Russell D. Reed and Robert J. Marks II
NEURAL SMITHING
Mar 1999
ISBN 0-262-18190-8
352 pp. 105 illus.
$57/£39.50
(hardback)
Preface
1.
Introduction
2.
Supervised Learning
3.
Single-Layer Networks
4.
MLP Representational Capabilities
5.
Back-Propagation
6.
Learning Rate and Momentum
7.
Weight-Initialization Techniques
8.
The Error Surface
9.
Faster Variations of Back-Propagation
10.
Classical Optimization Techniques
11.
Genetic Algorithms and Neural Networks
12.
Constructive Methods
13.
Pruning Algorithms
14.
Factors Influencing Generalization
15.
Generalization Prediction and Assessment
16.
Heuristics for Improving Generalization
17.
Effects of Training with Noisy Inputs
Appendices
A
Linear Regression
B
Principal Components Analysis
C
Jitter Calculations
D
Sigmoid-like Nonlinear Functions
References
Index
Legal