
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

8 The Error Surface

Because the network output is a function of its weights, the error is a function of w. In
general, E(w) is a multidimensional function and impossible to visualize. If it could be
plotted as a function of w, however, E might look like a landscape with hills and valleys,
high where E is high and low where E is low. Back-propagation, as an approximation
to gradient descent, could then be viewed as placing a marble at some random point on
the landscape and letting it roll downhill. If the surface were shaped like a smooth bowl,
the marble (the weight state) would always roll to the lowest point; back-propagation
would always find the best solution and local minima would never be a problem. Usually,
of course, the surface is not so simple. Because the shape of the error surface has a
fundamental effect on the learning process, it is useful to examine some of its properties.
Many of the figures that follow are adapted from Hush, Horne, and Salas [183, 181].

8.1 Characteristic Features

Stair-Steps For classification problems the error surface often has a “stair-step” quality
with flat regions separated by steep cliffs (figure 8.1a). The stair-step shape can arise
because samples in finite training sets are sparse and because the classifier output changes
sharply at a decision boundary in the input space. The decision boundary moves in the
input space as the weights change but the error remains constant until the boundary crosses
over a training sample and alters its classification. Either the reclassified sample is now
classified correctly and the error drops a step, or the sample is now classified incorrectly
and the error jumps a step. The E(w) surface thus has flat areas where E doesn’t change,
separated by vertical steps where E changes discontinuously as the boundary crosses over
a sample in the input space.

As the number of samples increases, the steps become more numerous and closer to-
gether (figure 8.1b); from a distance, the surface appears smoother. With continuous train-
ing data (samples available everywhere), many of the flat areas may disappear. The error
can change continuously even if the node nonlinearity is a step function because the volume
of positive and negative samples changes continuously as the boundary moves. Discontinu-
ities may still occur though at points in the E(w) space where the system decision boundary
is parallel to and crosses a true boundary in the data.

The E(w) surface also becomes smoother as the node nonlinearities of the classifier
become smoother. With linear threshold units (step function nonlinearities) the plateaus
of the error surface are truly flat and the steps between plateaus are truly discontinuous.
When the step functions are replaced by smoother functions such as sigmoids, the steps
are rounded and error surface is smoother. Figure 8.2 shows the smoothing effect of using
a lower gain sigmoid. Indeed, one of the main reasons for using sigmoids rather than

114 Chapter 8

Figure 8.1
(a) The error surface of a classifier often has many flat plateaus separated by steep cliffs. (b) Increasing the number
of samples creates more steps and moves them closer together (adapted from [181, 183]).

step functions is that the error surface becomes continuous so gradient based optimization
methods can be used. Since gain scaling is equivalent to scaling all the node input weights
by a constant factor (smaller weights correspond to smaller gains) this provides support for
the heuristic of initializing with small weights.

The orientation and placement of a node hyperplane depends only on the ratio of its
weights (section 3.1). As all weights are scaled equivalently, the location of the hyperplane
stays fixed but the steepness of the sigmoid transition varies (increasing with the magnitude
of the weight vector). For the system as a whole, the input-output transfer function is
defined by cells bounded by the node hyperplanes; as all weights are scaled equivalently,
the cell boundaries remain fixed but the steepness of the boundary transitions change.
For small scale factors (small weights), the sigmoids have small slopes and the boundary
transition regions may extend across entire cells, effectively smoothing over the stair steps.
As the scale factor becomes large (large weights), the boundary transition regions shrink,
the cell interiors flatten, and the steps become sharper.

Radial Features For classification problems, the preceding means the E(w) surface
often has a radial or “star” topology because scaling all weights equivalently corresponds
to moving along a radial line in weight space from the origin to infinity.

The surface is not truly “star-shaped” because the error can change nonmonotoni-
cally along a radial line in the region near the origin. Past a certain radius, however, the

The Error Surface 115

Figure 8.2
With a smaller tanh gain (0.1 in this case), the step transitions are smoother (cf. figure 8.1a). Gain scaling is
equivalent to scaling all weights by a constant factor though so this does not change the basic shape of the error
surface. In the figure, it corresponds to zooming in for a closer view of the origin.

classifications cease changing as the weights increase further. Once the scale factor is large
enough, the classifications remain essentially constant and the error changes very little as
the weight state moves along a line to infinity.

For {0, 1} training targets (or {−1,+1} targets for tanh node functions), the minimum
error on the line often occurs at infinity because the target values are reachable only by
making the weights approach infinity. (This is generally true for single layer networks
and linearly separable data; there may be exceptions for multilayer networks, data sets
which are not linearly separable, or data sets for which the optimal outputs are not 0
and 1 even though the target values are.) The error surface therefore often has rays or
troughs extending radially from the origin with minima (or maxima) at infinity. Because
the sigmoid slopes are extremely small in the saturation region, the slope along the bottom
of the trough is also very small. Although it is not visible in figure 8.1a, there is a trough
along the center of the lowest plateau.

Replacing the {0, 1} targets with {0.1, 0.9} values may move the minima in from infinity,
but this may also introduce new minima in the form of small dips at the bottom of each
cliff (figure 8.3); these are usually shallow and narrow, however. Consider how the error
varies as a sigmoid is shifted sideways by varying the threshold. As the 0.9 part of the
sigmoid passes over a 0.9 target, the error for that sample goes through zero. This creates

116 Chapter 8

Figure 8.3
Replacing the {−1, 1} targets with {−0.9, 0.9} values produces a small dip at the bottom of each cliff. For
illustration purposes, the tanh gain was reduced to 1/2 to make the dip wider and smaller targets were used
to make it deeper.

a local minimum (if other samples are sufficiently far away) because the error increases
as the sigmoid is shifted to either side around this point. In the two-dimensional plots,
this appears as a small gutter or trough along the bottom of each step. Similar effects can
also occur at step tops in networks with hidden layers. One way to suppress the gutter is
to change the error function so that outputs greater than 0.9 (for target values t = 1) and
less than 0.1 (for t = 0 and sigmoid nodes) do not contribute to the error [181, 183]. (In
section 8.5 this is called the LMS-threshold error function.) This could introduce truly flat
plateau regions, however, causing problems for gradient-based training methods.

Troughs and Ridges More significant troughs and ridges occur when the classifier can-
not completely separate the training samples. Figure 8.4 shows the error surface for the
two-weight classifier given a training set that is not linearly separable. The input data is
one-dimensional (points on a line). As the threshold weight varies, the sigmoid shifts along
the input axis and the error increases and then decreases again as the decision boundary
crosses individual samples. This occurs for all values of the gain weight so the result is a
trough in the error surface. A gradient based optimization method could easily get stuck in
one of these troughs and so converge to a poor solution.

It is interesting to note that, in figure 8.4 at least, the troughs come together at the
origin. This supports the idea of initializing with small weights, that is, near the origin,
where all troughs (including the main basin) are reachable in just a few steps. Although
true gradient following methods would not be able to escape from a poor trough, ap-

The Error Surface 117

Figure 8.4
When the samples are not linearly separable, the error surface has radial troughs and ridges. A gradient based
optimization method could easily get stuck in one of the troughs corresponding to a poor solution (adapted from
[181, 183]).

proximations such as on-line or batch back-propagation with a noninfinitesimal step size
would have an appreciable chance if better alternatives are sufficiently close. Of course,
we should not jump to conclusions based on this one example; in many problems the ori-
gin is a local minimum and for these it may be better to initialize at some intermediate
distance.

8.2 The Gradient is the Sum of Single-Pattern Gradients

With an SSE or MSE cost function, the E(w) surface is the sum (or average) of the
individual surfaces for each pattern and the total gradient is the sum (or average) of the
single-pattern gradients. In other words, the error is shaped by the interaction of the weights
with each of the individual training patterns. Figure 8.5 shows single-pattern gradients for a
simple two-weight problem. These are the vectors that would be used for weight updates in
on-line learning. On a “hillside” (a), most of the vectors point in a dominant direction. On a
“ridge” (b) or at the bottom of a “valley” (c), there are often two bundles of vectors pointing
in opposite directions across the valley. In on-line learning, the weights are updated from
just one pattern and thus tend to oscillate across the valley. At a local minima (d) the vectors
sum to zero; they may be large and distributed in all directions, or they may all go to zero.
If they simply cancel without going to zero, the minimum will be unstable with on-line
learning—the weight vector will move off the minimum if placed there. Point (e) shows
a relatively “flat spot.” These examples aren’t universal since similar E(w) features could
be created in many ways, but they are common. Other cost functions may yield different
behavior.

118 Chapter 8

Figure 8.5
Single-pattern weight update vectors. With an SSE cost function, the E(w) surface is the sum of individual
surfaces for each pattern and the total gradient is the sum of the single-pattern gradients. On a “hillside” (a),
most of the vectors point in a dominant direction. On a “ridge” (b) or at the bottom of a “valley” (c), there are
often two bundles of vectors pointing in opposite directions. At a local minima (d) the vectors sum to zero; they
may be large and evenly distributed in all directions, or they may all go to zero. Point (e) shows a relatively flat
spot.

8.3 Weight-Space Symmetries

Consider a network with two or more nodes in a hidden layer. The network output is
unchanged when all weights into and out of two hidden nodes, i and j , are swapped;
node i computes what node j used to and vice versa so the effect on the rest of the net
is unchanged. Equivalently, the node indexes could just be swapped or the locations in
the layer could be exchanged. There are H ! permutations for the position of H nodes in
a hidden layer, so this gives H ! different weight vectors that produce equivalent input-
output network functions. An immediate consequence of this is that the error surface will
not have a single global minimum (unless it is the zero vector); there will be many points
with equally small errors.

Another symmetry results because the tanh function is odd, f (−x)=−f (x). An equiv-
alent response can be obtained by changing the sign of all the weights into and out of a
hidden node since changing the sign of the input weights simply changes the sign of the
node output and the effect on the following layer can be compensated by also changing the
sign of the output weights. Similar symmetries exist for networks of sigmoid nodes if the
biases of nodes in the following layer are adjusted when the signs are flipped because

The Error Surface 119

sigmoid(x)= 1− sigmoid(−x).

Any combination of the hidden nodes may have their signs flipped, so there are 2H possi-
bilities.

Together, these give M = 2HH ! different weight vectors that produce identical input-
output functions. For every weight vector that produces a particular input-output function,
there are at least 2HH !− 1 “twins” that produce equivalent responses. H does not have to
be large for this to be a huge number, e.g., for H = 10, M = 3.7 billion.

For networks with more than one hidden layer, the number of symmetries is a product
of similar terms for each layer [78]

M =
∏
`

2H`H`! (8.1)

where ` indexes the hidden layers and H` is the number of nodes in layer `.
Hecht-Nielsen [162] asked whether these symmetries exhaust the possibilities. Suss-

mann [362] showed that, aside from these symmetries, the weights of a feedforward single-
hidden-layer network with tanh nodes are uniquely determined by the input-output map,
provided that the network is irreducible (i.e., that no nodes can be removed without affect-
ing the output). The results have been extended to reducible networks with more general
node nonlinearities [232].

Hecht-Neilsen [163] showed that these symmetries give the weight space a structure
of cone or wedge-shaped regions that differ only by symmetry. The cones are otherwise
identical so each contains weight vectors for every input-output function the network can
implement. In principle, a training system could restrict search to a single cone and still
cover all possible input-output functions. Because M can be very large, this could reduce
the size of the search space by a huge amount. Unfortunately, the remaining space is still
huge. There might be some benefit for nonlocal methods such as the genetic algorithm as
this would limit redundancy in the search. (An empirical test using a simulated annealing
method on the 2-input XOR problem showed a reduction of search time by about 1/2
[198].) For local search (e.g., gradient) techniques, however, there is no good reason to
stay inside a single cone because, after all, the cones are identical. It might also seem
counterproductive because the introduction of the cone boundary as a hard constraint could
give rise to additional poor local minima at the boundary. The cone boundaries are natural
divisions, however, because of symmetry so pure gradient descent naturally stays in its
starting cone [164] and there is no need for special measures to restrict the weight vector
to a single cone.

120 Chapter 8

8.4 Remarks

The efficiency of any optimization method depends on having a good fit between the basic
assumptions of the algorithm and the actual characteristics of the function being mini-
mized. Many advanced optimization methods assume the error surface is locally quadratic,
for example, and may not do well on the “cliffs-and-plateaus” surface common in neural
network classifiers. In this case, the quadratic assumption is not reasonable on a large scale
so these optimizers may be no more efficient than simpler methods in finding a good ap-
proximate solution. The assumption, however, is usually reasonable near a minimum, in
which case these methods may be very efficient for final tuning of a near-solution found by
other methods.

For back-propagation, a large learning rate is needed to make progress across the large
flat regions. But near the “cliffs” where ‖∂E/∂w‖ is large, a small learning rate is necessary
to prevent huge weight changes in essentially random directions. If a fixed learning rate
is used, the value will have to be a compromise. One of the advantages of the common
technique of initializing with small random weights is that the system starts in the area
near the origin where the error surface is smoother and it has a better chance of finding the
right trough.

Before ending this discussion, it should be noted that the error surfaces illustrated in the
figures are for classification problems with small training sets. The error surfaces may be
very different for regression problems with large sample sizes. Based on figure 8.1, it is
reasonable to expect it to be smoother.

For regression problems where the target is a continuous function of its inputs, smooth
input-output functions are usually preferred. If there is sufficient data that the system cannot
fit every point exactly, then it must approximate multiple points by fitting a surface “close”
to them. For many cost functions, this surface can be thought of as the local average of
nearby points and will tend to be smooth because of the smoothing effects of averaging.
Because smoother functions generally correspond to smaller weights, the good minima
will usually be in the interior of the weight space rather than at infinity. Similarly, in
classification problems with many samples in overlapping clusters, it may be better to form
gradual transitions between classes in regions where they overlap. This again corresponds
to smaller weights and moves the minima in from infinity.

Of course, if there is so little data and the network is so powerful that it can fit every point
exactly, then there is no reason to expect it to form a smooth function, and minima at infinity
may survive. Even when a smooth function would be preferable, local minima at infinity
may survive corresponding to fitting a few of the points exactly while ignoring the rest;
these are likely to be shallow and narrow, however, and will probably be shadowed by better

The Error Surface 121

minima closer to the origin. Although plateaus and cliffs will be apparent at large distances
from the origin, this may be irrelevant because those regions will never be investigated by
the learning algorithm.

The stair-step shape may survive in very underconstrained networks that can essentially
classify each of the training points internally (e.g., by assigning a hidden “grandmother
node” to each training sample). In this case, the global minima of the training set error
would be at infinity and low generalization-error areas corresponding to smooth functions
are unlikely to be minima.

8.5 Local Minima

Like all local search techniques, back-propagation may converge to a local minimum of the
error rather than the global optimum. This is a fundamental characteristic of local search
methods, not a defect of the implementation.

Random Restarts One of the simplest ways to deal with local minima is to train
many different networks with different initial weights. Training times can be long, so
it may be useful to train a number of networks for a small number of iterations and
then choose a fraction of the best for more extensive training. Although there are no
guarantees, this tends to weed out bad starting points, favoring those already close to good
solutions. Because many of the initial networks may converge toward equivalent solutions,
a clustering procedure may be useful to choose a nonredundant subset.

If training is viewed as a dynamic process, each minimum (local or global) can be
considered an attractor with a basin of attraction consisting of all the starting points that
converge to it during training. With gradient descent, an initial weight vector will basically
“roll downhill” until it reaches a minima; the minimum is the attractor and all points that
flow into it form the basin of attraction. In figure 8.6, the dotted line separates basins of
attraction of the local and global minima. Because the probability that a randomly selected
starting point converges to a particular minimum is equal to the probability that it starts
in its basin of attraction, the success of the random restart approach will depend on the
relative sizes of the basins of attraction.

In theory, if we knew the relative sizes of the basins of attraction (and the distribution
of the initial weights), we would be able to calculate how many random restarts would
be needed to achieve a certain probability of landing in the basin of a global minima.
Easy problems would have large global basins of attraction and hard problems would
have small basins. In general, however, it is not practical to map the basins of attraction
because evaluation of each point requires training a network to convergence. These ideas

122 Chapter 8

Figure 8.6
Local and global minima. A global minimum of a function can be defined as its lowest point, the input that gives
the lowest possible output. A local minimum is a point that is lower than all its neighbors, but higher than the
global minimum.

are, therefore, more useful as an explanation of why a problem is hard than as a tool to
improve training.

A further complication is that the basins of attraction depend on the weight-change
method as well as the static E(w) function so different learning algorithms may have
different attractors for the same E(w) function. With gradient descent, for example, several
local minima may have large regions of attraction. In principle, these shrink to infinitesimal
points with simulated annealing and almost all points belong to the basin of attraction
of the global minimum. Simple parameter changes in things like the learning rate and
momentum also affect the boundaries. In gradient descent with a small step size, the basins
are generally contiguous and have smooth boundaries. When the learning rate is too high,
however, the process can become chaotic and the basins of attraction may become disjoint
with very complex, possibly fractal, boundaries [216, 217].

With stochastic algorithms the discrete basins of attraction are replaced by probability
density functions. For every ending point z there is a density function over x measuring the
probability that starting point x ends at z. Loosely speaking, the regions of high probability
can be thought of as the basin of attraction of z.

The standard solution to the problem of local minima is to improve the optimization
algorithm. In the random restart approach, the optimization routine is augmented with
an outer loop searching over initial starting points —simple random search in this case.
This will not be effective if the global attractor basins are too small to find by random
sampling. It is possible to consider more sophisticated outer search techniques, but use of
such techniques is not widespread. Another approach is to use stochastic search methods
by introducing randomness at a lower algorithmic level. Simple examples include online

The Error Surface 123

training, training with added input noise (jitter), or adding noise to the weights during up-
dates. If these do not work, more sophisticated global search techniques such as simulated
annealing or genetic algorithms may be needed.

Instead of improving the optimization algorithm, an alternative approach is to avoid
creating local minima in the first place. If we knew more about their causes, we might be
able to design networks and training algorithms without poor local minima. Unfortunately,
relatively little is known. The following paragraphs outline a few results.

8.5.1 Single-Layer Nets Can Have Local Minima

Single-layer networks with linear outputs implement linear functions and minimum-MSE
linear regression has a quadratic error surface with a single minimum so one might guess
that single-layer networks do not have local minima. This ignores effects of the node
nonlinearity.

Sontag and Sussmann [352, 353] (see also [408]) give conditions where this intuition
is true. They show that if (1) the cost function does not penalize overclassification and (2)
the data are linearly separable, then there are no local minima that are not global minima
and gradient descent converges (to within a tolerance) globally from any starting point in a
finite number of steps. Condition 1 means that the error is taken to be zero when the output
“goes beyond what the target asks.” With tanh nodes, for example, the error is taken to be
zero when y ≥ 0.9 for t = 0.9 or when y ≤ −0.9 for t = −0.9, for target t and output y.
Similar relations apply for sigmoids and other nonlinearities. This has been called the LMS-
threshold cost function. Use of unobtainable targets, for example, 0 and 1 for the sigmoid,
might be considered a special case.

There can be local minima when either of the two conditions fail. Dips like those in
figure 8.3 can occur when condition 1 is not satisfied and troughs as in figure 8.4 may exist
because the data is not linearly separable.

Auer, Herbster, and Warmuth [13] show that local minima can exist in a network consist-
ing of a single neuron whenever the composition of the loss function (error function) with
the node activation function is continuous and bounded. This result favors the entropic error
function because the sigmoid and MSE error function meet the criterion and the sigmoid
and entropic error function do not. Reference [13] also shows that artificial data sets can be
constructed in which the number of minima grows exponentially with the input dimension.

It has been pointed out [58, 59] that one can find linearly separable data sets for which the
MSE cost function has minima at weight vectors that do not separate all patterns correctly.
The perceptron algorithm would classify these data correctly whereas back-propagation
would not. This does not necessarily mean the MSE function has local minima though, it
just shows that it differs from the function that counts the number of classification errors.

124 Chapter 8

The results just discussed show that gradient descent will separate linearly separable data
sets if condition 1 is satisfied (i.e., if overclassification is not penalized).

8.5.2 No Local Minima for Linearly Separable Data

Similar results for one-hidden-layer networks have been shown in [145, 127]. If the data
are linearly separable, the network has a pyramidal structure after the inputs and a full-
rank weight matrix, and the LMS-threshold cost function is used then no local minima
exist and back-propagation will separate the data. A distinction is made between spurious
local minima, which can be eliminated by the use of the LMS-threshold error function, and
more serious structural local minima.

Together, these results show that there need not be local minima for linearly separable
data sets. That is, there may be local minima in some set-ups, but steps can be taken to
eliminate them. An important condition appears to be the use of the LMS-threshold error
or the use of unobtainable targets, for example, 0 and 1 for the sigmoid, which eliminate
the spurious local minima.

Of course, it is well-known that the perceptron learning algorithm will always find a set
of weights that correctly classifies a linearly-separable data set. Optimal convergence of
on-line back-propagation for linearly separable data, akin to the perceptron convergence
property, is shown in [144] for a single-hidden-layer network using the LMS-threshold
error function. The demonstration is similar to the perceptron convergence theorem. A side
point of the paper is that on-line learning can be qualitatively different from batch-mode
learning when the learning rate is not small and it is not necessarily a crude approximation
of gradient descent.

These results are intriguing but, unfortunately, most interesting problems are not linearly
separable. It is worth noting that a data set can sometimes be made linearly separable by
changing the way variables are represented, but there are many other issues to consider.

Auer, Herbster, and Warmuth [13] show that a single-layer net has no poor local minima
when the transfer function and loss function are monotonic and the data are realizable
(E(w) = 0 for some weights w). This is not restricted to binary targets; linearly separable
data sets with binary targets are realizable, but there are also realizable data sets with
continuous targets.

8.5.3 Local Minima Really Do Exist

It has been suggested that (nearly) flat areas in error surface are sometimes mistaken for
minima and that true local minima might be relatively rare. That is, the error may decrease
so slowly as the weight vector creeps across a flat spot that it appears as if learning
has stopped because the system has reached a minimum. Internally, it might be possible

The Error Surface 125

Figure 8.7
The error surface for a 1/1/1 network trained on the identity mapping illustrates that local minima do in fact exist.
This surface has a good minima in the lower left quadrant, a poor minimum in the upper right quadrant, and a
saddle point at the origin: (a) the contour plot, and (b) a view looking across the origin down the axis of the poor
minimum.

to observe the weights moving in a consistent direction but from the outside it may be
impossible to tell the difference. The fact that these are not minima is sometimes shown
because the error resumes its decrease (sometimes sharply) if training is continued long
enough for the system to cross the flat area. (Figures 6.4 and 6.12 show examples of this.)

Example It is easy to illustrate local minima in small networks. Figure 8.4 shows one
case. An example of a very simple network having local minima is described by McClel-
land and Rumelhart [261]. The task is to do an identity mapping with a 1/1/1 network. The
network has one input, one hidden unit, and one output. No bias weights are used so there
are only two weights. The nonlinearities are sigmoids.

Given 0 or 1 as an input, the net should reproduce the value at the output. Figure 8.7
shows the error as a function of the weights w1 and w2. There is a global minimum in the
lower left quadrant, a poor local minimum in the upper right quadrant, and a saddle point at
the origin separating the two basins of attraction. The saddle point is visible in figure 8.7b.
Although the poor minimum appears to be narrower in the contour plot, both have basins

126 Chapter 8

of attraction of approximately equal size and a random weight vector has a roughly equal
chance of landing in either.

This example is contrived, of course. When adaptable bias weights are added, the local
minimum disappears leaving two global minima separated by a saddle point. Use of tanh
nodes and {−1, +1} inputs would also remove the asymmetry causing the problem.

The existence of real local minima in nontrivial networks was demonstrated by McIn-
erney et al. [263, 262]. (These are an abstract and an unpublished technical report. Hecht-
Nielsen [162] reports some of the details.) After extensive simulations using closed-form
expressions for the gradients and second derivatives, they were able to find a point on the
error surface where the error was higher than at other points, where all gradients were zero,
and where the Hessian was strongly positive-definite.

8.5.4 The Effect of Network Size

Aside from the fact that the architecture is poorly matched to the problem, the 1/1/1 net-
work in the previous example is very small. The common wisdom is that if there are enough
weights and/or hidden units then local minima do not exist or are not a major problem.
Indeed, when bias weights are added to the simple network above, the local minimum dis-
appears. McClelland and Rumelhart [261: 132] state, “[i]n problems with many hidden
units, local minima seem quite rare.” The extra degrees of freedom presumably provide
more ways for potential local minima to flow into lower areas and eventually reach a global
minimum. Of course, there are no guarantees as it is always possible to add extra degrees
of freedom in ways that do not fix the problem.

A series of papers [301, 413, 150, 414, 415] have shown that if there are as many hidden
nodes as there are training patterns then, with probability 1, there are no suboptimal local
minima. According to Yu [413], a sufficient condition is that the network be able to fit
every training pattern exactly, giving Emin = 0. Assuming consistent training data, this is
always possible in a single-hidden-layer net when the number H of hidden nodes is as
large as the number M of unique training patterns (actually H ≥ M − 1 will do). Because
most data sets contain regularities, fewer nodes will suffice in most cases; however, M − 1
hidden nodes in a single hidden layer will be necessary when the patterns are colinear with
alternating target classes [280].

According to these results, the error surface will have no nonglobal minima if there are
enough hidden nodes. This helps explain empirical observations that it is often easier to
train larger networks than it is to train small ones. Larger networks seem to be less sensitive
to parameters and less likely to become stuck during training. Of course, the requirement
that the network be able to fit the data exactly allows it to “memorize” the data and conflicts
with heuristic rules for obtaining good generalization so steps such as early stopping or
pruning will be needed to avoid overfitting.

The Error Surface 127

8.6 Properties of the Hessian Matrix

The Hessian, H, of the error with respect to the weights is the matrix of second derivatives
with elements

hij = ∂2E

∂wi ∂wj

.

Knowledge about the Hessian is useful for a number of reasons:

. The convergence of many optimization algorithms is governed by characteristics of the
Hessian matrix. In second-order optimization methods, the matrix is used explicitly to
calculate search directions. In other cases, it may have an implicit role. Slow convergence
of gradient descent, for example, can often be explained as an effect of an ill-conditioned
Hessian (see appendix A.2). The eigenvalues of H also determine how large the learning
rate can be before learning becomes unstable. When H is known, an optimal rate can be
chosen; in other cases, a more conservative choice must be made.
. Some pruning algorithms use Hessian information to decide which weights to remove.
“Optimal brain damage” uses a diagonal approximation while “Optimal brain surgeon”
uses the full approximation.
. The inverse Hessian can be used to calculate confidence intervals for the network outputs
[44: 399].
. Hessian information can be used to calculate regularization parameters [44, section 10.4].
. Hessian information can be used for fast retraining of an existing network when addi-
tional training data becomes available [41].
. At a local minimum of the error function, the Hessian will be positive definite. This
provides a way to determine if learning has stopped because the network reached a true
minimum or because it “ran out of gas” on a flat spot.

Bishop [44, section 4.10] and Buntine and Weigend [62] provide summaries of a number
of methods for calculation and approximation of the Hessian in neural networks. (The
preceding list is partly drawn from [44, section 4.10].)

Sometimes the Hessian is required only as a means to obtain the product Hv for some
vector v. Pearlmutter [297] describes a fast method for finding this product which does not
require evaluation of the Hessian.

8.6.1 Ill-Conditioning

An ill-conditioned matrix has a large ratio |λmax/λmin|, where λmax is the largest eigen-
value and λmin is the smallest (nonzero) eigenvalue. In the Hessian of the error with respect

128 Chapter 8

to the weights, this reflects the fact that the gradient changes slowly along one direction
(determined by the eigenvector associated with λmin) and changes rapidly along another
direction (determined by the eigenvector associated with λmax). The effect this has on gra-
dient descent is discussed in section 10.5.1. Briefly, it requires that a small learning rate be
used to avoid instability along the quickly changing direction, but then progress along the
slowly changing direction will be slow and convergence times will be long. Appendix A.2
discusses the convergence rate of gradient descent in linear problems.

It appears that the Hessian is very often ill-conditioned in neural network training prob-
lems [37, 331, 92, 93] and it is common for many eigenvalues to be near-zero. Sigmoid
saturation may cause effective loss of rank. Intuitively, small eigenvalues can be related to
flat regions of the E(w) surface where the error changes very slowly in most directions.
It is worth noting that the outer-product approximation (see the following) will be rank-
deficient when the number of weights exceeds the number of training patterns. This is not
necessarily recommended, but not uncommon in neural networks.

An implication of ill-conditioning is that the expected efficiencies of higher order op-
timization methods may not be realized [331]. Ill-conditioning could lead to numerical
instability or very large steps that take the system out of the region where the local ap-
proximation is valid. This is a well-known problem with Newton’s method, for example,
which is addressed by standard methods. The fix used in the Levenberg-Marquardt method
is to choose the search direction based on a combination of the gradient and Newton
directions.

Many of the techniques suggested for accelerating back-propagation are simple algo-
rithmic modifications that optimize certain steps of the procedure without addressing the
fundamental problem of ill-conditioning. A more basic way to decrease training time is to
modify the problem so that the Hessian is better conditioned. The effectiveness of some
common techniques can be explained in terms of their effect on the Hessian:

. normalization of inputs to zero-mean values with similar variances,

. use of bias nodes (which remove the mean internally),

. use of tanh nonlinearities rather than logistic sigmoids (because the outputs of tanh nodes
tend to be zero-mean when their inputs are zero-mean whereas the outputs of sigmoid nodes
always have a positive mean), and
. preprocessing (e.g., principal components analysis) to remove input redundancy.

8.6.2 Exact Calculation of the Hessian

Bishop, [41, 39] and [44, section 4.10.5], describes an O(W 2) method for calculating the
exact Hessian of a feedforward network. The procedure is somewhat involved for a general

The Error Surface 129

feedforward network so the simplified version [44, section 4.10.6] for single-hidden-layer
networks is summarized here. For simplicity, the terms are given for a single pattern p; the
complete expression is obtained by summing contributions from each pattern. Let indexes i

and i′ denote input nodes, j and j ′ denote hidden nodes, and k and k′ denote output nodes.
Each nondiagonal term of the Hessian involves two weights.

1. If both weights are in the second layer,

∂2Ep

∂wkj ∂wk′j ′
= zjzj ′δkk′Hkk (8.2)

where zj is the output of the j th node, δkk′ is the Kronecker delta, and Hkk is defined at the
end of the section.

2. If both weights are in the first layer,

∂2Ep

∂wji ∂wj ′i′
= xixi′f

′′(aj ′)δjj ′
∑

k

wkj ′δk

+ xixi′f
′(aj ′)f ′(aj)

∑
k

wkj ′wkjHkk (8.3)

where xi is the ith input, aj is the weight sum into the j th hidden node, f () is the node
nonlinearity function, and δk = ∂Ep/∂ak is the delta term calculated by back-propagation.

3. If one weight is in each layer,

∂2Ep

∂wji ∂wkj ′
= xif

′(aj)
{
δkδjj ′ + zj ′wkjHkk

}
. (8.4)

The term Hkk′

Hkk′ = ∂2Ep

∂ak ∂ak′

describes how errors in different output nodes interact to affect the overall error. For the
sum-of-squares error function and linear output units, Hkk′ = δkk′.

8.6.3 Approximations

Second order optimization methods often require the Hessian matrix or an approximation.
For mean-squared-error cost functions, the outer-product approximation is a common
choice.

130 Chapter 8

Outer-Product Approximation For the mean-square error function, the Hessian can
often be approximated reasonably well by the average of outer-products of the gradi-
ent vectors. This approximation is used by the Gauss-Newton optimization method (sec-
tion 10.6.2).

The cost function E is the mean squared error between the desired output d and the
actual output y which is a function of the weights wk

E =
〈
(d − y)2

〉
. (8.5)

The 〈 〉 brackets denote the average over the training set. For simplicity, assume y is a scalar.
A single weight index (e.g., wj) is used here since it is not necessary to identify the weight
by the nodes it connects. The gradient g has components

gj = ∂E

∂wj

= 2

〈
(d − y)

∂y

∂wj

〉
(8.6)

and the Hessian H has components

hij = ∂2E

∂wi ∂wj

= 2

〈
− ∂y

∂wi

∂y

∂wj

+ (d − y)
∂2y

∂wi ∂wj

〉
. (8.7)

This can be written

H = 2(−P + Q) (8.8)

where P = 〈
ggT

〉
is the average outer-product of first-order gradient terms while Q, qij =〈

(d − y)
∂2y

∂wi ∂wj

〉
contains second order terms. Because P is the sum of outer products of

the gradient vector, it is real, symmetric, and thus nonnegative-definite (wT Pw ≥ 0 for all
‖w‖ 6=0). The number of training samples must be greater than the number of weights for
it to have full rank.

The outer-product approximation is based on the assumption that first-order terms dom-
inate higher order terms near a minimum. This is reasonable when the residual errors
(d − y) are zero-mean, independent, identically distributed values uncorrelated with the
second derivatives ∂2y/(∂wi ∂wj). If this is true then, when the number of training points
is large, Q should average to zero with a small variance and so can be ignored.

Of course, this assumption is not always valid. If there are too few training points, the
variance of Q may be large. Also, if the network is too simple to fit the data, the errors
may not be small or may be correlated with the second derivatives of y. (It can be argued
that the errors and second derivatives will be correlated in many cases because an overly
smooth network function will tend to “shave off the peaks” and “fill in the dips” of the

The Error Surface 131

target function. The function tends to peak where the target peaks and dip where it dips,
but not quite enough, so at a peak of y the second derivatives are necessarily negative while
the local errors d − y tend to be positive.) A second caution is that the approximation
may be valid only near points in the training set used to calculate the approximation. In
practice, however, the approximation seems to work reasonably well especially when the
larger algorithm does not rely too heavily on its accuracy.

The Diagonal Approximation A further approximation is to assume that the Hessian
is diagonal. This provides at least some of the Hessian information while avoiding the
O(W 2) storage and calculation costs demanded by the full approximation. In reality, H
would be diagonal only if all weights affected the error independently, that is, only if there
are no significant interactions between different weights. Most networks, however, have
strong weight interactions so the Hessian usually has nonnegligible off-diagonal elements.
The approximation therefore is not expected to be especially accurate; its main advantage
is computational convenience. Effects of the approximation are discussed by Becker and
LeCun [37]. A diagonal approximation is used in the “optimal brain damage” pruning
method (section 13.2.3).

The second derivatives hkk can be calculated by a modified back-propagation rule in
about the same amount of time as a single back-propagation epoch. From [91], the diagonal
elements are

hkk = ∂2E

∂w2
ij

= ∂2E

∂a2
i

x2
j (8.9)

where ai is the weighted sum into node i and xj = f (aj) is the output of node j . Here the
weights are indexed both by k and by the indexes i and j of the nodes they link. At the
output nodes, the second derivatives are

∂2E

∂a2
i

= 2f ′(ai)
2 − 2(di − xi)f

′′(ai) (8.10)

(for all units i in the output layer). The second derivatives for internal nodes are obtained
by a modified back-propagation rule

∂2E

∂a2
i

= f ′(ai)
2
∑

`

w2
`i

∂2E

∂a2
`

− f ′′(ai)
∂E

∂xi

. (8.11)

The f ′′(ai) terms are sometimes ignored in the last two equations. This corresponds to
using the diagonal of the outer-product approximation and gives guaranteed positive esti-
mates of the second derivatives [91].

132 Chapter 8

Finite-Difference Approximation A finite-difference approximation of H is [44, pg.
154]

∂2E

∂wji ∂wlk

= 1

2ε

{
∂E

∂wji

(wlk + ε) − ∂E

∂wji

(wlk − ε)

}
+ O(ε2). (8.12)

Weight wlk is perturbed first by +ε and then by −ε. The first-order derivatives for all
weights wji are calculated in each case and the second derivative is approximated by the
difference between the two first-order derivatives, scaled by 2ε. There are W weights to
perturb and each gradient calculation takes O(W) time so the approximation take O(W 2)

time. The approximation errors are of size O(ε2); small ε values are desirable for accuracy,
but larger values are desirable to avoid numerical problems.

Because of its simplicity, the finite-difference approximation is useful during debugging
to verify the correctness of other evaluation methods.

8.7 Gain Scaling

The typical node function can be written

ai =
∑

j

wijyj

yi = f (βiai)

where f () is the node nonlinearity and βi is a gain parameter which controls the steepness
of the function at 0. For sigmoid nonlinearities, ∂y

∂a
= βy(1 − y) and at a = 0 the slope is

β/4. Normally β = 1. Larger values increase the slope at 0 and narrow the width of the
semilinear transition region. As β → ∞, the response approaches a step function.

A number of studies, [196, 369] for example, have shown that every network with
nonunity gains can be transformed into an equivalent network with unity gains by appropri-
ate scaling of the weights (table 8.1). Further, if learning rates are also scaled appropriately,
both networks will follow equivalent trajectories during training and produce equivalent
outputs at the end of training.

Gain Control for Faster Learning In many cases, the motivation for gain scaling is to
accelerate the training process. Izui and Pentland [190] show that convergence time scales
like 1/β without momentum and like 1/

√
β with momentum.

Lee and Bien [237] include parameters for the slope, magnitude, and vertical offset of
the sigmoid function

The Error Surface 133

Table 8.1
Relationship of Node Gain, Learning Rate, and Weight Magnitude (from [369]).

with gain β without gain

Node function φ(βx) φ(x)

Gain β 1
Learning rate η β2η

Weights w βw

yj = K/(1 + e−βaj) − L.

Here the gain is a fixed nonunity value. In empirical tests [9], the changes had weak effects.
For 0.4 ≤ β ≤ 1.2, learning speed and generalization increased with β, but for β > 1.2,
learning became unstable “suddenly and severely” with few trials converging.

Several studies [354, 366, 312, 84] attempt to optimize the gain during training, most
using gradient descent on the error. Most claim increased convergence speed and fewer
problems with convergence to poor local minima. As noted, gain changes are equivalent to
learning rate changes in a network without gains so optimization of gains has effects like
an adaptive learning rate method. A gain change 1β is equivalent to a learning rate change
from β2η to (β + 1β)2η and a weight change from βw to (β + 1β)w [196, 369].

Gain Control to Prevent Sigmoid Saturation Many weight initialization heuristics
involve choosing an appropriate range for the initial random weights (see chapter 7). The
equivalence between scaling the weights by a constant factor and introducing a gain term
in the sigmoid function means that similar results can be obtained by gain scaling. In [240,
241] initial gains are chosen to avoid sigmoid saturation and its detrimental effects on
learning time.

In [411], the gain is adjusted during training to prevent sigmoid saturation. If, during
training, the errors are large but the back-propagated deltas are small then all the node
gains are halved and the iteration repeated.

Gain Control for Improved Generalization Gain scaling has been suggested as a way
to improve generalization. In most cases, the idea is to start with small gains that increase
gradually during training. This is said to be related to “continuation” or “homotopy”
methods in numerical analysis. The intent is to force the system to fit large-scale features of
the target function first by making it harder to fit small-scale details. The small initial gains
make the network compute a smoother function than it otherwise would with the same
weights and larger gains. Later, once large-scale features are learned, the gain is increased
to let the system fit smaller features. The hope is that by forcing the system to start with

134 Chapter 8

a smooth fit and then gradually increasing its flexibility, this will increase the chance of
convergence to the global minimum.

Kruschke [228, 229, 230] describes a pruning procedure based on gain-competition (sec-
tion 13.4.2). Sperduti and Starita [354] describe a similar pruning method in conjunction
with the use of gain scaling for faster training.

Gain Scaling to Train Networks of Hard-Limiters In electronic circuit implementa-
tions, it is often desirable to use hard-limiting step functions for the node nonlinearity
because they can be implemented with a simple switch. One way to train such networks is
to gradually shift from a sigmoid to a step function during learning. (Training must be done
in off-line simulations if the hardware can’t implement the sigmoid.) A linear combination
of the two functions

g(a) = λf (a) + (1 − λ)h(a)

is used in [373]. Here a is the weighted-sum into the node, f (a) is the sigmoid function,
h(a) is a step function, and λ changes from 1 to 0 linearly. A possible problem with this
approach is that the g(a) is still nondifferentiable at a = 0. Selection of the adjustment
schedule for λ is another problem. Yu et al. [412] adjust the sigmoid gain instead, setting
β = 0.5e−SSE where SSE is the sum-of-squares error. Initially, when the error is large, the
gain is small; later the gain increases as the error decreases. Corwin, Logar, and Oldham
[86] and Yu, Loh, and Miller [412] also use gain adjustment to train networks of hard-
limiters.

This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	chap8.pdf
	chap8-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

	notice.pdf

