
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.



4 MLP Representational Capabilities

The standard multilayer perceptron (MLP) is a cascade of single-layer perceptrons (fig-
ure 4.1). There is a layer of input nodes, a layer of output nodes, and one or more in-
termediate layers. The interior layers are sometimes called “hidden layers” because they
are not directly observable from the system inputs and outputs. Each node has a response
f (wT x) where x is the vector of output activations from the preceding layer, w is a vec-
tor of weights, and f is a bounded nondecreasing nonlinear function such as the sigmoid.
Normally, one of the weights acts as a bias by virtue of connection to a constant input.
Nodes in each layer are fully connected to nodes in the preceding and following layers.
There are no connections between units in the same layer, connections from one layer back
to a previous layer, or “shortcut” connections that skip over intermediate layers. Although
back-propagation can be applied to more general networks, this is the most commonly used
structure.

The following sections summarize some properties and limitations that result from this
structure, independent of methods used to set the weights.

How to Count Layers? A minor digression: there is some disagreement about how to
count layers in a network. Some say a network with one hidden layer is a three-layer
network because there are three layers of nodes: the inputs, the hidden units, and the
outputs. Others say this is a two-layer network because there are only two layers of active
nodes, the hidden units and outputs. Inputs are excluded because they do no computation.
We tend to follow this convention and say that an L-layer network has L active layers;
that is, L− 1 hidden layers and an output layer. Conveniently, this is also the number of
weight layers. Not everyone uses the same convention, however, so it is often simplest
to explicitly specify the number of hidden layers. The network in figure 4.1, for example,
would be called a two-hidden-layer network. In spite of the convention, it is natural to refer
to the input layer at times; we did so in the first paragraph of this chapter.

The notation N1/N2/ · · · /NL is sometimes used to describe the structure of a layered
network. This is simply a list of the number of nodes in each layer. A 10/3/2 network,
for example, has 10 inputs, 3 nodes in a hidden layer, and 2 outputs. A 16/10/5/1 network
would have 16 inputs, 10 nodes in the first hidden layer, 5 nodes in the second hidden layer,
and 1 output. Unless otherwise specified, each layer is presumed to be fully connected to
the preceding and following layers with no short-cut or feedback connections. Figure 4.1
illustrates a 5/5/3/4 structure.

4.1 Representational Capability

The representational capability of a network can be defined as the range of mappings it can
implement when the weights are varied. A particular mapping is within the representational



32 Chapter 4

Figure 4.1
MLP structure. A multilayer perceptron is a cascade of single-layer perceptrons. There is a layer of input nodes
and a layer of output nodes with one or more hidden layers in between.

capability of a net if there is a set of weights for which the net performs the mapping.
Theories about representational capability answer questions like: Given a set of inputs and
associated target outputs, is there a set of weights that allow the network to perform the
desired mapping? Is the network capable of generating the desired outputs from the given
inputs? In some cases, an exact solution may be required while in others, an approximation
may be allowed. Results say whether a particular problem might be solvable by a particular
network without necessarily producing the weights that generate the solution. If the answer
is negative, we know the network cannot solve the problem and this saves us the expense
of a futile search. If the answer is positive, we know a solution exists but these results
don’t guarantee that it will be easy to find or that a chosen optimization method will be
able to find it. Results of this kind provide broad guidelines in selecting an architecture
for a problem. One well-known representational result, for example, is that single-layer
networks are capable of representing only linearly separable functions.

Two Hidden Layers Are Sufficient When designing a layered network, an obvious first
question is how many layers to use. Lippmann [247] shows that two hidden layers are
sufficient to create classification regions of any desired shape. In figure 4.2, linear threshold
units in the first hidden layer divide the input space into half-spaces with hyperplanes,
units in the second hidden layer AND (form intersections of) these half-spaces to produce
convex regions, and the output units OR (form unions of) the convex regions into arbitrary,
possibly unconnected, shapes. Given a sufficient number of units, a network can be formed
that divides the input space in any way desired, producing 0 when the input is in one region
and 1 when it is in the other. The boundaries are piecewise linear, but any smooth boundary
can be approximated with enough units.



MLP Representational Capabilities 33

Figure 4.2
Three layers of linear threshold units are sufficient to define arbitrary regions. Units in the first hidden layer divide
the input space with hyperplanes, units in the second hidden layer can form convex regions bounded by these
hyperplanes, and output units can combine the regions defined by the second layer into arbitrarily shaped, possibly
unconnected, regions. Here, the boundaries are piecewise linear, but any smooth boundary can be approximated
with enough units (based on [247].)

To approximate continuous functions, one can add and subtract (rather than logically
OR) convex regions with appropriate weighting factors so two hidden layers are also
sufficient to approximate any desired bounded continuous function [234].

One-hidden-layer Nets Can Represent Nonconvex, Disjoint Regions Units in the
second hidden layer of figure 4.2 respond to convex regions in the input space. Because
these would be the outputs in a single-hidden-layer network, it is sometimes mistakenly
assumed that single-hidden-layer networks can recognize only convex decision regions.



34 Chapter 4

Figure 4.3
Single-hidden-layer networks can recognize nonconvex decision regions. Here, eight hidden units in a single
layer create a nonconvex “square donut.” Each dashed line is the decision boundary of one of the hidden units.
The hidden unit is active (1) on the side of the line indicated by the pointer and connects to the output unit with
the weight indicated next to the pointer. The other numbers show the summed input to the output unit in different
regions. Thresholding at 8.5 creates the square donut.

Figure 4.4
Weiland and Leighton [407] provide this example of a nonconvex region recognized by a single-hidden-layer
network. Thresholding at 8.7 creates the ‘C’ shaped region: (a) a nonconvex decision region, and (b) the network.
There are 10 hidden nodes. Each has one connection with weight w = ±1 from either the x or y input. Numbers
inside the circles are the node thresholds.



MLP Representational Capabilities 35

Figure 4.5
Disjoint regions recognized by single-hidden-layer networks. In addition to nonconvex regions, single-hidden-
layer networks can also recognize disjoint (unconnected) regions.

Counter-examples are shown in figures 4.3 through 4.5. Figures 4.3 and 4.4 illustrate
nonconvex regions recognized by three-layer nets. (Figure 4.4 is derived from Weiland and
Leighton [407].) Figure 4.5 shows examples of disjoint (unconnected) regions recognizable
by three-layer networks. Other examples can be found in [180, 255, 249].

4.2 Universal Approximation Capabilities

The examples above suggest that any bounded function can be approximated with arbitrary
accuracy if enough hidden units are available. These ideas have been extended theoretically
to show that multilayer perceptrons are universal approximators. That is, they are capable
of arbitrarily accurate approximation of essentially arbitrary continuous mappings from
the [−1, +1]n hypercube to the (−1, 1) interval. This is an important result because it says
neural networks, as a class, are powerful enough to implement essentially any function we
require.

4.2.1 Kolmogorov’s Theorem, One Hidden Layer Is Sufficient

A somewhat surprising result is that two hidden layers are not necessary for universal
approximation; one hidden layer is sufficient. Kolmogorov [219, 220] showed that a con-
tinuous function of several variables can be represented exactly by the superposition of
continuous one-dimensional functions of the original input variables. A refined proof by
Sprecher [355] is often cited. Hecht-Nielsen [161] introduced the result to the neural net-
work community and showed an implementation in the form of a single-hidden-layer net-
work. Briefly, the result is that any continuous function mapping an n-dimensional input,
n ≥ 2, to an m-dimensional output can be implemented exactly by a network with one



36 Chapter 4

hidden layer. For φ : In → Rm, φ(x)= y, where I is the closed interval [0, 1] and therefore
In is an n-dimensional hypercube, the function φ can be implemented exactly by a single-
hidden-layer neural network having n elements in the input layer, (2n+ 1) elements in the
middle layer, and m elements in the output layer. That is,

zk =
n∑
j=1

λkψ(xj + εk)+ k (4.1)

yi =
2n+1∑
k=1

gi(zk), (4.2)

where λ is a real constant, ψ is a continuous real monotonic increasing function indepen-
dent of φ but dependent on n, and ε is a rational number, 0< ε ≤ δ, where δ is an arbitrarily
chosen positive constant. The output node functions gi are real and continuous and depend
on φ and ε. Unfortunately, the proof is not constructive; it does not say how weights should
be chosen to implement a particular mapping or specify the functions gi (different for each
i), which have unknown and often extremely nonlinear shapes.

Girosi and Poggio [139] point out that the theorem might not be relevant because the
inner functions ψ are extremely nonsmooth. (The theorem fails when restricted to smooth
functions.) The functions are very unlike the sigmoids normally used in neural networks
and not likely to be learnable because of their extreme roughness. Further, the functions gk
depend on φ, are all different, and do not form a parameterized family. They are likely to
be at least as complex as φ, if not more so, and therefore no easier to learn than φ itself.
In effect, the complexity of approximating the original function is shifted into the task of
finding the internal node functions.

In more recent work, Sprecher [356] describes a stronger version of the theorem using
translates of a single function in place of the multiple internal functions gk. The replace-
ment function remains nonsmooth, however, so the objections remain.

Kurkova [231] notes that although exact representation is not possible with smooth in-
ternal functions, approximation is, and goes on to show universal approximation properties
of sigmoidal networks with two hidden layers. But other work [244] suggests that approx-
imation of the internal functions does not yield approximation of the target function.

4.2.2 Other Proofs of Universal Approximation Capability

Several proofs are based on showing that single-hidden-layer networks can implement
Fourier transforms and thus have the same approximation capabilities. The idea is that a
sinusoid can be implemented by sums and differences of many shifted sigmoids, one for
each half cycle. Irie and Miyake [186] give a proof based on Fourier integrals where the



MLP Representational Capabilities 37

number of nodes required for exact approximation is infinite. Gallant and White [132] give
another Fourier transform proof using monotone “cosine-squasher” sigmoids. Funahashi
[131] approximates the integral representation of Irie and Miyake with a discrete sum
and shows that networks with at least one hidden layer of sigmoid units are universal
approximators.

Cybenko [95, 96] provided one of the first rigorous proofs of universal approximation
capability, showing that a network with linear output units and a single hidden layer of
sigmoid units is sufficient for uniform approximation of any continuous function in the
unit hypercube. Hornik, Stinchcombe, and White [177] and Stinchcombe and White [358]
show that standard multilayer networks using arbitrary squashing functions are universal
approximators; single-hidden-layer nets are included as a special case. Approximation of
a function and its derivatives using arbitrary bounded nonconstant squashing functions is
discussed by Hornik [175]. Other work on approximation includes [162, 48, 188, 226, 176].

In most cases, these are existence proofs rather than constructive recipes for finding a
solution to a particular problem. These results do not guarantee that a chosen optimization
method will find the necessary weights or that the solution found will be efficient. A
constructive proof based on the Radon transform is given by Carroll and Dickson [64].

It should be noted that universal approximation is not a rare property. Many other
systems have similar capabilities: polynomials, trigonometric polynomials (e.g., Fourier
series), kernel regression systems, wavelets, and so on. By itself, this property does not
make neural networks special. The results are important because they show that neural
networks are powerful enough to approximate most functions that people find interesting.
The lack of a universal approximation capability, on the other hand, would be bad news;
neural networks would then be too weak for many problems and therefore much less
appealing.

Given that there are many universal approximation systems, the choice of one over an-
other depends on other factors such as efficiency, robustness, and so on. Barron [21, 22,
23] addresses the problem of how the MLP approximation error scales with the number of
training samples and the number of parameters. One important result is that the error de-
creases likeO(1/

√
N) as the number of training samplesN increases. Another result is that

the error decreases like O(1/M) as a function of M , the number of hidden nodes. Unlike
other systems (e.g., polynomials), this is independent of the input dimension and appears
to avoid the “curse of dimensionality” (see [317: 178] for a skeptical view, however). These
results can be used to put bounds on the necessary number of hidden nodes (in one hidden
layer) and provide another justification for the rule of thumb that the number of training
samples should be larger than the number of parameters divided by the desired approxima-
tion error, N >O(Mp/ε). Here N is the number of samples, M is the number of hidden
nodes, p is the input dimension (so Mp is approximately the number of parameters), and
ε is the desired approximation error.



38 Chapter 4

One Hidden Layer Is Not Always Enough The limits of these proofs are sometimes
forgotten. They say that a sufficiently large one-hidden-layer network is capable of es-
sentially arbitrarily accurate approximation of continuous functions over compact regions.
Although this covers most functions we would like to approximate, it may not include
them all. Sontag [350, 351] points out that there are certain functions, important in inverse
control, which cannot be approximated by single-hidden-layer nets with any number of
units but which can be implemented rather simply with two hidden layers. That is, there
are control systems that can be stabilized by a two-hidden-layer network but not by a one-
hidden-layer net. The difference depends not on the number of units needed to achieve a
certain numerical accuracy but rather on the need to approximate discontinuous functions
that may arise as one-sided inverses of continuous functions.

4.3 Size versus Depth

Since a single sufficiently large hidden layer is adequate for approximation of most func-
tions, why would anyone ever use more? One reason hangs on the words “sufficiently
large.” Although a single hidden layer is optimal for some functions, there are others for
which a single-hidden-layer solution is very inefficient compared to solutions with more
layers.

Certain functions containing disjoint decision regions cannot be realized exactly with
only a single hidden layer of threshold units [255]. Certain functions can be implemented
exactly by small networks with two hidden layers but require an infinite number of nodes to
approximate with a single hidden layer network [255, 254]. Figure 4.6 shows an example
from [255]. Gibson and Cowan [137] provide another example. Chester [80] describes
a “pinnacle” function (1 at the origin and 0 elsewhere) for which a single-hidden-layer
network needs O(1/ε) nodes to achieve O(ε) maximum error where a two-hidden-layer
network needs only 4 nodes. This uses a maximum error criteria, however, rather than mean
squared error. For certain functions, single-hidden-layer networks may require very large
weights or extreme precision [180].

Although these results suggest that two-hidden-layer networks are more powerful, one-
hidden-layer networks may be adequate for many functions encountered in practice. One-
and two-hidden-layer networks are compared empirically by de Villiers and Barnard [104].
For fair comparison, the networks are configured to have approximately the same number
of weights. Using conjugate gradient training and artificial clustered 2-dimensional data
(mixtures of Gaussians), no significant difference was found in the best solution found by
either architecture. The one-hidden-layer nets were reported to have lower average error
and perhaps generalized better. For two-hidden-layer nets, the same authors report that



MLP Representational Capabilities 39

Figure 4.6
Certain functions can be implemented exactly by small networks with two hidden layers but require an infinite
number of nodes to approximate if constrained to a single hidden layer [255, 254]: (a) a simple function that can
be implemented with two hidden layers each containing two threshold units, (b) an approximation by a network
with just one hidden layer, (from [255]).

training is easier if the hidden layers have approximately equal sizes. Similar results are
reported by Huang and Lippmann [180]; no significant difference was seen in error rate or
convergence time.

4.3.1 Size versus Depth for Boolean Functions

Many results exist for Boolean logic functions, e.g., [347]. (See figure 4.7 for the elemen-
tary gates.) It is obvious that a net with one hidden layer of 2n threshold units can compute
any Boolean function of n binary inputs since any Boolean function can be expressed in
conjunctive (or disjunctive) normal form. Each hidden unit computes one of the 2n prod-
uct terms and the output unit ORs selected product terms to produce the desired result. An
AND-OR array has this structure. This amounts to exhaustive enumeration of all positive
cases and becomes impractical for large n.

More economical solutions can often be obtained by adding more layers. The number of
nodes needed can be reduced by a factor ofO(

√
n) because any Boolean function of n vari-

ables can be computed by a network with two hidden layers and O(2n/2) threshold gates
[347]. This is nearly optimal as an unbounded depth circuit must have size O(2n/2/

√
n)

[347: 125]. Notice that this is an exponential reduction in size.
Because a one-hidden-layer solution may be inefficient, there may be functions that

cannot be implemented by a network of limited size using just one hidden layer. It is known
that there are Boolean functions which cannot be computed by threshold networks with



40 Chapter 4

Figure 4.7
AND and OR logic functions. Any logic function can be implemented by a circuit of AND, OR, and NOT gates.
Threshold units are at least as powerful as logic circuits because they can implement all the necessary elementary
functions, as well as others: (a) the AND function, (b) linear threshold unit implementation of AND, (c) the OR
function, and (d) linear threshold unit implementation of OR. The NOT function can be obtained from a single-
input unit with a large negative weight and a zero threshold.

one hidden layer and a constant number of nodes, but which can be computed by threshold
networks with two hidden layers and a constant number of nodes ([250]; cited in [99]).

“Symmetric” functions depend only on the sum of the inputs,
∑
i xi; parity is one

example. For arbitrary symmetric Boolean functions of n inputs, O(n) units are needed in
depth-2 (one hidden layer) networks of linear threshold units (LTU), but onlyO(

√
n) units

are needed in depth-3 (two hidden layers) networks [348, 347]. For periodic symmetric
functions such as parity, a depth/size tradeoff can be obtained at all depths. For parity(n),
there is a depth(d + 1) LTU circuit of size O(dn1/d) [347]. But increasing the depth
beyond 3 does not decrease size much; O(

√
n/ log n) LTU gates are needed to compute

general symmetric functions if there is no restriction on depth [347].
Another reason to use more than one hidden layer is to decrease the weight magnitudes.

A one-hidden-layer implementation may require arbitrarily large weights. If permissible
weight values are bounded (e.g., by hardware limitations), networks with more hidden
layers may be more efficient. A depth-d circuit with exponential weights can be simulated
by a depth-(d + 1) circuit with polynomially bounded weights at the cost of a polynomial
increase in network size [347: 40]. A single linear threshold unit with exponential weights



MLP Representational Capabilities 41

can be exchanged for a depth-3 polynomial size circuit with polynomial weights [347: 41].
Anything computable by a depth-2 threshold circuit of polynomial size can be computed
by depth-3 small weight threshold circuits of polynomial size ([143]; cited in [142]). Thus
if the range of weights is limited, networks with more than one hidden layer may be able
to realize functions that cannot be realized by single-hidden-layer networks.

Caveats The results just stated say there are functions for which single-hidden-layer
networks are less efficient than networks with more hidden layers. Of course, there are
still functions where small single-hidden-layer networks are optimal and additional hidden
layers are not useful. Single-hidden-layer networks may need large numbers of nodes to
compute arbitrary functions, but small networks may suffice for particular functions.

Many of these results are statements about the power of a class of networks rather
than guarantees that a particular network will be able to learn a particular set of data and
generalize accurately. Many are based on asymptotic analyses valid only for large data sets
or large input dimensions. Many are statements about the existence of a solution rather
than constructive statements about how to find the necessary set of weights. Most depend
on particular assumptions that may be violated in a given problem.

In real problems, training sets may be rather small and nonrandomly sampled, data
distributions may have arbitrary forms, and the target function is unknown. It may be
problematic just to determine if the data fits the assumptions. Although representational
capability results can be helpful in putting bounds on the size and configuration of a
network, they do not guarantee that a particular network and training algorithm will be
able to learn a particular set of samples of a given function. Even if it is guaranteed that a
particular network can exactly classify N training points (using some set of weights), this
does not necessarily imply that the system will generalize well to new points. Finally, many
of the results for Boolean functions are for exact implementation and may not hold when
approximation is allowed.

4.4 Capacity versus Size

Another big question in designing a network is how many nodes to place in each layer.
Universal approximation results say that a sufficiently large network can fit almost any
function we are likely to want to approximate, but they do not deal with the problem
of training a network to fit a finite set of discrete data points. Obviously, we cannot
have infinite numbers of nodes in practice so it is useful to have bounds on the number
that will be needed to fit a particular function. Even if arbitrarily large networks were
allowed, it might not be possible to use them effectively given the limited amount of
information contained in the training samples. After the network grows past a certain size,



42 Chapter 4

generalization criteria become the limiting factor on performance; a large network can
often fit the training data exactly but is unlikely to do so in a way that fits the underlying
function that generated the data.

Obviously, if we have m training points, a network with a single layer of m − 1 hidden
units can learn the data exactly, since a line can always be found onto which the points
project uniquely [80]. (Set each weight vector parallel to this line, make the magnitude
large so the sigmoid approaches a step function, adjust the threshold of node k, k =
1 . . . M − 1, so it separates points k and k + 1, and assign the output weights based on
the difference in target values for points k + 1 and k.) Of course, this is inefficient and
generalizes very badly; it uses as much storage as a nearest neighbor classifier, takes about
the same time to evaluate on a serial computer, and probably generalizes worse. (Poor
generalization could be expected just on the grounds that the number of weights would
be much larger than the number of training samples.)

In general, more efficient solutions are sought. Most interesting functions have structure
so each node should be able to account for more than just one training sample.

The sections that follow summarize some results on the number of patterns representable
by multilayer networks of a given size. Results are simply listed in most cases; the reader
should consult the references for details. Although these results may be used as guidelines
in selecting a network, they should not be interpreted as inviolable rules. In many cases,
they put bounds on the number of independent samples a given net can represent. The
bounds may be loose, however, and actual data may be correlated so smaller networks may
suffice for particular problems. Furthermore, we do not need the network to be able to fit
any function on the samples, just the particular function that generated the data. We would
like the network to fit the data and approximate the true target function, but the true target
function is usually unknown and if we make the network powerful enough to represent any
possible function on the data, it is probably too powerful. If the results say a given network
can fit the m training points exactly, there is a danger of overfitting so smaller networks
should probably be considered. Generalization depends on many factors so formulas based
only on network size and number of samples cannot predict generalization performance.

4.4.1 Number of Cells Created by m Hyperplanes

For a layered network to realize an arbitrary dichotomy on m points in a d-dimensional
space, each point must be uniquely represented in terms of the activities of the first hidden
layer units.

Consider a network of linear threshold units. Each unit in the first hidden layer has an
associated hyperplane that partitions the input space into two half-spaces. Two hyperplanes
can divide the space into four quadrants, three hyperplanes may produce eight octants,



MLP Representational Capabilities 43

and so on. In general, h hyperplanes could produce up to 2h different regions, or cells
(assuming h ≤ d , the input dimension). The hyperplanes form the cell boundaries. Within
each cell, the vector of hidden layer outputs is constant (since the input must cross at
least one hyperplane boundary for the output to change) so two points in the same cell
are indistinguishable in terms of the hidden layer outputs. Thus, to realize an arbitrary
dichotomy on m points, each point must lie in a different cell. If the network does not
have enough hidden units to create at least m cells, it won’t be able to realize some
dichotomies.

An expression for the number of cells created by intersections of hyperplanes is derived
by Makhoul, El-Jaroudi, and Schwartz [255]. The results are similar to Cover’s [87]
formula for the number of linearly separable dichotomies (section 3.3). Let C(h, d) be the
number of cells formed by h planes in general position in the input space of d dimensions.
(h planes are in “general position” in d space if none of them are parallel and no more than
d planes intersect at a point.) A recursive formula is

C(h, d) = C(h − 1, d) + C(h − 1, d − 1). (4.3)

with boundary conditions

C(0, d) = 1 (d ≥ 0) (4.4)

C(h, 0) = 1 (h ≥ 1). (4.5)

This gives [255]

C(h, d) =



2h h ≤ d
d∑

i=0

(
h
i

)
h > d .

(4.6)

For h < d , each new hyperplane can be positioned to split all existing cells so up to 2h

cells can be created. For h > d, C(h, d) grows more slowly because each new hyperplane
cannot split every existing cell. For h � d , the last term

(
h
d

)
dominates and

C(h, d) ≈ hd

d!
, (h � d). (4.7)

The number of cells obtained by adding a new hyperplane (in terms of the number of
existing cells) is

C(h, d) = 2C(h − 1, d) −
(

h − 1

d

)
(4.8)



44 Chapter 4

and the number of cells obtained when adding a new dimension is

C(h, d) = C(h, d − 1) +
(

h

d

)
. (4.9)

Expressions for the number of open (bounded at infinity) and closed cells are also given in
[255]. Two hidden layers are required to implement all the 2C(h,d) possible binary functions
on the C(h, d) cells [255].

Although this puts bounds on the number of nodes (hyperplanes) needed to form an
arbitrary dichotomy on m points, in practical problems we have one specific dichotomy
to implement. The data are likely to have structure and large savings can often be obtained
because a single cell can contain entire clusters of points belonging to the same class. Also,
when the input data are highly correlated, the effective dimension d ′ may be less than d .

4.4.2 MLP Capacity I

Baum [33, 32] studied the number of examples needed to train a network with N nodes and
W weights for a given error rate ε. These results are independent of the training algorithm
and are based on an estimate of the VC dimension of the network—a relation between a
system’s complexity and the amount of information that must be provided to constrain it
(see section 15.4).

If a network can be trained with

m ≥ O

(
W

ε
log2

N

ε

)

random examples of the desired mapping so that at least a fraction 1 − ε/2 are correctly
classified, then it will almost certainly correctly classify a fraction 1 − ε of test examples
drawn from the same distribution (for 0 < ε ≤ 1/8) [33, 32]. This is an upper bound for the
number of training examples needed. A lower bound for MLPs with one hidden layer is
�(W/ε). That is, a network trained on fewer than �(W/ε) will fail (some fraction of the
time) to find a set of weights that classifies a fraction 1 − ε of future examples correctly.

This agrees with the W/ε rule of thumb given by Widrow for Adaline networks. Similar
results are also obtained in linear regression. Roughly, if the network has W adjustable
weights and an error rate ε is desired, it is necessary to have on the order of W/ε samples.

Assuming that the function can be learned, this gives an estimate of the network size
necessary to learn m training patterns. For input patterns chosen randomly from the domain
{−1, +1}n, a network with one hidden layer of 2dm/bn(1 − 10

ln n
)ce linear threshold units

can learn the m ≤ 2n/3 training patterns.



MLP Representational Capabilities 45

4.4.3 MLP Capacity II

Baum [30] makes the following points:

. A MLP with one hidden layer of N − 1 nodes is capable of computing an arbitrary
dichotomy on N points [284].
. A network that implements f (x) on N points in general position in d dimensions, must
have at least N/d units in the first hidden layer [30]. If the points are in nongeneral position
(structured data), many fewer units may be necessary.
. A one-hidden-layer net with dN/de hidden units can compute an arbitrary f (x) on N

points in general position [30]. Small changes in the input vector may cause large changes
in the output, however, so good generalization is not guaranteed.
. The number of linearly separable dichotomies of N points in d dimensions, for N ≥ 3d ,
is less than 4Nd/d! [30].
. No feedforward net (of the type considered) can compute an arbitrary map from N d-
dimensional vectors into the e dimensional hypercube unless it has a number of connections
Nc ≥ eN

log2 N
.

. For a one-hidden-layer network with d inputs, G hidden units, and e outputs, the number
of connections is Nc = G(e + d). Thus, a one-hidden-layer network cannot compute arbi-
trary functions on a set of N vectors in d-dimensions unless it has at least G = eN

(e+d) log2 N

hidden units.
. No MLP can compute an arbitrary function, no matter how many layers it has, unless it

has O(
√

Ne
log2 N

) units. As for all the items in this section, many fewer units may be needed

if the training data is structured.
. A one-hidden-layer net with N hidden units can represent an arbitrary mapping of N

points into the e hypercube.
. A one-hidden-layer net with G = b 4N

d
cd e

blog2
N
d

c e hidden units is capable of arbitrary
binary mappings.
. There are 2Ne mappings of N d-dimensional vectors into the e-dimensional hypercube.

4.4.4 MLP Capacity III

Widrow and Lehr [403] consider a fully connected feedforward network of linear threshold
units with Nx inputs (excluding the bias), Nh hidden nodes in a single layer, and Ny outputs.
There are Nw weights and Np patterns in general position to be learned.



46 Chapter 4

A bound on the number of weights needed is

NyNp

1 + log2 Np

≤ Nw < Ny

(
Np

Nx

+ 1

)
(Nx + Ny + 1) + Ny. (4.10)

A loose upper bound for the number of hidden nodes Nh required is

Nh ≤ Ny

Np

Nx

< Ny

(
Np

Nx

+ 1

)
. (4.11)

When Nx,Nh >∼ 5Ny (when there are more inputs and hidden nodes than outputs), the
deterministic capacity (the number of patterns that can certainly be stored) is bounded
below by ∼ Nw/Ny. When Nw � Ny (i.e. 1000×), the capacity is bounded above by

∼ Nw

Ny

log2
Nw

Ny

.

Thus

Nw

Ny

− k1 ≤ Cd ≤ Nw

Ny

log2
Nw

Ny

+ k2 (4.12)

where k1 and k2 are small constants when Nx + Nh � Ny.
For good generalization, the number of training patterns should be at least several times

larger than the capacity of the network. Otherwise, the amount of data will be insufficient
to constrain the network.

4.4.5 MLP Capacity IV

The results of section 3.3 show that, on average, a single linear threshold unit with n

inputs can be made to correctly classify up to m = 2n random binary patterns before the
probability of error falls to 1/2. In other words, a linear threshold unit has a probabilistic
capacity of m = 2n patterns.

Mitchison and Durbin [269] study the capacity of a MLP with one hidden layer. As
above, the capacity is defined as the number of random input/output patterns that can be
stored before the probability of error on recall reaches 1/2. They find that for a MLP with
n inputs, one layer of h hidden units, and s output units, where s ≤ h ≤ n, the capacity m

satisfies

2n ≤ m ≤ nt log t (4.13)

where t = 1 + h/s, n ≥ 2, and t ≥ 2 [269].



MLP Representational Capabilities 47

If there is a single output that is a fixed Boolean function of the hidden units, then
m ≤ O(nh log h). Comparing this to the case above when s = 1 and thus t = 1 + h shows
that allowing the output to be a variable function of the hidden units has an effect on the
capacity equivalent to adding one hidden unit. Because a one-hidden-layer network can be
connected in such a way that it has the same response as a single-layer network with the
same number of inputs and outputs, the lower bound of m ≥ 2n still applies. For the special
case s = h = n, they find 2n ≤ m ≤ 9.329n.

Note that the capacity bounds are defined probabilistically for random functions on a
randomly chosen set of points; the actual number of example pairs of a particular function
that can be learned by a particular network will depend heavily on the function and how
the examples are chosen. These are limiting bounds for the capacity; m certainly exceeds
the lower bound and is certainly less than the upper bound. The actual capacity that can be
achieved is less than the upper bound, possibly by a large amount.



This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.


	chap4.pdf
	chap4-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

	notice.pdf

