
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

5 Back-Propagation

Back-propagation is, by far, the most commonly used method for training multilayer
feedforward networks. The term back-propagation refers to two different things. First, it
describes a method to calculate the derivatives of the network training error with respect
to the weights by a clever application of the derivative chain-rule. Second, it describes a
training algorithm, basically equivalent to gradient descent optimization, for using those
derivatives to adjust the weights to minimize the error.

The algorithm was popularized by Rumelhart, Hinton, and Williams [329, 330], al-
though earlier work had been done by Werbos [390], Parker [295], and Le Cun ([89];
summarized in [90]). Together with the Hopfield network, it was responsible for much
of the renewed interest in neural networks in the mid-1980s. Before back-propagation,
most networks used nondifferentiable hard-limiting binary nonlinearities such as step func-
tions and there were no well-known general methods for training multilayer networks. The
breakthrough was perhaps not so much the application of the chain-rule, but the demonstra-
tion that layered networks of differentiable nonlinearities could perform useful nontrivial
calculations and that they offer (in some implementations) attractive features such as fast
response, fault tolerance, the ability to “learn” from examples, and some ability to gener-
alize beyond the training data.

As a training algorithm, the purpose of back-propagation is to adjust the network weights
so the network produces the desired output in response to every input pattern in a prede-
termined set of training patterns. It is a supervised algorithm in the sense that, for every
input pattern, there is an externally specified “correct” output which acts as a target for the
network to imitate. Any difference between the network output and the target is treated as
an error to be minimized. A “teacher” must decide which patterns to include in the train-
ing set and specify the correct output for each. It is an off-line algorithm in the sense that
training and normal operation occur at different times. In the usual case, training could be
considered part of the “manufacturing” process wherein the network is trained once for a
particular function, then frozen and put into operation. Normally, no further learning occurs
after the initial training phase.

To train a network, it is necessary to have a set of input patterns and corresponding de-
sired outputs, plus an error function (cost function) that measures the “cost” of differences
between network outputs and desired values. The basic steps are these.

1. Present a training pattern and propagate it through the network to obtain the outputs.

2. Compare the outputs with the desired values and calculate the error.

3. Calculate the derivatives ∂E/∂wij of the error with respect to the weights.

4. Adjust the weights to minimize the error.

5. Repeat until the error is acceptably small or time is exhausted.

50 Chapter 5

The error function measures the cost of differences between the network outputs and the
desired values. The sum-of-squares function, below, is a common choice.

ESSE =
∑
p

∑
i

(dpi − ypi)
2 (5.1)

Here p indexes the patterns in the training set, i indexes the output nodes, and dpi and ypi

are, respectively, the target and actual network output for the ith output node on the pth
pattern. The mean-squared-error

EMSE = 1

PN
ESSE (5.2)

normalizes ESSE for the number of training patterns P and network outputs N . Advan-
tages of the SSE and MSE functions include easy differentiability and the fact that the cost
depends only on the magnitude of the error. In particular, a deviation of a given magnitude
has the same cost independent of the input pattern and independent of errors on other out-
puts. For classification problems, logarithmic or cross-entropy error functions (section 2.1)
are sometimes used. For real-world applications, the cost function may be specialized to
assign different costs to different sorts of deviations; similar errors on different input pat-
terns may have different costs and the cost of an error on one output could depend on the
errors on other outputs.

5.1 Preliminaries

Back-propagation can be applied to any feedforward network with differentiable activation
functions. In particular, it is not necessary that it have a layered structure. An arbitrary
feedforward network will be assumed in the following.

Feedforward Indexing For simplicity, assume the nodes are indexed so that i > j

implies that node i follows node j in terms of dependency. That is, the state of node i may
depend, perhaps indirectly, on the state of node j , but node j < i does not depend on node i.
Such an index order is possible in any feedforward network, though it will not be unique in
general. The advantage of this format is that it works in any feedforward network, including
those with irregular structure and short-cut (layer skipping) connections. In simulations, it
also lets us avoid the need to deal with each layer separately, keeping track of layer indexes.
Of course, this indexing scheme is compatible with standard layered structures.

Because the dependencies are transmitted by the connection weights, connections are
allowed from nodes with low indexes to nodes with higher indexes, but not vice versa. If

Back-Propagation 51

Figure 5.1
Feedforward indexing in an unlayered network. The nodes in a feedforward network can always be indexed so
that i > j if the state of node i depends on the state of node j (perhaps indirectly). Arbitrary connections are
allowed from nodes with low indexes to nodes with higher indexes, but not vice versa; i > j implies wji ≡ 0. This
network has no particular function, but illustrates short-cut connections, apparently lateral (but still feedforward)
connections, and the fact that outputs can be take from internal nodes.

wij denotes the weight to node i from node j then any forward link wij , j < i is allowed,
but backward links are prohibited, wji ≡ 0. Figure 5.1 illustrates a possibility. Normally,
the system inputs and the bias node will have low indexes since they potentially affect all
other nodes and outputs will have high indexes.

5.1.1 Forward Propagation

In the forward pass, the network computes an output based on its current inputs. Each node
i computes a weighted sum ai of its inputs and passes this through a nonlinearity to obtain
the node output yi (see figure 5.2)

ai =
∑
j<i

wijyj (5.3)

yi = f (ai). (5.4)

Normally f is a bounded monotonic function such as the tanh or sigmoid. Arbitrary
differentiable functions can be used, but sigmoid-like “squashing” functions are standard.
The index j in the sum runs over all indexes j < i of nodes that could send input to node i.

52 Chapter 5

Figure 5.2
Forward propagation. In the forward pass, the input pattern is propagated through the network to obtain the output.
Each node computes a weighted sum of its inputs and passes this through a nonlinearity, typically a sigmoid or
tanh function.

If there is no connection from node j , weight wij is taken to be 0. As usual, it is assumed
that there is a bias node with constant activation, ybias = 1, to avoid the need for special
handling of the bias weights.

Every node is evaluated in order, starting with the first hidden node and continuing to
the last output node. In layered networks, the first hidden layer is updated based on the
external inputs, the second hidden layer is updated based on the outputs of the first hidden
layer, and so on to the output layer which is updated based on the outputs of the last hidden
layer. In software simulations, it is sufficient to evaluate the nodes in order by node index.
Because node i does not depend on any nodes k > i, all inputs to node i will be valid when
it is evaluated. At the end of the sweep, the system outputs will be available at the output
nodes.

5.1.2 Error Calculation

Unless the network is perfectly trained, the network outputs will differ somewhat from
the desired outputs. The significance of these differences is measured by an error (or cost)
function E. In the following, we use the SSE error function

E = 1

2

∑
p

∑
i

(dpi − ypi)
2 (5.5)

where p indexes the patterns in the training set, i indexes the output nodes, and dpi and
ypi are, respectively, the desired target and actual network output for the ith output node
on the pth pattern. The 1

2 factor suppresses a factor of 2 later on. One of the reasons SSE
is convenient is that errors on different patterns and different outputs are independent; the
overall error is just the sum of the individual squared errors

Back-Propagation 53

E =
∑
p

Ep (5.6)

Ep = 1

2

∑
i

(dpi − ypi)
2. (5.7)

5.2 Back-Propagation: The Derivative Calculation

Having obtained the outputs and calculated the error, the next step is to calculate the
derivative of the error with respect to the weights. First we note that ESSE = ∑

p Ep is
just the sum of the individual pattern errors so the total derivative is just the sum of the
per-pattern derivatives

∂E

∂wij

=
∑
p

∂Ep

∂wij

. (5.8)

The thing that makes back-propagation (the derivative calculation) efficient is how the
operation is decomposed and the ordering of the steps. The derivative can be written

∂Ep

∂wij

=
∑

k

∂Ep

∂ak

∂ak

∂wij

(5.9)

where the index k runs over all output nodes and aj is the weighted-sum input for node j

obtained in equation 5.3. It is convenient to first calculate a value δi for each node i

δi = ∂Ep

∂ai

(5.10)

= ∂Ep

∂yi

∂yi

∂ai

, (5.11)

which measures the contribution of ai to the error on the current pattern. For simplicity,
pattern indexes p are omitted on yi, ai, and other variables below.

For output nodes, ∂Ep/∂ak is obtained directly

δk = −(dpk − ypk)f
′
k. (for output nodes) (5.12)

The first term is obtained from equation 5.7,

∂Ep

∂yk

= −(dpk − ypk). (5.13)

54 Chapter 5

(This is the SSE result; different expressions will be obtained for other error functions.)
The second term

∂yk

∂ak

= f ′(ak) (5.14)

is just the slope f ′
k ≡ f ′(ak) of the node nonlinearity at its current activation value. The

sigmoid is convenient to use because f ′ is a simple function of the node output: f ′(ak) =
y(1 − y), where y = f (ak). The tanh function is also convenient, f ′(ak) = 1 − y2.

For hidden nodes, δi is obtained indirectly. Hidden nodes can influence the error only
through their effect on the nodes k to which they send output connections so

δi = ∂Ep

∂ai

=
∑

k

∂Ep

∂ak

∂ak

∂ai

. (5.15)

But the first factor is just the δk of node k so

δi =
∑

k

δk

∂ak

∂ai

. (5.16)

The second factor is obtained by noting that if node i connects directly to node k then
∂ak/∂ai = f ′

i wki, otherwise it is zero. So we end up with

δi = f ′
i

∑
k

wkiδk (5.17)

(for hidden nodes). In other words, δi is a weighted sum of the δk values of nodes k to
which it has connections wki (see figure 5.3).

Because δk must be calculated before δi, i < k, the process starts at the output nodes and
works backward toward the inputs, hence the name “back-propagation.” First δ values are
calculated for the output nodes, then values are calculated for nodes that send connections
to the outputs, then values are calculated for nodes two steps removed from the outputs,
and so forth.

To summarize so far,

δi =
{ −(dpi − ypi)f

′
i (for output nodes)

f ′
i

∑
k wkiδk (for hidden nodes)

(5.18)

For output nodes, δi depends only on the error di − yi and the local slope f ′
i of the node

activation function. For hidden nodes, δi is a weighted sum of the δs of all the nodes it
connects to, times its own slope f ′

i . Because of the way the nodes are indexed, all delta

Back-Propagation 55

Figure 5.3
Backward propagation. Node deltas are calculated in the backward pass, starting at the output nodes and proceed-
ing backwards. At each hidden node i, δi is calculated as a weighted linear combination of values δk, k > i, of the
nodes k to which node i sends outputs. Note that the δ values travel backward against the normal direction of the
connecting links.

values can be updated in a single sweep through the nodes in reverse order. In layered
networks, delta values are first evaluated at the output nodes based on the current pattern
errors, the last hidden layer is then evaluated based on the output delta values, the second-
to-last hidden layer is updated based on the values of the last hidden layer, and so on
backwards to the input layer. Normally it is not necessary to calculate delta values for the
input layer, so the process usually stops with the first hidden layer.

Having obtained the node deltas, it is an easy step to find the partial derivatives ∂Ep/∂w

with respect to the weights. The second term in (5.9) is ∂ak/∂wij . Because ak is a simple
linear sum, this is zero if k 6=i; otherwise

∂ai

∂wij

= yj (5.19)

where yj is the output activation of node j . Finally, from (5.9), the derivative of pattern
error Ep with respect to weight wij is then

∂Ep

∂wij

= δiyj , (5.20)

the product of the delta value at node i and the output of node j .

Derivatives with Respect to the Inputs Normally, delta values are not calculated for the
input nodes because they are not needed to adjust the weights. Notice, however, that for
input nodes δi = ∂E/∂ai is the derivative of the error with respect to the input. Also, if the
network has a single output y then setting E = 1 and back-propagating gives the derivative

56 Chapter 5

of the output with respect to the input, ∂y/∂x. There are, of course, useful applications for
these derivatives. They can be used, for example, in inverse problems where we seek input
values that produce a particular output.

A Finite-Difference Approximation As an alternative, the derivative can be estimated
by a finite-difference approximation [44: 147]

∂Ep

∂wij

= Ep(wij + ε) − Ep(wij − ε)

2ε
+ O(ε2) (5.21)

where ε � 1 is a small offset. This is a weight perturbation technique [191, 192, 125]. Each
weight must be perturbed twice and the error must be reevaluated for each perturbation. In
a serial implementation, the error measurement takes O(W) time so the total time required
scales like O(W 2), where W is the number of weights in the network. This is slower than
back-propagation, which takes O(W) time to find the derivative, but it is robust and simple
to implement.

The method described perturbs each weight separately. A node perturbation technique
is more efficient [44]. (The madeline III learning rule [403] is similar.) Recall from equa-
tion 5.10 that δi is the derivative of the error with respect to the node input sum, ai. Instead
of perturbing the weights, the ai values of the hidden nodes are perturbed to obtain an
approximation of the node deltas

δi ≡ ∂Ep

∂ai

= Ep(ai + ε) − Ep(ai − ε)

2ε
+ O(ε2). (5.22)

Then equation 5.20 is used to calculate the gradient with respect to the weights. Each node
must be perturbed twice and the error reevaluated. If there are H hidden nodes and W

weights, this takes O(2HW) steps. Calculation of Ep takes O(W) time so the overall time
scales like O(HW). Depending on the relative sizes of H and W , this can be much faster
than the O(W 2) time of the previous method, but it is still longer than the O(W) time
of back-propagation. Summed weight perturbation [125] is a hybrid of weight and node
perturbation methods.

Although finite-difference techniques are slower than back-propagation, they are simple
to implement and useful for verify the correctness of more efficient calculations. They
are also useful for training systems where analytic derivative calculation is not possible.
Electronic circuit implementations, for example, may lack dedicated circuitry to do the
back-propagation calculations. Finite-difference methods make it possible to estimate the

Back-Propagation 57

derivatives using only feedforward calculations. In addition, they automatically account for
nonideal circuit effects and faults that may occur in real systems.

5.3 Back-Propagation: The Weight Update Algorithm

Having obtained the derivatives, the next step is to update the weights so as to decrease
the error. As noted earlier, the term back-propagation refers to (1) an efficient method
to calculate the derivatives ∂E/∂w and (2) an optimization algorithm that uses those
derivatives to adjust the weights to reduce the error. Having obtained the derivatives, we
have the choice of continuing with back-propagation, the optimization algorithm, or using
one of many alternative optimization methods that may be better adapted to the given
problem.

Back-propagation (the optimization method) is basically equivalent to gradient descent.
By definition, the gradient of E points in the direction that increases E the fastest. In
order to minimize E, the weights are adjusted in the opposite direction. The weight update
formula is

1wij = −η
∂E

∂wij

(5.23)

where the learning rate η > 0 is a small positive constant. Sometimes η is also called the
step size parameter. If the derivative is positive (so increases in w causes increases in E)
then the weight change is negative and vice versa. This approaches pure gradient descent
when η is infinitesimal. Very small η values mean very long learning times though so larger
rates are usually used. Typical values are in the range 0.05 < η < 0.75. (This is just a rule
of thumb, however; see section 6.1 for more discussion.)

The network is usually initialized with small random weights. Values are often selected
uniformly from a range [−a, +a] where 0.1 < a < 2 typically. Random values are needed
to break symmetry while small values are necessary to avoid immediate saturation of the
sigmoid nonlinearities. Chapter 7 considers initialization methods in more detail.

5.3.1 Batch Learning

There are two basic weight-update variations, batch-mode and on-line. In batch-mode,
every pattern p is evaluated to obtain the derivative terms ∂Ep/∂w; these are summed
to obtain the total derivative

∂E

∂w
=

∑
p

∂Ep

∂w
. (5.24)

58 Chapter 5

and only then are the weights updated. This comes from the derivative rule for sums. The
individual ∂Ep/∂w terms are obtained by application of the method of section 5.2 to each
pattern p.

The basic steps are

. For every pattern p in the training set,

1. apply pattern p and forward propagate to obtain network outputs, and

2. calculate the pattern error Ep and back-propagate to obtain the single-pattern derivatives
∂Ep/∂w.
. Add up all the single-pattern terms to get the total derivative.
. Update the weights

w(t + 1) = w(t) − η
∂E

∂w
.

. Repeat.

Each such pass through the training set is called an epoch.
The gradient is calculated exactly and weight changes are proportional to the gradient

so batch-mode learning approximates gradient descent when the step size η is small (fig-
ure 5.4). In general, each weight update reduces the error by only a small amount so many
epochs are needed to minimize the error.

Figure 5.4
Batch-mode back-propagation is a close approximation to true gradient descent. At each step, the weights are
adjusted in the direction that minimizes the error the fastest. When the learning rate is small, the weights trace a
smooth trajectory down the gradient of the error surface.

Back-Propagation 59

5.3.2 On-Line Learning

An alternative to batch-mode is on-line or pattern-mode learning. In on-line learning, the
weights are updated after each pattern presentation. Generally, a pattern p is chosen at
random and presented to the network. The output is compared with the target for that
pattern and the errors are back-propagated to obtain the single-pattern derivative ∂Ep/∂w.
The weights are then updated immediately, using the gradient of the single-pattern error.
Generally, the patterns are presented in a random, constantly changing order to avoid cyclic
effects.

The steps are:

. Pick a pattern p at random from the training set,

1. apply pattern p and forward propagate to obtain network outputs, and

2. calculate the pattern error Ep and back-propagate to obtain the single-pattern derivatives
∂Ep/∂w.
. Update the weights immediately using the single-pattern derivative

w(t + 1) = w(t) − η
∂Ep

∂w
.

. Repeat.

An advantage of this approach is that there is no need to store and sum the individual
∂Ep/∂w contributions; each pattern derivative is evaluated, used immediately, and then
discarded. This may make hardware implementation easier when resources are limited.
Another possible advantage is that many more weight updates occur in a given amount of
time. If the training set contains M patterns, for example, on-line learning would make M

weight changes in the time that batch-mode learning makes only one.
A possible disadvantage (from an analysis standpoint, at least) is that this is no longer

a simple approximation to gradient descent. Figure 5.5 illustrates the relationship between
the true gradient and the single-pattern terms in a typical case. The single-pattern deriva-
tives can be viewed as noisy estimates of the true gradient. As a group, they sum to the
gradient but each has a random deviation that need not be small. When the gradient is
strong, the average single-pattern derivative has a positive projection on the gradient (be-
cause it is the sum of the single-pattern terms) so the error usually decreases after most
weight changes. Still, there may be terms with negative projections or large orthogonal de-
viations which may cause the error to increase after some updates. On average though,
the weight change will at least move downhill even if it doesn’t take the most direct
path.

60 Chapter 5

Figure 5.5
In on-line learning, weight updates occur after each pattern presentation. The single-pattern derivative terms can
be viewed as noisy estimates of the gradient. They are not parallel to it in general, but on average they have
a positive projection onto it (because the gradient is the sum of the single-pattern terms) so the error usually
decreases after most weight changes. Some terms may have negative projections or large orthogonal deviations,
however, which may cause the error to increase occasionally.

On-line learning differs from pure gradient descent in that the sum (5.24) is never
evaluated exactly because the weights change after each pattern so the individual terms are
evaluated at different points. The difference is minimal when η is very small; the weights
won’t change much between steps so the effect after all patterns have been evaluated is
approximately the same as if all terms had been evaluated at a single point and summed to
perform a single weight change which has the same overall result.

Very small learning rates tend to make learning very slow, however, so larger values are
often used and the stochastic elements become important. Instead of following a smooth
trajectory down the gradient, the weight vector tends to jitter around the E(w) surface,
mostly moving downhill, but occasionally jumping uphill (figure 5.6). To a first approxi-
mation, the magnitude of the jitter is proportional to the learning rate η. The randomness
arises because training patterns are selected in a random, constantly changing order. Cyclic,
fixed orders are generally avoided because of the possibility of convergence to a limit cycle
(figure 5.7).

This randomness has advantages and disadvantages. On the plus side, it gives the algo-
rithm some stochastic search properties. When pure gradient descent arrives at a local mini-
mum, it is simply stuck. In on-line (per-pattern) learning, however, the weight state tends to
jitter around its equilibrium value. Instead of sitting quietly at the minimum, it visits many
nearby points and occasionally, if chance allows, may bounce out of a poor minimum and
find a better solution. Thus, on-line learning may have a better chance of finding a global
minimum than true gradient descent. On the minus side, the weight vector never settles to
a stable value. Having found a good minimum, it may then wander off. Also on the mi-
nus side, when the jitter is very large, it may completely hide any deterministic gradient
information so the system may be unable to follow subtle paths in the E(w) surface.

Back-Propagation 61

Figure 5.6
In on-line learning, patterns are generally presented in a random, changing order and weights are updated after
each pattern presentation. Instead of smoothly rolling down the error gradient, the weight vector dances along
a semi-random path, mostly moving downhill, but occasionally jumping uphill. Upon reaching a low spot, the
weight vector jitters around the minimum but is unable to settle unless the step size is reduced. Circles show the
weights at the start of each epoch and line segments show the single-pattern steps within each epoch.

Figure 5.7
When patterns are presented in a cyclic order during on-line learning, as above, the sequence of steps in epoch
t + 1 tends to be similar to the sequence in epoch t so the weight trajectory has a semi-periodic behavior. A danger
is that the trajectory will converge to a limit cycle, as shown, and be unable to reach the minimum. One way to
break the cycle is to change the pattern selection order. Reduction of the learning rate may also break the cycle
or, if done gradually, may reduce the “diameter,” allowing it to close in around the minimum. Circles show the
weights at the start of each epoch and line segments show the single-pattern steps within each epoch.

62 Chapter 5

It is common, therefore, to adjust the learning rate as training progresses. The simplest
scheme is to start with an intermediate value, let the system train to approximate conver-
gence, and then gradually reduce the learning rate to zero to allow the system to settle to
the minimum. The learning rate can also be adjusted dynamically depending on conditions
encountered during training. It is desirable to maintain a balance between stochastic search
and efficient progress down the error gradient. The learning rate should not be so large
that any single weight update (or likely sequence of updates) can move the weight state to
a completely new area of the weight space, but it should not be so small that the system
merely approximates gradient descent. If a large majority of single-pattern vectors have a
common direction (positive projection on the average vector, the gradient) then the learn-
ing rate can probably be increased. If the single-pattern vectors have no apparent common
direction then the learning rate should be reduced. This will occur near a minimum, where
the gradient goes to zero because the single-pattern vectors cancel. It may also occur at
the bottom of a “ravine” in the error surface, where the single-pattern vectors often group
into two bundles pointing in opposite directions across the long axis of the ravine. In these
cases, smaller learning rates would allow the system to settle to the minimum. Section 9.8
describes the “search then converge” algorithm, an adaptive learning method that controls
the learning rate automatically.

A side note about terminology: The label “on-line learning” may be confusing because
it implies that learning may occur in the field during normal operation and that it is not
necessary to take the system off-line for training. But on-line learning, like batch-mode
learning, is normally done off-line during a separate training phase with controlled data
sets. The label “pattern-mode learning” is sometimes used instead.

5.4 Common Modifications

5.4.1 Momentum

A common modification of the basic weight update rule is the addition of a momentum
term. The idea is to stabilize the weight trajectory by making the weight change a com-
bination of the gradient-decreasing term in equation 5.23 plus a fraction of the previous
weight change. The modified weight change formula is

1w(t) = −η
∂E

∂w
(t) + α1w(t − 1). (5.25)

That is, the weight change 1w(t) is a combination of a step down the negative gradient,
−η ∂E

∂w (t), plus a fraction 0 ≤ α < 1 of the previous weight change. Typical values are
0 ≤ α < 0.9.

Back-Propagation 63

This gives the system a certain amount of inertia since the weight vector will tend to
continue moving in the same direction unless opposed by the gradient term. Effects of
momentum are considered in more detail in section 6.2. Briefly, momentum tends to damp
oscillations in the weight trajectory and accelerate learning in regions where ∂E/∂w is
small.

5.4.2 Weight Decay

Another common modification of the weight update rule is the addition of a weight decay
term. Weight decay is sometimes used to help adjust the complexity of the network to the
difficulty of the problem. The idea is that if the network is overly complex, then it should be
possible to delete many weights without increasing the error significantly. One way to do
this is to give the weights a tendency to drift to zero by reducing their magnitudes slightly
at each iteration. The update rule with weight decay is then

1w(t) = −η
∂E

∂w
(t) − ρw(t). (5.26)

where 0 ≤ ρ � 1 is the weight decay parameter. If ∂E/∂wi = 0 for some weight wi, then wi

will decay to zero exponentially. Otherwise, if the weight really is necessary then ∂E/∂wi

will be nonzero and the two terms will balance at some point, preventing the weight from
decaying to zero. Weight decay is considered in more detail in sections 6.2.4 and 16.5 and
chapter 13.

5.5 Pseudocode Examples

At present, most artificial neural networks exist only as simulations on serial computers.
The following samples illustrate the basic steps of back-propagation in ‘C’ pseudocode.
Note, the purpose of the code is only to illustrate the algorithm. Real code would have to
include many distracting details!

Forward Propagation In the feedforward step, an input pattern is propagated through
the network to obtain an output. In ‘C’ pseudocode, this might look like

void forward_propagate(double *input_pattern)

{

/* copy pattern to input nodes */

for(i=0; i<number_of_inputs; i++)

node_output[i+1] = pattern[i];

node_output[0] = 1; /* set bias to 1 */

64 Chapter 5

/* compute outputs of the remaining nodes */

for(i=first_hidden_index; i<number_of_nodes; i++) {

double sum = 0;

for(j=0; j<i; j++)

sum += weight[i][j] * node_output[j];

node_output[i] = sigmoid(sum);

}

}

When the function returns, the network outputs are available in the values of the output
nodes. Because of the feedforward node indexing scheme, each node_output[j] is ready
and available when it is needed as input to following nodes i > j . The bias node has index
0 and input nodes have indices from 1 to number_of_inputs. The rest of the nodes are
indexed in feedforward order, with the output nodes last. The entire network can thus be
evaluated in a single sweep through the nodes without extra bookkeeping to keep track of
layers or short-cut connections.

For simplicity, the weight matrix is square with slots for all possible connections (in-
cluding unallowed backward connections). Mathematically, weight wij can be treated as
zero if there is no connection from node j to node i. In practice, of course, it would be
more efficient to store connection information for each node so that only those weights
that actually exist are examined. Similar details are ignored here for simplicity.

Backward Error Propagation The derivatives of the error on the current pattern with re-
spect to the weights are calculated in the back-propagation step. The following pseudocode
shows how this might be implemented assuming the network response to the pattern has
just been calculated by forward propagation. The *targets argument points to an array
of target values. For simplicity, assume there is one array element per network node so the
same index can be used to access nodes and their target values. A sigmoid node function is
assumed.

void backprop_node_deltas(double *targets)

{

/* calculate node deltas for output nodes */

for(i=last_output_node; i>=first_output_node; i--) {

double err = targets[i] - node_value[i];

delta[i] = err * node_value[i]*(1-node_value[i]);

/* (sigmoid slope term) */

}

Back-Propagation 65

/* then calculate deltas for hidden nodes, working backwards */

for(i=last_hidden_node; i>=first_hidden_node; i--) {

delta[i] = 0;

for(k=i+1; k<=last_output_node; k++)

delta[i] += weight[k][i] * delta[k];

delta[i] *= node_value[i]*(1-node_value[i]);

/* (sigmoid slope term) */

}

}

Batch-Mode Weight Update The code just described would normally be included in a
larger loop to add up the weight change contributions from each pattern. One epoch of
batch-mode training could be done as follows.

void backprop_batch_one_epoch(void)

{

/* clear the dEdW accumulators */

for(i=0; i<number_of_nodes; i++)

for(j=0; j<i; j++)

dEdW[i][j] = 0;

/* add up dEdW contributions from each pattern */

for(ip=0; ip<number_of_patterns; ip++) {

forward_propagate(pattern[ip]);

backprop_node_deltas(targets[ip]);

for(i=0; i<number_of_nodes; i++)

for(j=0; j<i; j++)

if (weight_really_exists(i,j))

dEdW[i][j] += delta[i] * node_value[j];

}

/* change the weights */

for(i=0; i<number_of_nodes; i++)

for(j=0; j<i; j++)

weights[i][j] += learning_rate * dEdW[i][j];

}

On-Line Weight Update On-line training is even simpler because there is no need to
clear and accumulate the single-pattern derivative terms. One pass through the training set
in on-line mode could be done as follows.

66 Chapter 5

void backprop_online_one_epoch(void)

{

/* for each pattern... */

for(ip=0; ip<number_of_patterns; ip++) {

index = choose_one_randomly();

forward_propagate(pattern[index]);

backprop_node_deltas(targets[index]);

/* change the weights */

for(i=0; i<number_of_nodes; i++)

for(j=0; j<i; j++)

if (weight_really_exists(i,j))

weights[i][j] += learning_rate * delta[i]*node_value[j];

}

}

5.6 Remarks

To reiterate, back-propagation refers to (1) an efficient method to calculate derivatives of
the training error with respect to the weights, and (2) a training algorithm that uses those
derivatives to adjust the weights to minimize the error. Other optimization methods can be
used to update the weights, so it is not uncommon to hear of a network trained by, say, the
conjugate gradient method using back-propagation to calculate the gradient.

Confusion may arise because the term back-propagation network is sometimes used to
refer to a standard multilayer network trained by back-propagation. Although most people
understand the term, it is not strictly correct because (1) the same network could be trained
by other methods and (2) back-propagation can be used to train other types of networks.
Back-propagation is simply one method, albeit the most common, for training these types
of networks.

Although the algorithm is usually derived for a fully connected layered network, it can
be applied to networks with arbitrary feedforward structure. Any number of weights can
be held constant. It is also possible for internal nodes to have targets. This may be useful
when it is known that the network must compute some intermediate function in order to
calculate the final desired output. In this case, the node delta is the sum of deltas obtained
by considering it as both an output node and a hidden node. (Section 16.10 discusses the
use of this sort of information as hint functions.)

The thing that makes back-propagation more than a simple application of the derivative
chain-rule is the ordering of the calculations. A naive application of the chain-rule sepa-

Back-Propagation 67

rately for each of the W weights in a network could result in an O(W 2) time algorithm:
O(W) time to calculate ∂E/∂w for a single weight multiplied by the W weights in the
network. Back-propagation, in contrast, is an O(W) time algorithm. Bishop [44] likens the
practical importance of this difference to that of the fast Fourier transform (FFT).

A side note: In this book we mainly discuss feedforward networks of sigmoidal units and
a large part is devoted to back-propagation and its variations. Although back-propagation
is one the most popular learning techniques for neural networks, it is a mistake to equate
the entire field with back-propagation in layered perceptrons. Even considering only non-
biological networks, there are many optimization methods besides back-propagation and
there are many structures in addition to layered sigmoidal networks. Most of the proper-
ties that make artificial neural networks attractive (e.g., potential parallelism, fast response,
fault tolerance, learning from examples, generalization, etc.) have nothing to do with back-
propagation per se. The algorithm is simply one of many possible methods to select the
network weights. Ideally, any optimization method minimizing the same error function
would produce the same weights so the resulting properties are not attributable to back-
propagation alone. Likewise, the neural networks field contains more than just layered
perceptrons. Although back-propagation and layered networks are adequate for many ap-
plications, there are good reasons to explore alternatives. Back-propagation, for example,
often requires very long training times so much research has been devoted to finding faster
methods. Similarly, there are applications where it is useful to build more structure into
the network rather than using a simple fully connected layered structure. In a sense, back-
propagation in layered feedforward networks could be viewed as a local minimum and it is
hoped that further research will discover better methods. In any case, biological networks
are certainly not simple layered feedforward structures and it is very unlikely that they
adapt by back-propagation so we may have more to learn.

5.7 Training Time

Although back-propagation has been used successfully on a wide range of problems, one
of the common complaints is that it is slow. Even simple problems may take hundreds of
iterations to converge and harder problems may take many thousands of iterations. Training
times of days or even weeks are not unusual for large practical applications.

Much work, therefore, has been done in search of faster methods. Effects of the learning
rate and momentum are considered in chapter 6. Methods of weight initialization are con-
sidered in chapter 7. Chapter 9 summarizes a number of variations of the back-propagation
algorithm intended to reduce training times and chapter 10 reviews some classical opti-
mization methods that have better theoretical convergence properties.

68 Chapter 5

The size of the training set obviously affects training times because each pass through
the data takes twice as long when the data set is twice as big. Additional patterns that
contain no new information may simply make learning slower. This depends on the training
method and cost function, among other things. In batch-mode, each pass is slower but with
a SSE cost function the weight changes will be twice as large so learning may converge
in half the number of epochs if it remains stable. In on-line mode, each pass is slower but
twice as many weight updates are done in each pass so the overall time may not change.
Less obviously, the additional patterns may supply new information that restrict possible
solutions and make the problem harder so that more iterations are required or they may
supply missing information that makes the problem easier.

5.7.1 Scaling of Training Time

Hinton [169, section 6.10] argues that a network with W weights typically requires O(W 3)

training time on a serial machine. O(W) cycles are required for each forward and backward
propagation of a single pattern, O(W) training patterns are typically needed to achieve
good generalization, and (perhaps) O(W) weight updates are required for each pattern.
Implementation on parallel hardware would reduce this only by a factor of W resulting in
O(W 2) training time.

Tesauro and Janssens [367] observed that training time for the parity problem increases
approximately as 4d where d is the number of inputs (the predicate order). Although some
problems are easy, Judd [202, 203] has shown that the general problem is NP-complete.
That is, the training time scales exponentially with the problem size in the worst case.
Networks of hard-limiting linear threshold elements are considered, but the results seem
applicable to networks of sigmoidal units.

This problem is not unique to back-propagation, of course. Optimization methods cannot
be held responsible for the rapid growth of the search space with the size of the problem.
It does suggest, though, that a simple algorithm like back-propagation alone will not
be adequate to find solutions for hard problems. Indeed, when solutions to interesting
problems are found, the critical factor is often external information supplied by the network
designer in selecting a network architecture, collecting and editing relevant data, choosing
input-output representations, selecting an error function, and so forth.

Some possible causes of slow training include:

. Overly restrictive convergence criteria. If the trained network will be used for classifica-
tion purposes it usually isn’t necessary to train every output to within 10−6 of the target
value.
. “Paralysis” due to sigmoid saturation.

Back-Propagation 69

. Flat regions in the error surface where the gradient is small.

. Ill-conditioning of the Hessian matrix (the matrix of second derivatives of the error with
respect to the weights).
. A poor choice of parameters such as learning rate and momentum.
. The simple-mindedness of gradient descent: more sophisticated algorithms may use
available information more efficiently.
. The global nature of sigmoid functions. A change in one weight may alter the network
response over the entire input space. This changes the derivatives fed back to every other
weight and produces further weight changes whose effects reverberate throughout the
network. It takes time for these interactions to settle.
. The size and distribution of the training set.
. Poor representations, irrelevant inputs.
. Delta attenuation in deep networks.
. Poor network architectures. The minimal-size network just adequate to represent the data
may require a very specific set of weights that may be very hard to find. Larger networks
may have more ways to fit the data and so may be easier to train with less chance of
convergence to poor local minima.

Many of these factors are related of course. Sigmoid saturation may cause flat spots in the
error surface, for example, which are reflected in a poorly conditioned Hessian, which,
in turn, makes it difficult to choose a good learning rate. Some of these factors are due to
weaknesses of back-propagation and might be avoided by algorithmic improvements while
others are more fundamental.

One way to reduce training times is to increase the efficiency of the optimization pro-
cedure. Chapter 6 discusses the effects of the learning rate and momentum parameters
and gives hints for selecting reasonable values. Chapter 9 summarizes variations of the
back-propagation algorithm intended to improve training times; many are techniques for
adaptively controlling the learning rate. Chapter 10 reviews more sophisticated optimiza-
tion methods that are reputed to have better convergence properties than gradient descent.

Another way to improve training times is to give the network a headstart on a good
solution. Chapter 7 discusses some network initialization techniques based on this idea.

Yet another way to reduce training times is to identify and fix the problems that cause
slow convergence. The structure of the E(w) landscape has a fundamental effect on training
time; some common properties are discussed in chapter 8. Many of these are reflected in
numerical properties of the Hessian matrix discussed in section 8.6. Delta-attenuation is
described in section 6.1.8 in conjunction with learning-rate adjustment methods.

70 Chapter 5

Finally, another way to speed things up is to change the problem. Part of the reason for
slow learning is that the algorithm is limited to adjusting existing weights. If the network
structure is poorly matched to the problem, this may be very difficult. Algorithms that are
free to change the structure during learning are often able to learn much faster. Chapters 12
and 13 discuss constructive algorithms, which “grow” networks to fit the problem, and
pruning algorithms, which reduce large networks to fit the problem.

Paralysis In some cases, long learning times can be attributed to paralysis due to sigmoid
saturation. That is, the sigmoid and related functions have nearly flat tails where the deriva-
tive is approximately zero for large inputs (positive or negative). Because δi is proportional
to the slope f ′

i , this leads to small derivatives for weights feeding into the node and so on
backward through the network. If many nodes are saturated, then weight derivatives may
become very small and learning will be slow. In digital simulations, deltas may become
so small that they are quantized to zero and learning stops (double precision arithmetic is
sometimes recommended for this reason).

Large external inputs or large weights are a typical cause of saturation. Normalization of
the inputs to a reasonable range and initialization with small random weights are standard
remedies. The weight initialization range required to avoid saturation depends on the
number of inputs to a node and their correlations so different ranges may be needed in
different cases. Chapter 7 discusses some weight initialization techniques based on this
idea. Gain-scaling (section 8.7) has also been suggested as a way to avoid and correct for
saturation.

Regardless of how the network is initialized, the weights change during learning so
saturation may become a problem at a later stage. Because paralysis can have such a
strong affect on learning time, it is helpful to detect and correct it before it becomes
serious. In software simulations, it is relatively easy to check for paralysis after each pattern
presentation [382]. If a significant fraction (e.g., 1%) of nodes are near saturation (e.g., have
absolute magnitude greater than 0.9 assuming tanh nodes), then steps can be taken to fix
the problem (e.g., reduce the learning rate, reduce the sigmoid gain, or scale the weights).
The computational cost of the test is insignificant so it can be done often to allow detection
of imminent paralysis before it becomes a problem.

This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	chap5.pdf
	chap5-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

	notice.pdf

