
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.



17 Effects of Training with Noisy Inputs

Noise is usually considered undesirable—something to be eliminated if possible, but many
studies (e.g. [299, 118, 310, 387, 345, 246, 287, 339, 267]) have noted that adding small
amounts of noise to input patterns during training often results in better generalization and
fault tolerance.

A short explanation for these results is that the noise blurs the data. When random noise
is added every time a pattern is presented, the network never sees exactly that same input
twice, even when the same training pattern is selected, so it cannot simply “memorize” the
training data. Averaging over the noise effectively smooths the target function and prevents
the network from overfitting a limited set of training data. This turns out to be helpful for
generalization because many of the functions that interest people tend to be smooth.

The following sections examine these ideas in more detail. The term jitter is used to refer
to noise intentionally added to the inputs in contrast to undesired, uncontrolled noise from
other sources.

17.1 Convolution Property of Training with Jitter

Consider a network trained with noisy input data, {x + n, t (x)}, where n is noise that
varies with each presentation. During training, the network sees the clean target t (x) in
conjunction with the noisy input x̃ = x + n. The input x̃ seen by the network may be
produced by various combinations of inputs x and noises n, while the target depends only
on x. Various targets may therefore be associated with the same noisy input x̃. The network,
however, can produce only a single output for any given input. For arbitrary noise and input
sampling distributions, the effective target for a given input x̃ is the expected value of the
target given the noisy input

〈
t (x) | x̃

〉 =
∫
n
t (x̃ − n)px(x̃ − n)pn(n) dn∫

ξ
px(x̃ − ξ)pn(ξ) dξ

. (17.1)

In the special case where the distribution px of the training inputs is uniform and the
standard deviation of the noise is small relative to the extent of the input domain, the
interaction between px and pn will have little effect in the interior of the domain. In
regions where these boundary effects can be ignored, the px terms cancel, the denominator
integrates to one, and this simplifies to the approximation

〈
t (x̃ − n) | x̃

〉 ≈
∫

n
t (x̃ − n)pn(n) dn

≈ t (x̃) ∗ pn(x̃). (17.2)



278 Chapter 17

Figure 17.1
Convolution tends to be a smoothing operation. A step function, t (x), convolved with a Gaussian, pn(x), produces
the Gaussian cumulative distribution. This resembles the original step function, but it is a smooth function similar
to the sigmoid.

Thus, in this special case, the effective target when training with jittered input data is
approximately equal to the convolution of the original target t (x) and the noise density
pn(x).

Convolution tends to be a smoothing operation in general. If, for example, a step func-
tion, t (x), is convolved with a Gaussian, pn(x), the result is the Gaussian cumulative
distribution which is a smoothed step function similar to the sigmoid (figure 17.1). This
convolutional property resulting from jittered sampling is described by Marks [257].

Holmström and Koistinen [174, 214, 215] showed that training with jitter is consistent
in that, under appropriate conditions, the resulting error function approaches the true error
function as the number of training samples increases and the amount of added input noise
decreases.

17.1.1 Effective Target for Sampled Data

The convolution property holds when training data are continuously and uniformly dis-
tributed over the entire input space and the magnitude of the noise is small. In prac-
tice, however, we usually have only a finite number of discrete samples {(xi, ti)} of the
underlying function and the samples are not uniformly distributed in general. In this
case, the distribution of x̃ = xi + n is not uniform and the optimum output function is
modified.

Let the training set be {(xi, ti) | i = 1 . . . M}. During training, we randomly select one
of the training pairs with equal probability, add noise to the input vector, and apply it to
the network. Given that the training point is xk, a randomly selected point from the training
set, the probability density of the noisy input x̃ is

P
[
x + n = x̃ | x = xk

] = pn(x̃ − xk).

Training points are selected from the training set with equal probabilities P [x = xk] =
1/M so the probability density of the input seen by the network, x̃, is



Effects of Training with Noisy Inputs 279

P
[
x̃
] ≡ P

[
x + n = x̃

]
(17.3)

=
M∑

k=1

P
[
x + n = x̃ | x = xk

]
P [x = xk]

= 1

M

M∑
k=1

pn(x̃ − xk).

Given that a particular noisy input x̃ is observed, the probability that it is generated by
training data xk plus noise is found by Bayes’ rule

P
[
x = xk | x + n = x̃

] = P
[
x + n = x̃ | x = xk

]
P [x = xk]

P
[
x + n = x̃

]
= pn(x̃ − xk)(1/M)

(1/M)
∑M

j=1 pn(x̃ − xj )

= pn(x̃ − xk)∑M
j=1 pn(x̃ − xj )

. (17.4)

Let Pk denote this probability.
The expected value of the training target, given the noisy training input x̃, is then

〈ttrain(x̃ − n) | x̃〉 =
∑

i

tiPi

=
∑

i

tipn(x̃ − xi)∑
k pn(x̃ − xk)

. (17.5)

This is the expected value of the training target given that the input is a noisy version of
one of the training samples. As the number of samples approaches ∞, the distribution of
the samples approaches px and equation 17.5 becomes a good approximation to equation
17.1.

Let y(x̃) be the network output for the input x̃. The expected value of the error while
training, given this input, is

Ẽ =
M∑
i=1

(ti − y(x̃))2Pi. (17.6)



280 Chapter 17

Abbreviate y(x̃) with y. After expanding the square,

Ẽ = (6t2
i Pi) − 2y(6tiPi) + y26Pi

= (6t2
i Pi) − (6tiPi)

2 +
[
(6tiPi)

2 − 2y(6tiPi) + y26Pi

]
= (6t2

i Pi) − (6tiPi)
2 + [

(6itiPi) − y
]2

,

and

∂Ẽ

∂w
= −2

[
(6itiPi) − y

] ∂y

∂w
. (17.7)

In other words, under gradient descent, the system acts as if the target function is 6itiPi,
the expected value of the target in equation 17.5, given the conditions stated for Pi. This
is a well-known result in optimal least squares estimation: the function that minimizes the
sum-of-squares error is the expected value of the target given the input. From equation 17.7
the effective error function is

Eeff = [
(6itiPi) − y

]2
(17.8)

in the sense that
∂Eeff

∂w
= ∂Ẽ

∂w
. In contrast to conventional training where the target is defined

only at the training points, the effective target when training with jittered inputs is a
function defined for all inputs x.

Figure 17.2 illustrates the point. Figure 17.2(a) shows the Voronoi map of a set of points
in two dimensions, the basis for a nearest neighbor classifier. Figure 17.2(b) is expression

Figure 17.2
A nearest neighbor classification problem: (a) the Voronoi map for 14 points; and (b) the expected value of the
classification given the noisy input as calculated in (17.5) for a Gaussian noise distribution with σ = 0.1. (c) The
convolution of the training set with the same Gaussian noise. The zero contours of (b) and (c) coincide. (1s and
0s indicate classes; values 1 and -1 were actually used.)



Effects of Training with Noisy Inputs 281

(17.5) for the expected target given the noisy input. Figure 17.2(c) shows the convolution
of the sampled target function with a Gaussian function; the convolution smooths the
nearest neighbor decision surface and removes small features. Note that the zero contours
in figures 17.2(b) and 17.2(c) coincide.

17.2 Error Regularization and Training with Jitter

Regularization is another method often used to improve generalization. In regularization,
one often assumes that the target function is smooth and that small changes in the input do
not cause large changes in the output. Poggio and Girosi [300], for example, suggest the
cost function∑

i

(yi − ti)
2 + λ‖Py‖2 (17.9)

where ‘P is usually a differential operator’ and λ balances the trade-off between smoothing
and minimizing the error.

Jittering the inputs while keeping the target fixed embodies this smoothness assumption
and results in a similar cost function. That is, we add small amounts of noise to the input
data, assume that the target function does not change much, and minimize

E = {〈[t (x) − y(x + n)
]2〉} (17.10)

= {t (x)2 − 2t (x)〈y(x + n)〉 + 〈y(x + n)2〉} (17.11)

where {u} indicates the expected value of u over the training patterns and 〈u〉 indicates the
expected value of u over the noise n. For small magnitude noise, ‖n‖ ≈ 0, the network
output can be approximated by the linear terms of a truncated Taylor series expansion

y(x + n) ≈ y(x) + gT n (17.12)

where g = ∂y
∂x is the gradient of the output with respect to the input. (A second-order

approximation is given in appendix C.1.
Substitution into equation 17.11 and dropping the independent variable for brevity gives

E ≈
{

t2 − 2ty − 2tgT 〈n〉
+y2 + 2ygT 〈n〉 + gT 〈n nT 〉g

}
. (17.13)

Assume zero-mean uncorrelated noise with equal variances, 〈n〉 = 0 and 〈n nT 〉 = σ 2I.
Then



282 Chapter 17

E ≈
{
t2 − 2ty + y2 + σ 2gT g

}
(17.14)

≈ {(t − y)2} + σ 2
{
‖g‖2

}
. (17.15)

The term {(t − y)2} = E is the conventional unregularized error function and the term
{‖g‖2} is the squared magnitude of the gradient of y(x) averaged over the training points.

E is an approximation to the regularized error function in equation 17.9. Like equa-
tion 17.9, it introduces a term which encourages smooth solutions [384, 42]. Comparison of
equations 17.15 and 17.9 shows that σ 2 plays a role similar to λ in the regularization equa-
tion, balancing smoothness and error minimization. They differ in that training with jitter
minimizes the gradient term at the training points whereas regularization usually seeks to
minimize it for all x.

Equation 17.15 shows that, when it can do so without increasing the conventional
error, the system minimizes sensitivity to input noise by reducing the magnitude of the
gradient of the transfer function at the training points. A similar result is derived in [260]
and, by analogy with the ridge estimate method of linear regression, in [259]. A system
that explicitly calculates and back-propagates similar terms in a multilayer perceptron
is described by Ducker and Le Cun [112]. A more general approach using the Hessian
information is described by Bishop [40, 42, 43]. A stronger result equating training with
jitter and Tikhonov regularization is reported in [45].

Figure 17.3 illustrates the smoothing effect of training with input jitter. Figure 17.3(a)
shows the decision boundary formed by an intentionally overtrained 2/50/10/1 feedforward

Figure 17.3
Smoothing effects of training with jitter: (a) an intentionally overtrained 2/50/10/1 feedforward network chooses
an overly complex boundary and can be expected to generalize poorly; (b) the same network trained with Gaussian
(σ = 0.1) input noise forms a much smoother boundary and better generalization can be expected; and (c) the
expression in equation 17.5 for the expected value of the target function at an arbitrary point x.



Effects of Training with Noisy Inputs 283

network. With 671 weights, but only 31 training points, the network is very undercon-
strained and chooses a very nonlinear boundary. Training with jittered data discourages
sharp changes in the response near the training points and so discourages the network from
forming overly complex boundaries. Figure 17.3(b) shows the same network trained for the
same amount of time from the same initial conditions with additive Gaussian input noise
(σ = 0.1). Despite very long training times, the response shows no effects of overtraining.
For reference, figure 17.3(c) shows the expected value of the target given the noisy input
as calculated in equation 17.5.

17.3 Training with Jitter and Sigmoid Scaling

A drawback of training with jitter is that it requires the use of a small learning rate and
many sample presentations in order to average over the noise. In certain special cases,
the expected response of a network driven by a jittered input can be approximated by
simply adjusting the sigmoid slopes. This is, of course, much faster than averaging over
the noise. This result provides justification for gain scaling as a heuristic for improving
generalization.

17.3.1 Linear Output Networks

Consider the function

y(x) =
∑

k

vk hk(x) (17.16)

where

hk(x) = g
(
wT

k x − θk

)
(17.17)

and g(·) is the node nonlinearity. This describes a single-hidden-layer network with a linear
output.

With jitter (and the approximations stated for equation 17.2), the expected output for a
fixed input x is

〈y(x + n)〉 ≈ y(x) ? pn(x)

≈
∑

k

vk hk(x) ? pn(x)

≈
∑

k

vk

[
hk(x) ∗ pn(x)

]
, (17.18)



284 Chapter 17

Figure 17.4
The conventional sigmoid 1/(1 + e−x) and the Gaussian cumulative distribution function (GCDF) (with σ =
4/

√
2π) have very similar shapes and give similar results when used as the node nonlinearities. The GCDF is

useful in this analysis because it is shape invariant when convolved with a spherical Gaussian noise density.

that is, a linear sum of convolutions of the hidden unit responses with the noise density.
The symbol ? denotes correlation, a(x) ? b(x) = ∫ +∞

−∞ a(τ)b(τ − x) dτ , which is different
from convolution but the operations can be interchanged here if pn(x) is symmetric.

In most neural network applications, the nonlinearity is the sigmoid g(z) = 1/(1 + e−z).
If, instead, we use the Gaussian cumulative distribution function (GCDF), which has a
very similar shape (see figure 17.4), then the shape of the nonlinearity will be invariant
to convolution with a Gaussian input noise density. That is, if we assume that the noise is
zero-mean Gaussian and spherically distributed in N dimensions

pn(x) = 1

σN
1 (2π)N/2

exp

(
−‖x‖2

2σ 2
1

)
(17.19)

(where ‖x‖2 = xT x) and the g nonlinearity is the Gaussian cumulative distribution func-
tion

g(z) =
∫ z

−∞
1

σ2
√

2π
exp

(
−τ 2

2σ 2
2

)
dτ . (17.20)

then the convolution in equation 17.18 can be replaced by a simple scaling operation

hk(x) ∗ pn(x) = g
(
ak(wT

k x − θk)
)

(17.21)

where ak is a scaling constant defined below. A derivation is given in appendix C.2.



Effects of Training with Noisy Inputs 285

The significance of this is that when the equivalence (17.21) holds, the expected response
of the network to input noise approximated by (17.18) can be computed exactly by simply
scaling the hidden unit nonlinearities appropriately; we do not have to go through the
time-consuming process of estimating the response by averaging over many noisy samples.
That is,

〈y(x + n)〉 ≈
∑

k

vkg
(
ak(wT

k x − θk)
)

(17.22)

where the scaling constant ak depends on the magnitude of the weight vector wk and the
noise variance

ak = 1√
‖wk‖2σ 2

1 + 1
. (17.23)

Note that the bias θk is not included in the weight vector and has no role in the computation
of ak. It is, however, scaled by ak.

This does not say that we can train an arbitrary network without jitter and then simply
scale the sigmoids to compute exactly the network that would result from training with
jitter because it does not account for dynamics of training with random noise, but it does
suggest similarities.

Example Figures 17.5(a) through (f) verify this scaling property. Figures 17.5(a) and
(b) show the response of a network with two inputs, three GCDF hidden units, and a
linear output unit. Figures 17.5(c) and (d) show the average response using spherically
distributed Gaussian noise with σ = 0.1 and averaged over 2000 noisy samples per grid
point. Figures 17.5(e) and (f) show the expected response computed by scaling the hidden
units. The RMS error (on a 64 × 64 grid) between the averaged noisy response and the
scaled expected response is 0.0145. The scaled expected response was computed in a few
seconds; the average noisy response required hours on the same computer.

17.3.2 Relation to Weight Decay

The scaling operation is equivalent to

w → w√
‖w‖2σ 2

1 + 1
.

Because the denominator is not less than 1, this always reduces the magnitude of w or
leaves it unchanged. When σ1 = 0 (no input noise), the weights are unchanged. When



286 Chapter 17

Figure 17.5
Equivalence of weight scaling and jitter averaging: (a) the transfer function of the original network and (b) its
contour plot; (c) the average response with additive Gaussian input noise, σ = 0.1, averaged over 2000 noisy
samples per grid point and (d) its contour plot; and (e) the expected response computed by scaling and (f) its
contour plot.



Effects of Training with Noisy Inputs 287

Figure 17.6
Weight-decay effects of training with jitter: (a) weights for the overtrained network of figure 17.3(a), σ = 0.7262;
and (b) weights for the jitter-trained network of figure 17.3(b), σ = 0.3841.

σ1 → ∞, the weights approach zero. When ‖w‖σ1 is small, the scaling has little effect.
When ‖w‖σ1 is large, the scaling is approximately

w → w
‖w‖σ1

and the magnitude of w is reduced to approximately 1/σ1. This has some properties similar
to weight decay [299, 388, 387, 308], another commonly used heuristic for improving
generalization. The development of weight decay terms as a result of training single-layer
linear perceptrons with input noise is shown in [167].

This is supported by figure 17.6, which shows histograms of the weights for the over-
trained and jitter-trained networks of figure 17.3. Table 17.1 lists the standard deviations
of the weights by layers. The jitter-trained network has smaller weight variance on all
levels.



288 Chapter 17

Table 17.1
Weight-decay Effects of Training with Jitter. Training with Jitter Tends to Produce Smaller Weights.

Standard Deviations of Weights

overtrained jittered number of
network network weights

In to H1 weights 1.1153 .5904 150
H1 to H2 weights .5197 .2204 510
H2 to Out weights 1.6828 .4008 11
All weights .7262 .3481 671

17.4 Extension to General Layered Neural Networks

The results previously discussed relating training with jittered data and regularization hold
for any network. The analysis for gain scaling, however, is valid only for networks with
a single hidden layer and a linear output node. More general feedforward networks have
multiple layers and nonlinear output nodes. Even though the invariance property does not
hold for these networks, these results lend justification to the idea of gain scaling [228,
171] and weight decay as heuristics for improving generalization.

The gain scaling analysis uses a GCDF nonlinearity in place of the usual sigmoid non-
linearity. Because these functions have similar shapes, this is not an important difference
in terms of representation capability. (Differences might be observed in training dynamics,
however, because the GCDF has flatter tails.) The precise form of the sigmoid is usually
not important as long as it is monotonic nondecreasing; the usual sigmoid is widely used
because its derivative is easily calculated.

The GCDF nonlinearity is used here because it has a convenient shape invariance prop-
erty under convolution with a Gaussian input noise density. There may be other nonlin-
earities that, although not having this shape invariance property, are such that their ex-
pected response can still be calculated efficiently using a similar approach. If, for example,
g(x) ∗ pn(x) = h(x), the function h(x) may be different in form from g(x), but still rea-
sonably easy to calculate. As a specific example, if g(x) is a step function and pn(x) is
uniform (both in one dimension), then h(x) is a semilinear ramp function: 0 for x < α,
equal to x for −α ≤ x ≤ α, and 1 for x > α. The expected network response can then be
computed as a linear sum of h(x) nonlinearities rather than a linear sum of g(x) nonlinear-
ities. Different nonlinearities must be used to calculate the normal and expected responses,
but this is still much faster than averaging over many presentations of noisy samples.

The scaling results can also be applied to radial basis functions [271, 272, 300], which
generally use Gaussian PDF hidden units and a linear output summation. The convolution



Effects of Training with Noisy Inputs 289

of two spherical Gaussian PDFs with variances σ 2
1 and σ 2

2 produces a third Gaussian PDF
with variance σ 2

3 = σ 2
1 + σ 2

2 , so the expected response of these networks to noise is easily
calculated using similar shape invariant scaling.

17.5 Remarks

Training with jitter, error regularization, gain scaling, and weight decay are all methods
that have been proposed to improve generalization. Training with small amounts of jitter
approaches the generalization problem directly by assuming that slightly different inputs
give approximately the same output. If the noise distribution is smooth, the network will
interpolate among training points in proportion to a smooth function of the distance to each
training point.

With jitter, the effective target function is a smoothed version of the discrete training
set. If the training set describes the target function well, the effective target approximates
a smoothed version of the actual target function. The result is similar to training with a
regularized objective function favoring smooth functions and the noise variance playing
the role of the regularization parameter. Where regularization works by modifying the
objective function, training with jitter achieves the same result by modifying the training
data. In hindsight, the fact that training with noisy data approximates regularization is not
surprising because this is the sort of thing regularization was developed to address.

Although large networks generally learn rapidly, they tend to generalize poorly because
of insufficient constraints. Training with jitter helps to prevent overfitting by providing
additional constraints. The effective target function is a continuous function defined over
the entire input space whereas the original target function may be defined only at the
specific training points. This constrains the network and forces it to use any excess degrees
of freedom to approximate the smoothed target function rather than forming an arbitrarily
complex boundary that just happens to fit the original training data (memorization). Even
though the network may be large, it models a simpler system.

The expected effect of jitter can be calculated efficiently in some cases by a simple
scaling of the node gains. This suggests the possibility of a post-training step to choose
optimum gains based on cross-validation with a test set. This might make it possible to
improve the generalization of large networks while retaining the advantage of fast learning.

The problem of choosing an appropriate noise variance has not been addressed here.
Holmström and Koistinen suggest several methods based on cross-validation. Considerable
research has been done on the problem of selecting an appropriate λ for regularization,
especially for linear models. Because of the relationship between training with jitter and
regularization, the regularization research may be helpful in selecting an appropriate noise
level.



290 Chapter 17

17.6 Further Examples

17.6.1 Static Noise

The use of dynamic jitter may interfere with some training algorithms because the mea-
sured error changes from moment to moment due to the jitter. Algorithms that adapt the
learning rate depending on the change in error from one iteration to the next or algorithms
that use information from previous iterations to choose the next search point could become
unstable. It may also be inconvenient to add dynamic jitter to the data in closed simulation
systems. In these cases it may be useful to use static noise, that is, to create a larger fixed
training set by adding noisy versions of the original patterns.

Figure 17.7 illustrates the effect of training with a static noisy data set. Figure 17.7(a)
shows the surface learned by a 2/50/10/1 network trained on the original 31 data points
(724 epochs with RProp). The 31 points are almost linearly separable, but with 671 weights
the network is very underconstrained and chooses a complex decision surface with sharp
transitions. A static noisy data set of 930 points was generated by perturbing each of the
original points with Gaussian noise (σ = 0.1) 30 times. (Thirty was chosen to give more
training patterns than weights. Simulations using 5 and 10 noisy patterns per original point
yielded complex boundaries.) The original points were not included in the new training set.
Figure 17.7(b) shows the surface learned by a network initialized with the same weights

Figure 17.7
Training with static noise: (a) response of an underconstrained 2/50/10/1 net. The boundary is complex and
transitions are steep, but the data is almost linearly separable. (b) Response of the same net trained on an enlarged
data set obtained by replacing each original training point by 30 noisy points (σ = 0.1). The boundary is simpler
and transitions are more gradual, but a few kinks remain. (1s and 0s denote the training points, the training values
were 0.9 and -0.9.)



Effects of Training with Noisy Inputs 291

Figure 17.8
Cross-validation with jittered data. An artificial validation data set was created by generating 30 jittered points
from each of the original 31 training points: (a) response of an underconstrained 2/50/10/1 net trained to conver-
gence, and (b) response of the net with the best RMS error on the validation set (1s and 0s denote the training
points, the training values were 0.9 and -0.9).

after 2500 epochs of RProp training. In most places, the decision surface is less complex
and the transitions are more gradual, but a few kinks remain. Evidently the network was still
able to exploit idiosyncrasies in the data so perhaps 930 points was not enough to constrain
the network enough to prevent overtraining. (The second network was trained for a much
longer time, however: 2,325,000 pattern presentations versus 22,444. The kinks might not
have developed if the net were trained for an equivalent number of pattern presentations or
an equivalent number of epochs, but this indicates that the augmented data by itself was
not enough to prevent overtraining.)

17.6.2 Cross-Validation with Jittered Data

An artificial validation data set was created by generating 30 jittered points from each of
the original 31 training points. Figure 17.8(a) shows the response of the network trained
to convergence. Overfitting is obvious. Figure 17.8(b) shows the response of the network
with the best validation error. Final convergence of the overtrained net occurred at 1365
epochs. The best validation was observed at 165 epochs.

More sophisticated versions of this approach are described by Musavi et al. [281] and
Pados and Papantoni-Kazakos [293]. In both, the joint density f (X, Y ) is estimated by
fitting Gaussians (not necessarily spherical) around each point. This is done by a radial
basis function network in [293]. The resulting density estimate can then be used to estimate
the generalization error of another network or, as in section 17.6.1, to generate a larger set
of artificial training data.



292 Chapter 17

Figure 17.9
Smoothing an overtrained response. Given an overtrained net, a better estimate of the true function at a point x
might be obtained by averaging a number of probes around x using a noisy input. The figure shows the expected
response of the network in figure 17.7(a) to a noisy input (σ = 0.1) (1s and 0s denote the training points, the
training values were 0.9 and -0.9).

17.6.3 Jitter Used to Discount an Overtrained Response

When system response time is not a critical consideration, averaging with jitter might be
used to smooth the output of an overtrained network to obtain a more reliable response.
That is, given an overtrained net, a better estimate of the true function at a point x might be
obtained by averaging a number of probes around x using a noisy input

y′ = 1

N

N∑
k=1

y(x + n).

Figure 17.9 shows the expected response of the overtrained network in figure 17.7(a) to a
noisy input (σ = 0.1). Unlike training with dynamic jitter, which slows training by requir-
ing a small learning rate, or training with static jitter, which slows training by increasing
the size of the training set, this allows fast training but mitigates the worst effects of over-
training at the expense of a slightly slower response during recall.



This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.


	chap17.pdf
	chap17-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

	notice.pdf

