
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.



2 Supervised Learning

In machine learning, supervised learning has come to mean the process of adjusting a
system so it produces specified outputs in response to specified inputs. It is often posed
as a function approximation problem (figure 2.1). Given training data consisting of pairs
of input patterns, x, and corresponding desired outputs or targets, t , the goal is to find
a function y(x) that matches the desired response for each training input. The functional
relationship between the input patterns and target outputs is usually unknown (otherwise
different methods would be used) so the idea is to start with a system flexible enough to
implement many functions and adjust it to fit the given data.

“Training” refers to the adaptation process by which the system “learns” the relationship
between the inputs and targets. This is often a repetitive incremental process guided by
an optimization algorithm (figure 2.2). The process is “supervised” in the sense that an
external “teacher” must specify the correct output for each and every input pattern. In some
cases, the teacher is a person who specifies the correct class for each pattern. In other cases,
it may be a physical system whose behavior we want to model.

In this book, the learning system is an artificial neural network. During training, each
input pattern is presented and propagated through the network to produce an output. Unless
the network is perfectly trained, there will be differences between the actual and desired
outputs. The real-world significance of these deviations depend on the application and is
measured by an objective function whose output rates the quality of the network’s response.
(The terms “cost function” and “error function” are also used.) The overall goal is then to
find a system that minimizes the total error for the given training data.

When defined in this way, training becomes a statistical optimization problem and there
are a number of interacting factors to be considered:

. Variable selection and representation. What information should be presented to the net-
work and in what form?
. Selection and preparation of training data.
. Model selection. What structure should the network have?
. Choice of error function. How is network performance graded?
. Choice of optimization method. The network output is a function of its parameters
(weights). How should parameters be adjusted to minimize the error?
. Prior knowledge and heuristics. If we know useful rules or heuristics (which may not be
learnable from available data) can we somehow insert them into the system? Can we make
the system favor particular sorts of solutions?
. Generalization. How well does the network really work? Did it learn what we intended
or did it simply memorize the training set or find a set of tricks that work on this data but
not on others?

These issues are discussed at length in following chapters.



8 Chapter 2

Figure 2.1
Supervised learning is often viewed as function approximation problem. Given a set {(xi , ti)}, i = 1 . . . M , of
training pairs with inputs xi and target outputs ti , the goal is to find a function f (x) that captures the input-output
relationships illustrated in the training examples, f (xi) ≈ ti . If the search is successful, the new function can then
be used to estimate the correct output for new points not in the original training set. Ideally, the functional form
may also be more compact and faster to evaluate.

Figure 2.2
Supervised learning model. In supervised learning, a desired output is specified for every pattern encountered
during training. Differences between the network output and training target are treated as errors to be minimized
by the training algorithm.



Supervised Learning 9

2.1 Objective Functions

As noted, the role of the objective function is to measure how well the network performs
the intended task. The function defines the difference between good or bad performance
and thus guides the search for a solution. It has a fundamental effect on the outcome so it
is important to choose a function that accurately reflects our design goals.

A few standard error functions are commonly used. The most common is the sum of
squared errors (SSE),

ESSE =
∑
p

∑
i

(tpi − ypi)
2 (2.1)

where p indexes the patterns in the training set, i indexes the output nodes, and tpi and ypi

are, respectively, the target and actual network output for the ith output node on the pth
pattern. This is the sum of the squared errors on each training pattern. The mean-squared-
error (MSE)

EMSE = 1

PN
ESSE (2.2)

normalizes ESSE for the number of training patterns P and the number of network outputs
N . The logarithmic or cross-entropy error function

Elog =
∑
p

∑
i

tpi ln ypi + (1 − tpi) ln(1 − ypi) (2.3)

is often used for classification problems where the network output is interpreted as the
probability that the input pattern belongs to a certain class. Here ypi is the estimated
probability that pattern p belongs to class i and tpi ∈ {0, 1} is the target. Other functions
have been developed for various applications.

Each of these functions carries assumptions including, among others, assumptions about
the distribution of fitting errors that arise given the model and the data. In a statistical
setting the mean squared error function, for example, corresponds to a maximum likelihood
model with the assumption that errors have a Gaussian distribution (see section 15.2). The
logarithmic error function corresponds to a classification model and the assumption of a
binomial error distribution. Reasonable performance can be expected if these assumptions
match reality but poor performance may result if the assumptions are not met. More details
can be found in [328], as well as numerous statistics texts.

These standard functions are convenient to use and are well-understood. Advantages
include easy differentiability and independence. (All numerical deviations of equal magni-



10 Chapter 2

Figure 2.3
Supervised learning can be applied to many different error functions. The figure illustrates a piecewise linear error
function with upper and lower tolerance limits; the error is zero when f (x) is within the limits. Functions like
this are sometimes useful in engineering applications.

tude have equal costs which do not depend on the input pattern, the sizes of other errors, the
trend of previous errors, and so on.) These properties simplify analysis considerably and
allow valuable theoretical study that would not be possible otherwise. In spite of this, more
idiosyncratic functions may be useful in applications where errors of similar numerical
magnitude may have quite different costs depending on the input pattern and other factors.
These considerations are completely application dependent, however, so the standard error
functions are used for most discussions.

Figure 2.3 illustrates an error function that falls a bit outside the range of standard models
but is still included in the supervised learning model. In this case, the target function has
piecewise constant upper and lower tolerance limits; the error is zero when y(x) is within
the limits and increases quadratically otherwise. Functions like this are sometimes useful
in engineering applications. An application-specific error evaluation function is required
and the mathematical analysis is not as clean, but the training procedure is basically the
same otherwise.

Penalty Terms In addition to the primary terms that measure fitting errors, the cost
function is often augmented with terms reflecting goals or preferences, which are not
directly measurable in terms of differences between outputs and targets on a set of patterns.
“Penalty terms” may be added to steer the solution in preferred directions or enforce
constraints. Some common biases include:

. a preference for simple solutions over complex ones (Occam’s razor),

. a preference for smooth continuous solutions over wildly varying or discontinuous solu-
tions, and



Supervised Learning 11

. beliefs about the relative probabilities of various solutions (corresponding to prior prob-
abilities in Bayesian methods).

Many of the heuristics discussed later can be viewed as modifications of the basic error
function which introduce these types of biases. These hints can be especially useful when
training data is limited.

2.2 Alternatives and Extensions

An advantage of the supervised learning model is that it is well-defined. It is detailed
enough to be useful but simple enough to be analyzed. Details of specific applications
are abstracted away. The model has been criticized as an artificial and limited model of
learning, however, amounting to nothing more than nonlinear regression—a way to fit a
function to a set of data points. Indeed, in many practical applications neural networks
are used mainly for function approximation and nothing more is asked. Perhaps the major
limitation is the requirement for a teacher to specify in detail the correct output for each
and every input. This is not how people learn to walk, for example.

Obviously, there is much more to learning than function approximation so researchers
interested in more realistic learning systems must consider additional factors. The model
can be extended in many ways, however, and simplified abstract models like this are
likely to be useful as core components in a larger system. Some proposals, for example,
surround a supervised learning module with key subsystems designed to translate available
information into the detailed signals required by the simplified model. Extensions such as
this are fascinating, but beyond the scope of this book. Other abstract models at similar
levels of complexity include unsupervised learning and reinforcement learning.

Unsupervised Learning A requirement for supervised learning is presence of a teacher
to specify the target output for every input. In unsupervised learning, there is no teacher.
The training data is unlabeled and there are no targets. Instead, the system adapts to
regularities in the data according to rules implicit in its design. The nature of the regularities
found by the system depend on details of its design so the teacher is, in a sense, built into
the system. Unsupervised learning is useful because unlabeled data is often more readily
available than labeled data.

Some systems extract a set of prototype patterns from the training set; given an input,
the most similar prototype is recalled. Parameters of the system determine how similarity
is defined. In statistics, unsupervised learning often refers to clustering algorithms or
probability density approximation. The k-means algorithm and vector quantization are
examples.



12 Chapter 2

Unsupervised learning modules are sometimes used as a component of a supervised
learning system. To be useful, the unsupervised model must partition the data in a way
that preserves the information needed for supervised learning.

Autoassociative networks are on the borderline between supervised and unsupervised
learning. Given an input, the network is trained to reproduce the identical pattern at the
output. The network acts as autoencoder, mapping an input pattern to itself. This may
seem pointless but if the system is constrained by a bottleneck in a small middle layer, the
network is forced to find an efficient internal representation of the pattern that preserves as
much information as possible. Ideally, it will strip away nonessentials and reproduce only
the significant features of the pattern, perhaps making it more useful for other purposes.
Alternatively, the output of the bottleneck layer may be useful in itself as a compressed
representation of the input pattern. This is related to principal components analysis (see
appendix section B.1).

Reinforcement Learning Reinforcement learning (e.g., [25, 364, 24]) is a more realis-
tic model of low-level learning in humans and animals. Reinforcement learning resembles
supervised learning in that there is a defined goal, but the objective is defined more ab-
stractly. Instead of a teacher providing detailed targets for each and every output, the only
feedback is a sparse reinforcement signal which grades the system response as “good” or
“bad” without providing further details. The reinforcement may be sparse in time as well as
space. Game playing is a commonly mentioned example: the outcome of a game of chess is
a single win-lose signal rather than a detailed list of which moves should have been made
at each step in the game. In general, the system produces outputs that act on an external
environment and affect the reinforcement eventually received. The training objective is to
maximize the amount of positive reinforcement received over time.

In many reinforcement learning models, the key element is a subsystem which learns to
predict the future reinforcement expected given the current network inputs and outputs.
If this prediction can be learned accurately, then target signals for supervised training
of the action selection module can be derived from changes in the predicted reinforce-
ment.

Supervised Learning with a Distal Teacher As noted, the supervised learning model
has been criticized because it puts a heavy burden on the teacher to specify detailed, low-
level, target signals for every possible input. The model is not completely unrealistic,
however, because there may be higher level targets available from which the low level
targets needed for network training can be derived. Supervised learning with a distal teacher
[200, 201, 199] is intermediate between regular supervised learning and reinforcement
learning (figure 2.4). The system output targets are more informative than in reinforce-



Supervised Learning 13

Figure 2.4
In supervised learning with a distal teacher the network output drives another system, T, which produces the final
output. This makes the teacher’s job easier because targets can be specified at a higher, less detailed, level. When
T is a known function, the low-level signals needed for network training can be derived from the high-level errors.

ment learning, but less informative than in regular supervised learning. As in reinforcement
learning, the network outputs act as inputs to another system, T , which transforms the
network outputs into the final output. When T is well-defined or can be accurately modeled,
errors in the overall system-output can be translated backwards to the low level network-
output error signals needed for network training. When the overall targets can be specified
simply, the teacher’s job is simpler.

Using the task of throwing a ball as an analogy, the network outputs are the numerous
coordinated muscular actions needed to toss the ball and T is the physics that transform
these actions into a result. If the overall goal is to land a basketball in a hoop, the sight of it
bouncing off the rim may be a high-level error signal. No coach can tell you exactly when
and how to move each individual muscle, but they can provide high-level suggestions in
terms you already know how to implement, for example, “put more spin on it.” Knowledge
of the situation then allows you to translate the high-level suggestion back to individual
low-level actions.

Simulation results for a simple robot arm controller are described in [200, 201, 199].
Given inputs representing a position (x, y), the desired network outputs are the joint
angles that put the manipulator in this position (figure 2.5). Physical properties of the arm
determine the relationship T between the network outputs (joint angle commands) and the



14 Chapter 2

Figure 2.5
Learning with a distal teacher, robot arm example: (a) a robot arm, (b) a neural network translates input commands
to joint angles that put the manipulator in the desired position after transformation by the physics of the robot arm.

system output where position errors are measured. The physics of the arm are well-known
so the position errors can be translated back to joint-angle error signals needed for training.

Referring ahead a few chapters, it is interesting to note that this model covers the
problem of training internal layers of a multilayer network if the first layer is viewed as
the network and following layers are viewed as the transform T .



This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.


	chap2.pdf
	chap2-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

	notice.pdf

