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Abstract

-This paper introduces a simulator of interacting
agents wherein an artificial agent, dubbed an Org, can
learn and accumulate experience built upon initially
endowed primordial instincts. Building on these instincts,
the Org develops experience, the ability to detect
behavioral patterns and discover physical constraints
through self-reflection. Emphasis is placed on the
concurrent use of long-term planning and reactive
behavior. The interaction of the Org with its environment
takes place in a three dimensional world where pursuit-
evasion games are conducted with other Orgs. The Org is
an autonomous agent capable of learning its
environmental constraints and self-organizing knowledge
and experience. The long-term goal of this project is to
create a generic artificial agent, used as an unsupervised
problem solver on a diverse set of environments.

1 Introduction

The field of artificial life has many examples of
autonomous agents that exhibit basic learning, behavior
and self-organizing properties. Biology, developmental
psychology and evolutionary theory [6, 12, 13, 14] have
been used as a source and inspiration of methods and
concepts already found in the natural world. Independent
of the underlying theory used to create the artificial life
form, the human experimenter should ensure, at a
minimum, that the agent has the tools inherent in its
design to learn and evolve unsupervised. For the organism
to be successful, self-organization of its accumulation of
knowledge, experience and perception must occur.

This work presents a simulator of autonomous
entities (referred to Orgs, from the word organism) that
can learn behavior, observe their own actions and thus
learn external constraints. The Org can self-organize and
efficiently accumulate knowledge and use primitive,
abstract behavioral patterns (instincts) as powerful goal
achievement tools. The advantages of combining reactive
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behavior with long term planning become obvious when
observing the evolving behavior of the Org.

Instincts are shown to be a valuable tool for guiding
unsupervised learning. Orgs are shown to leamn
environmental constraints and physical laws by observing
their own actions in response to the environment and
other Orgs. The knowledge self-organization program in
each agent successfully compresses information, which is
subsequently used to gencrate decisions utilizing a fuzzy
inference engine.

1.1  Virtual Environment

Orgs are placed in a three-dimensional bounded
environment (Orgland). Figure 2 provides a snapshot of
the environment and the perspective of the same world by
two Orgs (one is marked “Aggressive” the other
“Evasive”). Instead of using two-dimensional opaque
surfaces (the equivalent of walls), reflective surfaces were
used. The use of these reflective surfaces is described in
section 1.11. The boundaries appear as mirrors to an
approaching Org - large flat surfaces reflecting the Org’s
image back to its sensors. No other objects are reflected.
In this sense, the mirrors are special in that they possess a
unique property relative to the Org.

1.2 Perception

The level and sophistication of perception is a critical
component of an intelligent being. Perception is a
compressed, transformed version of sensory stimulus -
information efficiently translated for learning and
memory. The underlying sensory and learning
architecture is constantly influenced by what is sensed.
What is perceived in the past changes the way we
perceive things in the future [3, 4, 5, 9]. From the
perspective of Orgs, Orgland consists solely of perception
of objects or events created by the simulator’s
environment generator. It is the perception and cognitive
processes specific to each entity that creates the world in
which the Org lives. If an Org can’t sense, speculate,
theorize or guess about the existence of another entity,




then that entity, from the perspective of the Org, does not
exist. When the Org’s perception or cognition expands, a
previously non-existent event or object can become
available. In this study, the learning mechanism remains
unaffected by new knowledge. However the effect new
stimuli have on the Org changes as the Org accumulates
“knowledge”.

1.3 Internal representation

Independent of form and method, internal representations
of external information, both in time and space, are
considered essential for developing unsupervised agents.
Many different types of such representations, closely
coupled with the learning mechanism, have been
proposed. Orgs use a simple classifying architecture that
serves the purpose of accumulating knowledge and
subsequently using that knowledge for decision making
and speculation. In addition, perception changes as the
entity experiences. Knowledge and experience in this
context is any of the following.

e Sensed objects and their properties (color, size, etc.)

e Observed state transitions of an object or
alternatively observed object(s) behavior

e  Observed spatial configuration of multiple objects

e Desired self-state ftransition and realized state
transition differences

e Speculation and correlation of existing knowledge, to
create new knowledge that has not yet been
experienced.

1.4 Instincts

Instinctive behavior is common in the animal world.
Nature has found a way of genetically coding basic
behavior or reaction to environmental stimulus that are
essential survival tools. In the evolutionary computation
sense, the transformation of acquired knowledge during a
lifetime can be passed to future generations in the form of
genetic information. This is the known as the Baldwin
Effect and an important basis for this work [1, 2, 11, 12,
16]. This theory claims that organisms capable of certain
traits that enable them to leamn faster will have a higher
chance of propagating their genes. Then through several
generations, this advanced learning ability will be coded
in the genes allowing future organisms to acquire
experience and learn a certain behavior a lot quicker.

The Org model utilizes abstract behavioral rules
present in the simulated entities, at birth - prior to their
exploration and interaction in the simulated environment.
Those abstract rules in each Org are used as the
equivalent of instincts in nature. By coding instincts in the

Orgs, the designer initializes the agent with meaningful
rules instead of relying on a random primordial state. By
choosing the instincts, the experimenter can influence the
agents to fulfill specific goals or solve certain problems
without interfering after their activation. The abstract
initial knowledge is then refined through learning. The
agents are thus truly autonomous. In this implementation,
the Orgs were configured with the following instinctual
properties.

1. If an external object type is evasive, attempt a large
decrease in separating distance. If no long term goal
corresponding to another evasive object exists, make
this object the current long term goal

2. If an object is aggressive, attempt a large increase in
distance.

3. If an object is stationary, attempt a small increase in
distance

4. If an object is unknown, attempt a small decrease in
distance between it and self.

5. If no long-term goal exists and no evasive object is
detected, select a random point in the environment
and make those points the long-term destination/goal.
This instinct drives the Org’s exploration of the
environment.

The choices above are intuitive and selected only for the

pursuit-evasion application of the Orgs presented here.

1.5 Sensory interface

The simulated entities presented here can sense the
following properties of objects in their virtual world.
e Distance

e Velocity
e Color
e Size

A more advanced sensation, also generated by the
sensors, is the sense of “type”. The following types are
used.

1. If an object is getting closer to the Org, it is
considered aggressive.

2. [Ifan object is retreating, it is considered evasive.

3. If an object has been observed only in the current
iteration so temporal differentiation can not be
performed, it is labeled as unknown

4. If the object is in steady state since the last iteration,
it is considered static.

The Org uses its experience, knowledge and instincts
to produce a state transition output from its current
sensory input. The state tranmsition output is a vector
describing the change in value of each property of the
Org. The center of decision making, perception and
learning is referred to as the core. A state transition is not
limited just to position change, but could mean that the



Org changed its size or color in a chameleon fashion to
evolve closer to a desired state. This state can be either an
internally generated long term self-state or can be a
distant position in the environment close to a desired
object. In the latter case, the state is the aggregate of the
sensed properties of the external object.

1.6 Simulated sensor characteristics

The sensors in this simulation have dynamic ranges
dependent on the property (or attribute) they are designed
to sense. A color sensor, for example, will have a much
greater dynamic range than a texture sensor. In the case of
the image sensor, the range is dictated by the actual size
of the object being observed. As an object approaches, its
apparent size increases.

Noise is added in each sensor reading, proportional to
the distance from the sensed object. This introduces
uncertainty in the sensory information and tests the Org’s
performance in a noisy environment. In similarity with
the real world, all Org sensors have limited resolving
power.
1.7  Static versus volatile properties
As the Org observes external objects over time, it can
determine whether a property is volatile or not. In this
simulation environment, color is one property that
remains constant through time, enabling each Org to
uniquely identify previously seen objects. Size, velocity
and position are all volatile properties, changing
throughout the simulation. The role of each property is
described below.

Property | Volatility | Role
Color | Static Unique for each object.
Volatile Determines sensory
Size range. Perceived size
changes with distance
Distance | Volatile Collision detection,
used for describing a
reaction (section 1.4)
Velocity | Volatile Determines the gpe
property of an object
(section 1.5).

Table 1. Sensor Properties

1.8 Long-term planning and reactive behavior

Insects and the artificial life exampleg that model
them, exhibit reactive behavior [6, 13, 14]. Stimuli from
the environment cause an immediate reaction by the
organism. Higher cognitive functions are not involved in
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this type of sensory-motor coordination. Creatures
capable of decisions based on experiences and knowledge
however, can endure an unpleasant task in the short term
in order to achieve a very desirable result in the future.

The simulated entitics presented here exhibit both
reactive and long-term behavior. During each simulated
time step, a reactive output is calculated thereby applying
the instinctive knowledge to the sensory input. In
addition, the entity produces a long-term output by
applying its current long-term goal to its experience,
knowledge and instincts. The following cases describe
how the final objective is selected.

1. Desirable objects sensed with no current long-rerm
goal present — If an evasive object is sensed, this
object becomes the long-term goal.

2. No desirable objects sensed with no current long
term goal — If the sensory interface does not detect
any desirable objects and there is no internal goal
state (an internal goal.is a self-state that the organism
wants to achieve), then instincts will dictate what the
long term goal should be.

3. Desirable object sensed, different than current long-
term goal — If the current long-term goal was an
instinctive desire generated in the past, due to lack of
an external desirable stimuli or future self-state, then
the currently sensed desired object will become the
new goal replacing the current long term goal.

When a long-term goal exists, the core is used to generate
a state transition output (section 2.5), using the long-term
goal and the current sensory stimuli. Both reactive and
long-term outputs are then combined through a weighted
average. The weights are dynamically generated, with a
bias towards the long-term output. The reactive output is
the average of the Core Output for all sensed objects. The
following formula describes the transition vector
calculation.

AH—] =Wy Along term T+ Wy Areacﬁve

where wy, and w, are the weights associated with the long-
term transition vector Ay, «m, and the reactive transition
VeCtor Apeactive Instincts or experience can modify the
weights according to the current sensory stimulus or
internal state

1.9  Learning external object behavior

Creatures with advanced cognitive functions can
correlate several sequential actions that occurred in the
past and group them together as behavioral patterns. The

term iteration is used throughout this section to describe
the smallest time interval in the simulation. Time is




discrete so all observations made by an Org are made in
one iteration.

A behavioral pattern is a segment, of a sequence of
state transitions. That is, a behavioral pattern f, is a
mapping f, : T —> A, where T={ 0,1, ..., n} and A is a
set of state transitions Ec,, Ewg+1, ..., E; of the same
observed object and fk) = Eppe for k =0, 1, ..., n. The
Org observing the state transitions of an external object
must somehow determine if the transitions follow a
pattern and, if so, decide when the pattern is sufficiently
described.

To fully capture behavior, an object must be sensed
during its entire set of state transitions that constitute a
behavior set. If the object moves far away at step ¢ and
can no longer be sensed, then whatever set was being
compiled, will be the same set A,; used in all i subsequent
Org iterations until the external object is perceived again.
Even after an object is sensed again at step k, new state
transitions will not necessarily be added to the set of
observed state transitions. The object has to perform a
sequence of N state transitions, were N = max(2, |Ay)/2),
where |A| is the cardinality of Ay, matching a previously
seen sub-sequence in set 4, The previous formulation
imposes the limitation on the size of 4, (greater or equal
to two) before it can be considered a behavior set. If the
state transition at step k+N is not previously seen, then the
state Ey.y is added to the behavior set Ay . A behavior
set A; is considered complete when the external object
reaches a steady state (all N state transitions E;nEin.;...
before step i are the same).

When an object with a previous known behavior is
sensed, its state transitions - treated as events - will be
compared to previously known behavior. If these events
match a sub-sequence of a behavior, the Org will react to
the learned behavior and not the immediate state
transition. As a result, the action taken by the Org is in
anticipation of a future state.

One of the limitations of the above method is that
complex behavior patterns can not be detected. As an
example, consider the case where an external object
shows aggressive behavior after it has been approached.
Then it stops moving, reaching what the Org considers a
steady state and as a result a behavior set is completed.
When the Org leaves the vicinity of the previously
aggressive object, the object start chasing the Org again
and collides with it. Since this new behavior was sensed
after the Org had classified the previous behavior, its is
now considered a new behavior set. However, the external
object result in this collision only because of the initial
approach by the Org. So this is just the continuation of a
complex behavior that started many iterations before.
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1.10 Learning constraints using self-reflection

The Orgs are placed into a three dimensjonal world
(Orgland). Before a temporal iteration is completed, each
Org, based on its long-term goal(s), perceived events,
observed objects and any internally, generates
experimental rules in the form of a state transition vector
OrgState;. This transition vector is then passed through a
constraint filter. This filter models the laws of Orgland;
physical and artificial constraints that should be applied
whenever an Org decides to change its state. The output
of this filter is a modified state transition vector that
reflects the effect of the environment. Figure 1 describes
the role of this filter in forming new knowledge. The next
state of an Org is calculated by summing the filter output
with the current state of the Org, using the formula:

OrgState,.; = Ho / 2 + OrgState,,

where Hy, is a vector composed of the changed Org
property values after filtering. As an example, if an Org
collides with an object, the Org will experience an
inelastic collision and its velocity will be affected. The
Orgs learn the constraints of their virtual world as they
experience them. By comparing their new (filtered) state
transition to the desired (filter input) state transition, the
Org can learn what effect, if any, the environment had on
the state transition vector. The filter input and output is
then used to form a new knowledge element. Then when
the Org encounters a boundary or another object it can
make decision affected by the collision it experienced in
the past

This idea of comparing intended actions with what
actually occurred allows the Org to learn the physical
laws of its environment by observing their effect on its
own state. By doing so, the Org can eventually
accumulate enough knowledge to create an internal
“model” of a physical law.

Constraints
Filter

T—>

Desired Transition

Knowledge
Element

>

Figure 1. Learning environmental constraints.



1.11 Mirrors

Reflective boundaries are used in Orgland. They act
as virtual boundaries and, at the same time, as an effective
method for Orgs to learn their external image. The Org
will observe an object that looks and behaves identical to
it, but it is only two-dimensional. Since the Orgs have the
luxury of knowing their current state, by observing the
mirrored image, they can learn they exist and occupy
space. This might seem trivial to humans, but being aware
that what you see in the mirror is actually a reflection of
your own body, is a difficult cognitive step. This work
does not claim that this step has been made - it just
presents a simple way that could make such a feat easier.

Figure 2. The flat objects on each virtual wall, are Org
reflections. The reflection size increases as the Org gets
closer to the mirrored boundaries.

2 Software Algorithm and Data structures

The theoretical concepts presented here were developed
into an object oriented software algorithm and data
representation. Since the algorithm and data structures are
an essential part of this theory, the central learning and
decision-making mechanisms (referred to as the Core) are
presented through their software implementation. All
software was written in MATLAB 5.

2.1 Learning

The Orgs can leamn from their perceptions and their
environmental constraints. Before knowledge can be
presented to the Core, it has to be represented properly.
The container used to carry information is a software

731

construct called KnowledgeElement. This container has an
Effect component and a Condition component. The Effect
describes the state transition that the Condition will cause
to the Org if it was the only input presented to the Core.

The Condition could be any of the items mentioned
in section 2.1 (e.g. a sensed object or a collision with a
boundary). In addition, the current reactive output is
stored - linked with the item used as the condition. The
Justification for this is that the same stimulus will have a
different effect under a different circumstance and
internal state. If, for example, the Org is being chased, the
Core produces a large negative reactive output. This
means that the Org is sensing something instinctively
undesirable. If, at this situation, the Org senses a desirable
object, its course of action will be different than if it was
under no threat. :

The Effect component of a KnowledgeElement can
contain active scalar and vector properties. If a property is
active in the Effect, a change in the same property in the
Org’s current state results.

Both the Effect and Condition components of the
KnowledgeElement have a property vector that describes
which features are present in the information they are
carrying. The following table describes which properties
are active for each class of perceived information.

Perception Type Active Features
External Object All properties within
their respective sensor
range (Section 1.3)
Behavior All sensed properties
of the initial state
Environmental Properties modified in
Constraints Transition Vector

Table 2. Perceived Information Properties

After a KnowledgeElement is prepared, it is presented
to a classifying algorithm that groups elements with the
identical property vectors together. Each group is a
construct called KnowledgeBin and can have up to a
predefined number of elements with no duplicates
allowed. A group of KnowledgeElements is not a cluster
since the membership criterion has nothing to do with the
values of its members. The criterion is the number and
type of properties of each member.

After a saturation threshold is reached, the
classifying algorithm will merge the new member with
the most similar existing member of the KnowledgeBin.
The Euclidean distance between the vectors formed by
concatenating the active properties of
KnowledgeLElements is used to establish similarity. The
above method limits the knowledge stored in the Core and
concurrently self-organizes already present knowledge.




Old knowledge that is no longer used will be gradually
replaced with new information thereby eliminating the
need for time decay in the knowledge of each simulated
entity.
2.2 Decision making

For each KnowledgeElement with a valid Condition
component and no Effect component, the Core is required
to generate a reaction vector. First, all existing
KnowledgeClusters are searched for matching property
vectors. If the property vector does not match (the number
and type of active properties is not the same), a
KnowledgeBin that has a subset of the active properties of
the input will be used. For each element of a compatible
bin, a decision output (similar to a rule) is generated.
Using the Condition component of each cluster element,
the concatenated values of all active properties generate
the condition portion of the condition/decision vector.

For vector properties, there is an additional value
associated with the vector. This value is an abstraction of
the vector and represents a fuzzy set. Since vector
properties (such as velocity) are only used in the Effect
component, it is sufficient for this implementation to
represent them with a single fuzzy set. Thus, for
representing the effect of large increase in velocity, the
scalar representing the velocity property would be the
fuzzy set LARGE_POSITIVE.

The consequent vector, Y, in the fuzzy inference
engine is generated in a similar fashion using the Effect
component. Concatenating vectors X and Y forms rule R.
For each knowledge cluster a rule base is formed from the
rules that were generated from the cluster members. This
ensures that each rule in the rule base has equally sized
vectors.

After a rule base is created, a simple list of fuzzy if-
then rules is then used to produce an output vector [13].
The fuzzy system uses Gaussian membership functions
with supports being the antecedent X or consequent ¥ of
each rule R;. This means that each rule has its own
membership functions thereby eliminating the need of
heuristically dividing the input and output domains for
each property. The system uses a center-average
defuzzifier with sum-product inferencing.

After a fuzzy result has been generated it is encoded
back to the Effect component of the input
KnowledgeElement. This is now treated as the reaction of
the Core, to the Condition component of the input
element. The following pseudo-code describes the
algorithm for decision making, using a sensed object as
the input:

e Find all bins with a membership criterion equal to or

a subset of the Condition properties in this object.
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e Foreach bin
v Generate a rule base with a rule describing each

member of the bin.

Create an unknown input vector from the subset

of Condition properties supported by the bin

used to generate the rule base. Present the input

vector to fuzzy system utilizing current rule base

and store fuzzy output

e Average the fuzzy outputs from each bin and use
them to generate an Effect component, for current
object

o Create new KnowledgeElement using the sensed
object as the Condition component and the fuzzy
result as the Effect component.

e Use fuzzy results to create a reaction vector towards
the sensed object.

v

3  Simulation results

The following section describes one simulation run,
with two Orgs placed in the same virtual environment,
interacting with each other and their surroundings. The
author does not claim that the following simulations prove
that the theoretical concepts presented here are correct.
This work is in its initial state and more focus has been
given in formulating and presenting the theory behind the
artificial agents, than creating a proper experimental setup
for testing the performance and correctness of its
concepts.

" An example of the paths taken by two Orgs is shown
in Figure 3. An interesting result of the instincts used
here (section 1.4) is that if an object type change occurs
during two consecutive iterations, on an Org being
chased, the current long-term goal of the aggressive ORG
is affected. So if an object exhibits evasive behavior for N
iterations, and is being chased by another ORG, and then
at the N+ iteration the Org turns aggressive, the ORG in
pursuit will stop going after the object and start avoiding
it. This is illustrated in Figure 3. Shown is the result of
one of the ORGs managing to capture the ORG coming
from the upper corner of the plot. At iteration 18, both
ORGs are engaged in pursuit — evasion behavior, with the
lower ORG being the aggressor. At iteration 36 they came
into contact, since the upper ORG was trapped in a corner
and had to trace the boundary of the environment. At
iteration 42 however, the victim turned into the aggressor,
forcing the Org originating from the bottom part of the
plot, to start heading back to its origin. At iteration 48, the
upper Org in pursuit of the lower Org can be seen. Their
roles are reversed. The graphic objects representing the
Orgs (at iteration 48) were intentionally omitted, to make
the paths more visible.



Observing the knowledge organization of the Orgs,
after an iteration run of approximately 50 steps, it was
found that instinctive knowledge was unaltered and
occupied its original bins. Most of the observed objects
were occupying the same cluster since they all have the
same number of active properties. The bin members
representing moving objects, had accumulated multiple
state transitions for that object. Recognizing behavioral
patterns in external objects is a difficult task and has not
been verified with the current implementation. In the
simulations presented here none of the two Orgs exhibited
a fixed behavior pattern.

The knowledge classification scheme and the use of a
saturation threshold works well and efficiently represent
large amounts of knowledge. For simulations with two
interacting Orgs and 10 static external objects, events or
objects observed in the past were merged with existing
knowledge keeping the number of bins and bin elements
to a maximum of five, The bins found after the simulation
presented in Figure 3, were as follows:

e Two bins contained instincts,

e One bin contained the all the sensory stimulus
generated by static objects and reflections. The
objects were used as the Condition component,
with the reaction they induced to the Org being
the Effect portion of each KnowledgeElement

e One bin contained only one element with
knowledge acquired when one of the ORGs
collided with a boundary.

e The last bin also had one element, describing the
other Org in the environment. Although another
Org looks like any other object, it exhibits
aggressive or evasive behavior. The single
element of this cluster contained numerous

states, describing a behavior.

Figure 3. Paths of rgs ina simple environment.

The reflections were merged into one element for
each boundary, demonstrating the ability of the self-
organizing knowledge structure to compress information.
It did not seem, however, the Org had made the
association that the reflections were external objects
generated by its own image falling on the boundaries.
This indicates that in order to for a simulated agent to
learn something, it has to have some information on what
to look for. The authors believe that such information can
come from instincts, communication with other objects in
the environment, or speculation.

An animated movie of two simulations (including the
one above), are available at
http://cialab.ee.washington.edu/Marks-
Stuff/presentations.htm

4 Research Issues and Future Work

There are several key research issues this work attempts
to solve. Several others need to be addressed the future.
The following are common in the Artificial Life and
Computational Intelligence Field and an attempt to
address them was made by this thesis:

1. Internal representation and classification of
knowledge — This work presents a clustering/self-
organization algorithm that classifies varying input
size vectors. Separate groupings are created for an
input vector of a given size. Thus this method has the
flexibility of representing variable sized rules and
then combining multiple rule-bases for generating a
common decision vector (section 2).

2. Selecting the optimal initial rules/embedded
knowledge — The use of abstract initial rules
(instincts) that are constantly refined throughout the
use of an Org is the approach chosen here for
introducing heuristics into an autonomous agent. The
fact that such heuristics can even be utilized is very
useful. Choosing the optimal set of instincts for a
give environment and desired behavior is important.
However it is not critical for the success of an Org.
Even so, more work needs to be done to discover
methods of automatically generating instincts for a
given Org application.

3. Invariance to changing background while observing
events and objects — The ability to discern a
previously seen object or behavior, even if the
surroundings have changed, is one of the goals of this
work. The learning mechanism presented here
classifies objects independent of their surroundings
but this mostly due to the design of the sensors and
virtual world used in this simulation. So the Org’s
sensor ability to recognize discrete objects is most




similar to that of radar and very unlike real-time
image capture and processing. Demonstrating that the
Org’s knowledge classification is invariant to a
changing background is planned for future research.

4. Escaping local-minima - The use of both a reactive
(short-term) and long-term decision components
serves the purpose of avoiding situations were the
algorithm reaches a deadlock trying to achieve a goal.
Further proof that this is indeed the case with the Org
algorithm needs to be demonstrated.

Many implementation alternatives of Orgs in Orgland are
in need of exploration. The following extensions are
currently planned or in progress.

e Communication between Orgs will be implemented
so the concept of tutors can be introduced. Tutors are
Orgs who serve the purpose of relaying useful
information to another agent without human
intervention.

e  More properties will be added to the simulated agents
so they have a more complete set of sensory and
motor functions.

e A speculation facility will be added. Here, the ORG
takes combinations of existing KnowledgeElements
and creates new untested knowledge.

s The use of concurrent neural networks will be
explored as an alternative to the current knowledge
classification schemes.
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