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C Jitter Calculations

The following calculations are used in chapter 17.

C.1 Jitter: Small–Perturbation Approximation

For small noise amplitudes, the network output y(x + n) can be approximated by

y(x + n) ≈ y(x) +
(
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2
nT Hn (C.1)

where H is the Hessian matrix with elements hij = ∂2y/(∂xi∂xj). Assuming an even noise
distribution so that 〈nk〉 = 0 for k odd, one can write
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where m4 is the fourth moment 〈n4〉. Dropping all terms higher than second order in σ

gives
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(C.2)

and when H is assumed to be zero, this reduces to (17.15). The Laplacian term, Tr(H) =
∇2y, omitted in (17.15), can be described as an approximate measure of the difference
between the average surrounding values and the precise value of the field at a point [100].
The third term in (C.2) is the first order regularization term in (17.15).

Training with nonjittered data simply minimizes the error at the training points and puts
no constraints on the function at other points. In contrast, training with jitter minimizes the
error while also forcing the approximating function to have small derivatives and a local
average that approaches the target in the vicinity of each training point.

C.2 Jitter: CDF–PDF Convolution in n Dimensions

The following shows that the convolution of an n–dimensional spherical Gaussian proba-
bility density function (PDF) and a Gaussian cumulative distribution function (CDF) results
in another Gaussian CDF.
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Let f1(x) be a spherical Gaussian PDF in n–dimensions

f1(x) = 1
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(C.3)

and let F2(x) be a Gaussian CDF of the form

F2(x) =
∫ wT x
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This can be written as
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where ŵ = w/‖w‖ and σ2 = 1/‖w‖.
The convolution of F2 and f1 is the n–dimensional integral

F2(x) ∗ f1(x) =
∫

α

F2(α)f1(x − α) dα, (C.6)

Separate x and α into components parallel and orthogonal to ŵ

x = `ŵ + γ

` = ŵT x

ŵT γ = 0

α = kŵ + β

k = ŵT α

ŵT β = 0

‖x − α‖2 = (` − k)2‖ŵ‖ + 2(` − k)ŵT (γ − β) + ‖γ − β‖2

= (` − k)2 + ‖γ − β‖2.

where ` and k are scalars and γ and β are n–dimensional vectors orthogonal
to ŵ.
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Then
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and

F2(x) ∗ f1(x) =
∫
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Thus F2(x) ∗ f1(x) reduces to a one-dimensional convolution of a Gaussian CDF with
standard deviation σ2 = 1/‖w‖ and a Gaussian PDF with standard deviation σ1. It can be
shown (see section C.3) that this is a Gaussian CDF with variance σ 2

3 = σ 2
1 + σ 2

2 .
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Letting Za denote the Gaussian CDF function with standard deviation a,

F2(x) ∗ f1(x) = Zσ2(`) ∗ g(`)
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(C.8)

Thus, the convolution of a Gaussian CDF and a Gaussian PDF can be computed by a simple
scaling of the original CDF.

C.3 Jitter: CDF–PDF Convolution in One Dimension

The following demonstrates that the convolution of Gaussian PDF with variance σ 2
1 and a

Gaussian CDF with variance σ 2
2 results in a Gaussian CDF with variance σ 2

3 = σ 2
1 + σ 2

2 .
All the functions are one–dimensional.

Consider two independent random variables X1 and X2 with PDFs f1 and f2 and CDF’s
F1 and F2. The random variable Y = X1 + X2 has the PDF f1 ∗ f2 and consequently
its CDF is F1 ∗ f2 = f1 ∗ F2. Let X1 and X2 be zero mean Gaussian, X1 ∼ N(0, σ 2

1 )

and X2 ∼ N(0, σ 2
2 ), then, clearly, Y ∼ N(0, σ 2

1 + σ 2
2 ) has a Gaussian PDF with variance

σ 2
3 = σ 2

1 + σ 2
2 . Because Y has the CDF f1 ∗ F2, f1 ∗ F2 is a Gaussian CDF with zero mean

and variance σ 2
3 = σ 2

1 + σ 2
2 .
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