needed to apply the idea in practice. In [9] it was slow to learn to
classify correctly and could not further reduce the error to small values in the given amount
of time, but generalization was said to be good.

9.10.3 Pattern Weighting Heuristics

A number of heuristics attempt to focus attention on the patterns with the worst errors.
Often, this can be viewed as a modification of the error function to one which gives more
emphasis to larger errors. If attention is focused only on the pattern with the largest error,
the ideal result is to minimize the maximum error. Cater [65] gives each pattern a different
weighting. Basically, the method identifies the pattern with the worst error and roughly
doubles its learning rate in the next epoch.

The heuristic of “learn only if misclassified,” used in [329] and later work, says that
the actual output values do not really matter for classification problems as long as the
classification is unambiguous. A tolerance band is defined and the error is considered to
be zero for all outputs within the band. If the target is 0 and the output is 0.06, for example,
the classification is obvious and there is no need to adjust the weights for this pattern.

Many methods like this can be considered as modifications of the error function and will
lead to different solutions from the mean-squared-error function, in general. This may be a
drawback if you actually want to optimize the mean-squared-error, but this normally is not
the case for classification problems.

9.11 Remarks

All the methods summarized in this chapter were proposed to accelerate learning. It should
be remembered that there are other factors affecting learning time that have not been
considered here. As noted earlier, things such as network structure, data representation,
choice of error function, and so on may have much stronger effects on performance and
training time than the optimization method. Standard practices like the use of momentum,
the use of tanh rather than sigmoid nodes, centering and normalization of inputs and
outputs, the use of on-line versus batch updates, and so on also affect training times. If
training time is a concern, it is best to explore these options before looking for fast training
methods. Still, it may be necessary to train candidate networks in the process of comparing
these factors and adaptive learning rate algorithms are a reasonable compromise between
speed and robustness.

Often, adaptive learning rate methods are not any faster than standard back-propagation
with optimally tuned parameters [239]. Even so, they effectively automate the search for
good parameters and so may be more reliable and much easier to use. When the time

152 Chapter 9

needed to select optimal parameters by hand is considered, adaptive methods may retain
the speed advantage. In any case, they are usually much faster than back-propagation with
poor parameter choices.

A potential problem with some adaptive methods is that they introduce additional pa-
rameters that need to be tuned. In the worst case, it may be no easier to find a good set
of parameters than it is to find a good set of parameters for standard back-propagation.
Another concern is that they may require storage of more information. Delta-bar-delta, for
example, stores a separate learning rate and δ̄ for each weight. This is not a problem in
small computerized simulations, but it may be a factor in applications using limited hard-
ware (e.g., custom integrated circuits). Standard on-line back-propagation requires the least
amount of storage.

Alpsan et al. [8] asked if modified back-propagation algorithms were worth the effort
and concluded that many were not. They note that optimally tuned back-propagation is
often as fast as any other method and that many of the adaptive methods are sensitive to
parameters and no easier to tune than standard back-propagation. They considered delta-
bar-delta, superSAB, and Vogl’s method, among others, but not Rprop or quickprop.

At this point, Rprop and quickprop seem to be the favored methods. Rprop has fewer
critical parameters and may be more reliable in general. Other methods will often do better
on specific problems, however, so it may be worth experimenting.

When training time is very important, it is worth considering the standard optimization
algorithms, some of which are reviewed in chapter 10. These may be much faster than
simple variations of back-propagation in some cases. This is somewhat problem dependent,
of course. The second order methods seem to be most helpful in the final stages of function
approximation problems where it is necessary to reduce the error to very small values.
Methods like conjugate gradient descent or Newton’s method will converge very quickly
in the neighborhood of a local minimum, but they are not necessarily any faster (and may
be slower) than simpler first order methods in the initial search stages. For classification
problems where training is stopped as soon as all outputs are correct within a tolerance,
for example, 0.2, of the target values on all patterns, the methods of this chapter may be
as fast or faster than conventional second-order optimization methods. If it is necessary to
continue the search to locate the minimum very precisely, then it may be worth switching
over to a more sophisticated second order method for the final tuning.

If training speed is extremely critical, it may also be worth considering a completely
different sort of approximation system since back-propagation training of MLP networks
is one of the slowest training methods for any approximation system [239]. Many other
approximation methods can achieve similar error rates (on suitable problems) with much
shorter training times. Nearest-neighbor methods, for example, require almost no training
time (simply store the patterns) but have longer recall times. Decision trees and para-

Faster Variations of Back-Propagation 153

metric classifiers can also be developed quickly when they are applicable. Within neu-
ral network models, alternatives include radial basis function networks, LVQ, and ART
networks.

9.12 Other Notes

. The focus in this chapter has been on training speed. Generalization is a different issue
and the fastest training method will not always give the best generalization. At best, speed
of learning and quality of generalization are orthogonal issues—completely independent—
and a fast training method would achieve the same generalization as another method except
it would get there faster. In the best case, a fast training method will simply arrive sooner
at the point where cross-validation says training should stop. Of course, if no specific steps
are taken to ensure good generalization, then a fast method might generalize worse than a
slower method as it may have more chance to overfit in the same amount of time.

There have been suggestions that some of the faster methods generalize worse than
slower methods [8, 9], but this has not been studied much. There is some reason to expect
techniques that take long steps (e.g., Newton’s method) to generalize less well because they
may go well past the point of overfitting before it can be detected by cross-validation on a
test set. This does not have to occur, however, and it can be addressed by methods such as
weight decay, pruning, and regularization penalty terms.
. Most of these methods are for batch mode training. Chen and Mars [76] describe an
adaptive stepsize algorithm said to be suitable for on-line training. Modifications may be
required, however, and tuning may be difficult [9].

This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	chap9.pdf
	chap9-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19

	notice.pdf

