
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

A Linear Regression

It is useful to review linear regression because the mathematics of single-layer perceptrons
are very similar, because more general networks are often cascades of single-layer net-
works, and because linear analyses are often useful first-order approximations of nonlinear
systems. Consider a linear system

y = xT w (A.1)

where x is an input vector and w is a weight vector to be determined. Let d be the desired
output for the given input x ∈ RN and assume x and d have stationary statistics. The
output y is one-dimensional here but the derivation is easily generalized to higher output
dimensions. The single-sample error is e = d − y and the squared error is

e2 = eT e

= (d − xT w)T (d − xT w)

= d2 − 2dxT w + wT xxT w. (A.2)

Let the error function be 1/2 the mean squared error (to suppress a factor of 2 later on)

2E = E
[
e2
]

= E
[
d2
]

− 2E
[
dxT

]
w + wT E

[
xxT

]
w. (A.3)

Note, E is the error function but E [·] denotes an expected value. Let P = E [dx] and
R = E

[
xxT

]
. P is the input-target correlation vector with elements pj = E

[
dxj

]
and R is

the input autocorrelation matrix with elements rij = E
[
xixj

]
. Then (A.3) can be written

2E = E
[
d2
]

− 2PT w + wT Rw, (A.4)

which is a quadratic function of w. R is a real symmetric matrix and thus positive-semi-
definite, wT Rw ≥ 0, so E has a single global minimum. The derivative of E with respect
to w is

∂E

∂w
= Rw − P. (A.5)

Setting this to zero produces

Rw = P, (A.6)

which can be solved to obtain the optimum weight vector w∗

w∗ = R−1P. (A.7)

294 Appendix A

Numerical analysis texts suggest several ways to solve systems of linear equations that may
be preferable to inversion when R is poorly conditioned.

Substitution into (A.4) and simplifying produces an expression for the minimum error
obtained

2Emin = E
[
d2

k

]
+ w∗T Rw∗ − 2PT w∗

= E
[
d2

k

]
− PT w∗

Emin = 1

2

(
σ 2

d + µ2
d − PT w∗) (A.8)

where µd and σd are the mean and standard deviation of the target. This may be smaller
when µd = 0, which is reasonable because (A.1) does not include an offset term.

It can be shown that the error is a quadratic function of the difference w − w∗

2E = 2Emin + (w − w∗)T R(w − w∗). (A.9)

It is minimum at w = w∗ and increases quadratically with the difference w − w∗. At the
optimum, the error is uncorrelated with the input

e = d − xT w

ex = dx − xxT w

E [ex] = P − Rw

= P − RR−1P

= P − P

= 0.

This makes sense because correlation would indicate that the error contains remaining
linearly predictable elements that could be reduced further by modifying w.

A.1 Newton’s Method

Let g = ∂E
∂w = Rw − P. Then

R−1g = w − R−1P

R−1g = w − w∗

Linear Regression 295

This gives the update rule

wk+1 = wk − ηR−1gk (A.10)

1wk+1 = η(w∗ − wk) (A.11)

(where the subscripts index time rather than vector elements). At each step, w is changed
by a fraction η of the difference (w∗ − wk). Because the error surface is quadratic, the
solution could be obtained in a single step when η = 1. For nonlinear optimization tasks
such as most neural network problems, however, the linear approximation is only locally
valid and smaller step sizes are used to avoid straying too far from the region of validity;
one-step convergence is not possible and iteration with a smaller step size is necessary. In
the linear case, the eventual solution is the same however, w∞ = w∗.

A.2 Gradient Descent

For large input dimensions (or small computers), storage and accurate inversion of R can be
a problem so iterative procedures are often used. In simple gradient descent, R is replaced
by I (actually, R = I only for zero-mean, unit-variance, uncorrelated inputs) and the weight
vector moves directly down the local gradient

wk+1 = wk − ηg. (A.12)

The step size η controls how much w changes in each iteration. Although this will eventu-
ally converge to the optimal solution, the time required may be very long as the gradient,
and thus the step size, approaches zero at the minimum.

Stability requires 0 < η < 2/λmax where λmax is the largest eigenvalue of R (see below).
When η > 2/λmax, the system will diverge. Because λmax is usually unknown, a smaller
than optimal step size must be used which may further slow convergence.

Convergence Rate of Gradient Descent Assuming R is full rank with distinct eigen-
values, it can be decomposed into R = VDVT where V is the matrix whose columns are
eigenvectors of R and D is the diagonal matrix whose entries are the corresponding eigen-
values. Because the eigenvectors are orthonormal, V is unitary, VT = V−1. After changing
coordinates z = VT (w − w∗), equation A.9 can be written

2E = 2Emin + (w − w∗)T R(w − w∗)

= 2Emin + zT VT VDVT Vz (A.13)

= 2Emin + zT Dz. (A.14)

296 Appendix A

Because D is a diagonal matrix, E is now the sum of N uncoupled components

E = Emin + 1

2

N∑
k=1

λkz
2
k (A.15)

where zk is the projection of w − w∗ on the kth eigenvector and λk is the corresponding
eigenvalue. The gradient of E with respect to z becomes

∂E

∂z
= Dz, (A.16)

which gives the gradient descent update rule

z(t + 1) = z(t) − ηDz(t). (A.17)

The components are decoupled, so we have N independent processes

zk(t + 1) = zk(t) − ηλkzk(t)

= (1 − ηλk)zk(t) (A.18)

and after m time steps

zk(t + m) = (1 − ηλk)
mzk(t).

For zk(t + m) to approach 0 as m becomes large, it is necessary that |1 − ηλk| < 1, which
requires λk > 0 and 0 < η < 2/λk for all k, that is,

0 < η <
2

λmax

. (A.19)

with fastest convergence occurring at η = 1/λmax. Le Cun, Simard, and Pearlmutter [94]
describe an iterative method for estimating λmax in a neural network; see section 6.1.7.

From equation A.18, we have

1zk = −ηλkzk.

The continuous-time approximation

dzk

dt
= −ηλkz(t)

has solution

zk(t) = e−ηλktzk(0), (A.20)

Linear Regression 297

which shows the exponential nature of the convergence. The overall convergence is limited
by the rate of convergence of the slowest component. Using the optimum η = 1/λmax

gives

zslowest(t) = exp

(
− λmin

λmax

t

)
zk(0). (A.21)

That is, the overall convergence is governed by the slowest time constant λmax

λmin
, where λmin

is the smallest nonzero eigenvalue.
There may be a loophole here, however. Using (A.15), the overall error can then be

expressed as

E = Emin + 1

2

N∑
k=1

λk exp

(
−2

λk

λmax

t

)
zk(0). (A.22)

If we are satisfied when the error is small but nonzero, at 0.001 MSE say, then if zk(0) is
small enough, the contribution of the kth component to the total error will be small and it
will not be necessary to wait for these components to fully converge. Although small λk

values cause slow convergence of the kth component, they also weight the contribution of
the component to the total error.

An approximate expression for the distribution of eigenvalues in the case of ran-
dom, uncorrelated inputs is given by Le Cun, Kanter, and Solla [92, 93] and leads to
estimates of the learning time. The following points are made: Nonzero-mean inputs,
correlations between inputs, and nonuniform input variances can all lead to increased
spread between the minimum and maximum eigenvalues. For nonzero-mean inputs, there
is an eigenvalue proportional to N so λmax is much larger than in the zero-mean case
and convergence time is slower. Subtracting the mean from the inputs suppresses the
large eigenvalue and leads to faster training times. Nonuniform input variances can also
lead to an increased spread in the eigenvalues which can be suppressed by rescaling
the inputs. This result provides justification for centering and normalizing input var-
iables.

For a multilayer network, the hidden layer outputs can be considered as inputs to the
following layer. Because sigmoid outputs are always positive and therefore have a nonzero
mean, while symmetric (odd) functions such as tanh are at least capable of a zero mean,
this also provides justification for the empirical observation that use of tanh nonlinearities
often produces faster training than sigmoid nodes. The result also provides justification for
the suggestion of scaling the learning rate for each node by 1/M , where M is the number
of inputs into the node (see section 6.1.9).

298 Appendix A

A.3 The LMS Algorithm

The Widrow-Hoff learning rule [402], also called the LMS (least mean squares) algorithm
or the delta rule is basically an iterative on-line implementation of linear regression. Like
gradient descent, it avoids storing R, but the LMS method reduces storage requirements
even further. Gradient descent still requires O(N) storage to accumulate error terms for
the entire training set in order to approximate the true gradient before making a weight
change. The LMS method avoids this may making weight changes as soon as errors occur.
In the limit of very small learning rates, the result is the same. Like linear regression, it
also minimizes the mean squared error of a linear fit so it shares many properties with
linear regression and succeeds or fails in the same situations. An extensive summary of the
LMS algorithm is provided by Widrow and Stearns [405].

As before, the half mean squared error is E = 1
2E

[
e2
]

and the gradient is g = ∂E
∂w . The

LMS algorithm does steepest descent using an estimate of the gradient based only on the
error on the current pattern

ĝ = 1

2

∂e2

∂w
(A.23)

= −ex. (A.24)

That is, it does on-line rather than batch learning. The update rule is then

wk+1 = wk − ηĝk (A.25)

= wk + ηekxk (A.26)

where 0 < η < 2/λmax for stability. Here, subscripts index pattern presentations rather than
vector elements.

Because λmax is unknown unless R is analyzed, an estimate must be used. R is
nonnegative-definite, so all eigenvalues are nonnegative λi ≥ 0 and λmax can be bounded by

λmax ≤
∑

i

λi = trace(R) (A.27)

where trace(R) =∑
i rii =∑

i E
[
x2

i

]
. Because this places a upper bound on λmax that

may too high, the resulting η value may be smaller than necessary. Adaptive learning rate
methods, perhaps initialized this way, may be able to improve training speed by adjusting
the rate based on observed training performance. As an aside, this provides justification for
centering input variables because E

[
x2

i

]= σ 2
i + µ2

i where σ 2
i and µi are the variance and

mean of input xi; zero-mean inputs will produce lower estimates of λmax and allow larger
step sizes to be used.

This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	appa.pdf
	appa-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

	notice.pdf

