The Handbook of

Brain Theory
and Neural Networks

EDITED BY

Michael A. Arbib

EDITORIAL ADVISORY BOARD

George Adelman « Shun-ichi Amari . James A. Anderson

John A. Barnden « Andrew G. Barto « Frangoise Fogelman-Soulié
Stephen Grossberg « John Hertz - Marc Jeannerod « B. Keith Jenkins
Mitsuo Kawato « Christof Koch « Eve Marder - James L. McClelland
Terrence J. Sejnowski - Harold Szu . Gerard Toulouse

Christoph von der Malsburg - Bernard Widrow

EDITORIAL ASSISTANT
Prudence H. Arbib

A Bradford Book
THE MIT PRESS

Cambridge, Massachusetts
London, England

Neurosmithing: Improving Neural Network Learning

Russell Reed and Robert J, Marks IT

Introduction

The goal of supervised training is to make the system oukput
equal to a desired target function for any input. The standard
approach is to (1) define an error function measuring the differ-
ence between the target and actual output functions, (2) deter-
mine how changes in parameters (network weights) affect the
error, and (3) adjust parameters in a way that reduces the error.
The backpropagation algorithm is the most commonly used
technique for training multilayer perceptrons. Typically, the
error function is the sum of squared differences between the

desired targets r(x,) and the actual network outputs yix,)
summed over all tramning patterns k,

Ei{nw) = g{r[ﬁqj —}r(.t*',l}lz

Because the network output is 4 function of the weights, Eisa
function of w, If it could be plotted as a function of w, £ might
lock like a rough landscape with hills and valleys, high where
E is high and low where E is low. Backpropagation, as an
approximation to gradient descent, could then be viewed as
placing & marble at some random point on the landscape and

G40 Part 115 Articles

letting it roll to the lowest point, The core of the algorithm is a
repested loop in which (1) the derivative chain rule is applied
1o determine how weight changes affect the error and (2} the
weights are adjusted by small increments io the direction that
reduces the error. In “baich™ mode, every training patiern is
considered before each weight change, and the algorithm ap-
proximates gradient descent when the step size is small enough,
In “on-line” mode. a random subset of patterns {usually just
one) are considered belore each weight ehange. When the step
size is small enough, this approximates stochastic gradiens de-
scent since the accumulated weight changes tend to average to
the true (ncgative) pradient. Since wetght vpdates are mueh
more [requent, however, the error mav decrease faster when
the training data are highly redundant. An added benefit is that
the randomness of the individual weight changes may help jos-
tle the “marble” out of small “potheles™ and thus help prevent
convergence Lo shallow local minima.

In spite of its apparent simplicity, the algorithm has proven
remarkably effective. and there are many examples of networks
tramned 1o implement relatively complex functions. This is not
1o sy that difficulties never occur, however. Backpropagation
tramming is oflen very time consuming. for example. and iy
converge to suboptimal solutions. In the following, some prac
tical lechniques are described that may be belplul 1o aceelerate
fearning und aveid potential problems. Some of the remarks
are very basic and may be viewed as a checklist of standard
procedures. (hhers are more specific, Many of the remarks
apply o any learning syvsiem, bul unless otherwise stated. the
focus is on supervised learning in feedfarward netwarks such as
mulilayvered sigmoid perceptrons.,

Data Preparation

MNewral networks are often trained from examples of a desired
input-output relationship. Aside from possible constraints
built into the architecture or training algorthm. the examples
are the only information provided about the target function, so
it 15 imporiant that they adequately describe the funclion.

Diseriburion of the data, In peneral, larger data sels arc desie-
able from the standpoint ol statistical accuracy since sparse
data may conlain spurious correlations and miss significant
leatures of the function. Since the daia distribution provides
iformation about the relative importance of different regions
of the funclien, it should generally maich the distribution of
patterns that will oceur in normal operation.

Redundant and irrelevans information, Conversely, sinee ney-
ral networks are ofien applied to tasks where little is known
about the appropriate choice of variables and their relatio nship
to the targel function (indeed, other techniques might be used
if more were known), there is a temptation to provide as much
information as possible and let the network soet it out. This
tnight be feasible when data are abundant and training times
unimportant, but it may lead to poor generalization otherwise.

As a rule, any external knowlede about which variables are
important and how they relate 1o the target function shouald be
used to reduce the amount of ireelevant information presanted
te the network, Although (ideally) the system should leamn to
ignore redundant and irrelevant inputs, these make its task
harder and, when (ruining sets are small, there may not he
enough information to demonstrate that extra inputs are actu-
ally irrelevant. IT the input dimension exceeds the sample size,
far example, the data can be fitted exactly by a linear equation
which will probably generalize poorly,

‘'__'_‘—-—-.._

Dimensionality-reducing preprocessing, such as Pringipg]
components analysis, is oflen used to avoid this problem 4
alternative is to place a bottleneck (narrow hidden layer) iy thn
network structure, thereby forcing the svstem 1o climinage ;,:
dundancies, Since the representation Formed at a bottlen
is related to the principal components, weight
from principal components information has b
(Georgiou and Koutsougeras, 1992).

A case in which redundant input variables may be desirab)a
is when the data are noisy (but abundant), since they cap
be averaged to reduce the effective noise if the Boises grp
independent.,

in ilializp,,uun
e&n sugggﬂm

Variabie centering and normalizaiion. Cenlering and norma).
ization put variables with different ranges on an equal footing
Without normalization, & sysiem modeling an slectronic dcy-j.x'
with voltages from 0 10 10,000 V and currents from 0 o001 A
would probably need very small weights from the voltage in-
puts and large weights from the currents. The svstem jg ve
poorly conditioned. and training times will probably he lang,
Sinee backpropagation weight changes are proportional ta the
signal magnitudes, a single learning rate would probably not
work for both. If these were output targets {in a network With
lingar ouputs), the network would almost surely ignore ercors
in the currents as long as vollage errors remain, A commonly
used normalization is

=X - ple

where 1 is the mean value of X, and ¢ is its standard deviation.
Normalization based on minimom and maximuom values 15 also
COMMOon.

Knowen nonlinearities, In general. it helps 1o eliminate known
nonlinearities. Conversion from Cartesian 1o cvlindrical coor-
dinates, lor example, may simplify a problem. Functions in-
volving products or ratios of positive inputs can be made linear
by taking logarithms. OF course, these sorts of transformations
are completely problem dependent.

Froblem decomposition and modularization. Learning is al-
most always easier if 2 task cen be broken into smaller non-
interacting parts. Separate networks then can be trained inde-
pendently lor each subproblem and combined. The result is (1)
shorter training times because each subnetwork is smaller and
(2} better generalization because each subnetwork is better
constrained by available examples. Assuming the subtasks are
truly independent. a system which does both together cannot
do better, and may do worse, since its task is more complex.

Realistic engineering applications almost always require
seme sort of high-level partitioning. Systems like a postal @p’
code reader, for example, usually have separate segmentatio
and recognition subsystems, The tasks can be partitioned be-
cause digit identity is basically independent of size, location,
ete.

Problem decomposition is compietely task dependent, of
course, A problem may be broken down in many ways, ar
knowing how to partition a task is a large part of knowing how
1o solve it. When high-level human knowledge is unavailab
but data are abundant, an alternative is to divide the input
space into pieces, assigning relatively simple subnetworks 10
learn each piece. Clustering or vector quantization technigues
(possibly implemented as neural networks) can form the necss
sary partition. An example of partitioning by self-prganizatio®
i5 the "mixture-ol-experts” model (Jacobs et al, 1995 5“_
MoDurak anD HIERARCHICAL LEARNING SYSTEMS).

Neurosmithing: Improving Neural Network Learning &41

—

srchitecture Selection

one of the central tasks in network design is selection of zn
qrehitecture. The zoal is o find a network powerful enough o
salve the problem, vet simple encugh to train easily and gener-
Jlize well. An advantage of local representation systems such as
radial basis functions, self-organizing maps, Adaplive Reso-
pance Theory (ARTY, and others is that they usuallv train
much laster than layvered networks {trained by backpropaga-
gon). They tend to generalize less well from an eguivalent
amount of data, however, so they are Best used when data are
;,1-.1_1111.1.:111L

Although much work has been done on selecting appropriate
qrructures and sizes, iis sull basically an art. An approach that
oiten works well in practice 15 to guess an approximale initial
size and then use node creanon and pruning algorithms (see
ToPOLOHY = MODIFYING MEURAL METWORK ALGORITHMS) 1o ad-
just the size during training, along with generalization-aiding
technigques 10 suppress overfitting problems that may oceur if
the net 15 (oo laree

FPruning

Since the target function is unknown. it 15 often impeossible to
predict what size or configuration is appropriate. Although one
can train a number of networks and choose the smallest least
complex one that learns the data. this can be inetficient if many
neeworks have to be trained before an acceptable one is Tound,
Even if the opumum size were known, the smailest sdeguate
network might be difficuit to cram.

The pruning approach is 1o train a network that is larger
than necessary and then remove unnecessary parts. The large
initial size allows reasonably quick learning with less sensitivity
to parameters. while the reduced complexity of the trimmed
system favors improved generalization. [no several studies,
pruning techniques have produced smail notworks that gener-
alize well where it was very difficult to obtain a solution by
training the small network (obtained by pruning) from seeatch
with random weights (Sictsma and Dow, 1991,

Many pruning technigues have been suggested: a survey can
be found in Reed (1993), Many of the algorthms (a1l inco two
broad groups. Oine group estimates the sensitivity of the error
o removal of elements and removes those with the least effect.
Another group adds terms to the error function that penalize
manecessarily complex selutions; many of these can be viewed
s forms of regularization, In general, sensitivily methods mod-
ify a trained network; the network is trained. sensitivities are
estimated. and then elements are removed. Penalty methods,
however, modify the cost function so that oplimization drives
unnecessary weights to zero and, in effect, removes them dur-
mg training. Even if' the weights are not actually removed. the
Mebwark acts like a smaller system. An advantage is that train-
Mg and pruning are effectively done in parallel so the netweork
“in adapt to minimize errors introduced by pruning.

Although pruning and penalty term methods often may be
aster than seurching for and trainine a minimum-size network,
ey do not necessarily reduce training times: larger netwaorks
My (ake longer to train because of sheer size, and pruning
.m“_* some time itsellf, The goal. however, s improved general-
IZition rather than faster training speed.

Constructive Methods

T : : ;
ETHE Uhposie approach to pruning 5 to build the network in-
Ementally by adding elements until a suitable configuration is

found. The basic idea is to start with 2 small network, train
until the error stops decreasing and then add 3 new node (ot
nodes) and resume training, repeating until an acceptable error
is achieved. Algorithms differ in the network structures used,
when new units are added, where they are placed, how they are
mitialized, ete.

In some cases. constructive methods can be faster than
pruning methods since significant: learning may occur while the
network is sull small. The approaches are not incompatible and
are often used together. Since constructive methods, when used
alone. sometimes create larger networks than necessary, a fol-
low-up pruning phase can be useful to reduce the size.

It should be noted that pruning and constructive techniques
are a means of adjusting network size rather than a way of
decicding what size is appropriate, Cther criteria are often use-
lul to decide when to stop adding or removing elements,

Weight Initialization

The normal initialization procedure is 1o set weights to “small”
random values. The randomness is intended to break symme-
try, while “small" weights are chosen 1o avoid immediate satu-
ration. Typically, weights are randomiy selected from a range
such as { = A/,/ NV, A/, N}, where A is the number of inputs to
the node and A s between 2 and 3. More structured methods
of initialization are discussed in Wessels and Barnard (1992)
and Mguven and Widrow (1990).

Initizlization from a decision tree is considered in Sethi
(1990). Since decision trees can be constructed very quickly,
overall training time may be much shorter,

For problems in which the desired input-output relationship
is well understood and expressible by a small set of rules.
initialization based on a fuzzy logic implementation has been
suggested,

Shortening Learning Times

Many heuristics have been developed in an attempt to shorten
training times. The standard techniques of “on-line” training
and momentum both tend to increase learning speed. “On-
line™ learning can be faster than bawch learning since, with M
iruining patterns, on-line learning will make M times a5 many
weight updates in the same time. The effectiveness presumably
impiies redundancy in the data such that small samples give
nearly as much information as the complete set. With momer-
i, a fraction of the previous weight change is added to the
current weight change to give the system memeory. This tends
te stabilize the direction of movement by averaging opposing
changes and often allows use of larger learning rates. In the
analogy of the marble on the hilly surtace, this gives the marble
inertia, allowing it to coast over relatively flat areas and roll
over small bumps,

Adaptive Learning Rates

The learning rate parameter has a direct effect on learning
times. The “best™ value, however, depends on the task to be
solved and varies with local characteristics of the ercor surface,
which change as the network learns. Different nodes in the net
also may have different optimal rates, so there are no general
rules for choosing a good fixed value a priori. With very smail
learning rates, learning is slower than necessary, and the system
may settle in local minima, which it could casily escape other-
wige, Wery large rates, however, may send the system on wild
Jumps in essentially random directions or, in less extrame cases,

642 Fart 111: Articles

eause il to oscillate around a solution instcad of seitling 1o a
minimum.

An alternative to setting a fixed rate a priori is 10 change it
dvnamically, A typical approach is to siart with a moderate
value, reduce it when the error starts 1o oscillate. and increase
i when the error is decreasing very slowly, A moderate initial
rate allows the system 10 find a rough initial selution guickly;
reduction to a smill value then allows the system to settle to
the munimum, One of the most cited references for automatic
learning rate adjustment is Jacobs {1988),

More sophisticated optimization methods such 25 conjugate-
gradient or quasi-Newton methods often converge much faster
than simple gradient descent. but these penerally assume the
error surface is well approximated by 2 quadratic function and
may not work well when the assumption is not valid. The ap-
proximation is wsually valid near a minimum, though, and
these techniques can speed up finzl convergence to the end.
point after a rough solution is found by other methods.

Avaiding Paralysis

Paralvsiy occurs when nodes are driven inte saturation. Since
the tails of the sipmoid function are flat. the slope becomes very
small when the node input is large. Conseguently, weight up-
dates are small. and learning is slow. One cause of saturation
is large weights which amplify & normal actvity patiern and
create large signals that saturate nodes in following lavers.
Another cause is excessively high learning rates, The E(w' graph
often has a “stair-step™ shape with large nearly flat regions
separated by steep “cliffs” where £ changes abruptly for small
changes in w. {This is especially true for binary classification
problems.) In using large learning rates to cross the plateaus
quickly, there is a risk of 1aking a huge step in a wild direction

on reaching a cliff, This may then ereate large weights and lcad

Lo saturalion,

In stmulations, code can be added 1o detect paralysis before
it becomes serious and correct it by reducing the learning rale.
Keeping a copy of the weights allows a step to be retracted and
the step size reduced il saturation eccurs suddenty.

Another guard against paralysis is the use of 2 nonsaturating
node nonlinearity. Quickprop (Fahlman, 1988} uses a normal
sigmoid nonlinearity but adds a small eonstant, e.g.. 0.1, to the
caleulated derivative so it does oot po 1o zero on saturation.
This avoids paralysis but may make it more difficult fer the
network (o settle 1o a solution.

Another technigue is 1o reduce the sigmoid gain or, equiva-
lently, to scale all node input weights by a factor less than |
when saturation is detected in a node. This preserves the direc-
tion of the weight vector while reducing its magnitude. Weight
decay tends to have a similar efect, since. when a node satu-
rates, the decay term dominates other weight changes and re-
duces weights until the node comes out of saturation. Training
with input noise sometimes has similar ¢ffects and also may
help “jostle™ the systemn out of saturation.

fHines

Another idea for aceclerating learning and improving general-
ization is the use of “hint functions™ (Suddarth, 1988; Yu and
Simmons, 1590). Additional output nodes are appended 1o the
network and trained 10 learn additional funclions related 1o the
function of interest but easier 1o express or learn. The hints
may accelerate convergence by generating nonzero derivatives
in regions where the original error function is flat and may aid
generalization by providing additional consiraints penalizing
solutions which somehow match the original funetion on the

‘‘_‘_-__‘-l—-_
training samples but do not include intermediate COMSEPLs gy
bedded in the hints. After training, the extra nodas sty T
removed. Yu and Simmons (1990) demonstrate accelerg
learning and improved generalization for a five-bit parity fung
tion by the use of hint nodes that count the number of O bits
using 4 thermometer representation.

Improving Generalization

Although neural networks are trained 1o minimize errpr on
the Iraining pattemns, we usually want the svstem 1o Eeneraliss
from the examples and learn the underlying function sq it wil]
do well en new exampics from the same function. A ride of
thumb for generalization is that small simple systems are praf.
erable 1o large complex systems il they give equal petformange
Poor generalization usually results when the response does i
treme things (like oscillating wildly) just 10 fit the detg points,
simpic systems tend to generalize better because they have Jegg
power 1o do things that are not “supported by the data.™ That
is, they have fewer degrees of freedom and are beuer COof-
strained by the available data. Pruning is one of the mijor ways
of reducing network size to favor generalization.

Siee is not the only factor affecting generalization, however,
A network which is too small will have insufficient power 1o fit
the desired function and will perform poorly. Alsa, large net-
works can mimic smaller networks. In most cases, it s not
obvious what size is sufficient. and there is the risk of choosing
an overly complex system, The techniques summarized below
are designed 1o prevent an overly poweriul network from over.
fitting the daia,

Early Stopping

A simple estimate of the true gencralization performance can
be oblained by measuring the error on a separate testing data
set which the network does not see while training. Since this
reduces the size of the training set and is subject to statistical
errors, more sophisticated methods are sometimes used,

Typically the training and test set errors decrease together in
carly learning stages as the network learns major features of the
target function. With an unnecessarily complex system, the test
sel error usually reaches a minimum at some point and then
beging Lo inerease as the network exploits idiosynerasies of the
training data, A simple way of avoiding overfitling is lo monitor
the test set error and stop when the minimum is detected. This
technique can be used with most of the other generalization-
aiding lechnigues,

Regularization

Maost techniques for improving generalization work by in!plﬂ:'ﬂ"
ing additional constraints on the solution. The idea behind
regularization methods (sce GENERALIZATION AND REGULARI-
ZATION 1IN NONLINEAR LEaRNING SvysTEMS) 15 that one ::lf the
least restrictive assumptions is that the target [unction 1
smaooth, i.c., that small changes in the input do not cause large
changes in the output. This bias is embedded in the learmng
algorithm by adding 1erms to the enst funetion thal penalize
nonsmooth solutions. A generic cost function is

E= ¥ {1{x,) — vix))* + iE(complexity)

where E{complexity} measures the complexity of the soluti®
and A balances the tradecoff between smoothing and erref res
duction. The complexity term is often a differential OPF"EI':']I:
measuring how mueh the output changes over the region ©
inlerest.

Meurosmithing: Improving Neural Metwork Learning G43

——

Although this provides a way of biasing the learning algo-
gihm, success depends on selection of an appropriate value
for 4 to determine the strength of the bias. Most other general-
jzation heuristics have a similar parameter balancing error re-
duction and other constraints. This is often chosen by cross-
yalidation,

Constraints o discourage overfitting are usually most help-
ful in the final learning stages and may be harmiul in early
gages if they bias the solution too much before the necwork has
»geen sufficicnt evidence.” When initial weights are small, satu-
ration and overfitiing usually do not become problems until
later- Thus. it is often useful to change 4 dynamically, starting
at 0 and increasing pradually ones an acceptable error is
achieved or when cross-validation indicates overfitting.

Weight Decay
Large weights tend to cause sharp transitions in the sigmoid

functions, and thus large changes in the output result from

small chanees in the inputs. A simple way to obtain some of
the benefits of pruning without complicating the learning algo-
rithm much is to add a decay term like —fw o the weight
update rule, Nonessential weights then decay to zero and can
be removed. Even if not remowved. they have no effect on the
outpul, 0 the network acts like a smaller system. This can be
viewed as a form of regulanization. since a fZ{w?) regularizing
term yields a (= j#w;) decay term in the weight update rule.
Jewveral methods are compared in Hergert, Finnoff, and
Zimmerman (1992,

A drawback of the Z(w?) penalty term is that it favors
weight vectors with many small components over ones with a
few larpe components, even when this is an effective choice. An
alternative is (Weigend. Rumeihart, and Huberman, 1991}

A E wiilwd + wl)
i
where w, is a constant. For w;| < w,. the cost of a weight is
small but grows like w?. For {wif 5 w,, the cost saturates and
approaches a constant 4, so the weight does not incur addi-
tonal penalties.

Weirhe Shaving

“Boft weight sharing” (Nowlan and Hinton, 1992) is another
method that allows large weights when they are effective by
giving “preferred status™ to several other weight values besides
2ero. This reduces system complexity by increasing correlation
imong weight values.

“Hard" weight shanng is commonly used in image pro-
cessing netwarks where the same kernel is applied repeatedly
it different positions in the image (see CONVOLUTIONAL MET-
WORKS FoR IMaGES, SPEECH, anD TIME SemEs). In a neural
hetwork, separate nodes could be used to apply the kernel at
different locations, and the number of weights could be hupe.
Constraining nodes that compute the same kernel to have
tqual weights greatly reduces the number of mdependent
Parameters and makes an otherwise unmanagesble problem
tractable (LeCun et al., 1990).

Adding Noive 1o the Data

Mi}ny studies have noted that adding small amounts of input
Noise during training often helps generalization and fault woler-
nce. Since the network never sees the same pattern twice, it
Aot simply memorize the training patterns. This is equiva-
“fL to imposing a smoothness assumption, since we are efiec-

tively telling the network that slightly different inputs give

about the same output, The effective target function is obtained
by convolving the noise density with the original function. This
is a smoother version of the oripinal and helps prevent over-
fitting because, although the original function may be known
only at discrete sample points. the effective function is continu-
ous over the entire input space. The network is foreed to use
excess degrees of freedom to approximare the smoothed fune-
tion instead of forming an arbitrarily complex surface that may
match the target only at the sample points. Even though the
network may be large, it models a simpler system. A drawback
of traiming with noise is that it can be very slow, and there is the
question of how much noise to use,

Mudtiple Networks

Another idea for improving generalization is to combine the
outpurs of several systems that classify novel examples differ-
ently because of differences in architecture, randomness of ini-
lialization. vanations in parameters, differences in training
data. etc., or because completely different tvpes of classifiers
are used. With a mean-square-error function. the best general-
lzation 35 expected when the system produces the expected
value of all possible functions consistenl with the examples,
weighted by their probability of oocurrence '

fix) = [f{-r}m[ﬂ df
Averaging outpuis of different systems is a very simpie ap-
proximation to this expected value and tends to damp out ex-
treme behaviors not justfied by the data. Combination of sub-
systemns is also an issue in the “mixwwre-of-experts’” model (see
MODULAR AND HIERARCHICAL LTARNING SYSTEMS).

Discussion

A number of commonly used techniques for improving learn-
ing in multilayer perceptrons have heen mentioned. Many are
quite simple and casily implemented but can have a significant
cffect on the speed and probability of successiul learnig. This
list is by no means compicte. of course, Some of the most im-
portant factors affecting learning, e.q., representation of input-
output variables. have not been considered.

Although neural networks are ofien said to learn solely from
the examples, at the most basic level it is biascs built into the
network structure and training algorithms that determine what
the network can learn from the data. The network designer
implicitly manipulates biases at ¢ach stage of the process, from
data preparation to final tuning of the training paramcters.
Maay of the techniques mentioned here can be thought of as
biases that guide the network by making seme functions easier
to learn while excluding others,

Road Map: Learming in Artificial Meural Metworks, Deterministic
Background: Backpropagation: Basics und New Developments: Per-
cepirons, Adalines, and Backpropagation

References

Fahlman, 5. E., 1988, Faster-learning variations of back-propagation:
An empincal study, in Proceedings of the [%38 Connecrionist Models
Summer School (D. Tougretzky, G. Hinton. and T. Sejnowski, Eds.),
San Mateo. CA: Morgan Kawfmann, pp. 38-51.

Geargiou, G. M., and Koutsougeras, C., 1992, Embedding domain
information in backprapagation. in Proceedings of the SPIE Confer-
ence o ddaptive and Learning Svstems, Bellingham, WA SPIE.

Hergert, F., Finnoff, W, and Zimmermann, H. G., 1992, A compari-
san of weight eliminetion methads for reducing complexity in neural

G Part 1I1: Arncles

networks, in Proceedings of e Interngtronal Joind Conference an
Newral Nerworks, vol, 3, Piscataway, NJ: IEEE. pp. 080-987.

Jacobs, B AL 1988, Increased rates of convergence through learning
rate adaptabion, Mewral Menw., 1:295-307,

Jacobs, R, A, Jordan, M, 1., Mowlan, 5. J., and Hinton, G. E., 1991,
Adaptive mixtures of local experts, Neweal Compriar., 3:79-87,

LeCun, Y., et al., 1990, Handwritten digit recognition with a back-
propagation network, in Advaseces in Newed! Information Processing
2D 5. Touretzky, Ed.), San Mateo, CA: Morgan Kauimann,
PP 396404

Meuyen, D L. and Widrow, B 1990, Improving the learning speed of
2-lawer newral networks by choosing motial values of the adapive
weights, in Proceedings of the fnternacionad Joinr Conference an News
raf Networks, Piscatavway, NI: IEEE, pn. 211-224,

Mowlan. 5. 1., and Hinton, G, E., 1992, Simplifying newral networks by
sofl weightl-shanng, Neveal Compuiai., 4:473-403,

Reed, B, Dx., 1993, Pruning algonthms: A survey, FEEE Trans, Newrol
Netw., 4:740-T24, #

—

Sethi. 1 K., [990, Entropy nets: From decision irees 1o neural net.
works, Proc. JEEE, T8:1605- 1613,

Sietema. 1. and Dow, R, 1L F. 1991, Creating artificial neural networks
that generalize, Newra! Neiw., 4267-79,

Suddarth, 5. C.. 1988, The symbolic-neural method for creating mog.
els and cantrol behaviors [rom examples. PhDY thesis, University gr
Washingion. s

Weigend, A 5., Rumelhart, D, E., and Huberman, B, AL, 1991, Gener.
:ﬂ:i.’.u.}iu:l.‘l 'u:f: wright-climination applied to currency exchange rag
prediction. in Proceedings of the fnternariona’ Jodnt Conference gy
Newral Networis, vol, |, Piscalaway, NIz IEEE, pp. B37-24].

Wessels, L. F. AL, and Barnard, E., 1992, Avoiding lalse local minimg
By proper imtializabion of connectons, JEEE Trans, Mewral Nepw
3899005, F

Y. Y.-H. and Simmaons, B F.. 1990, Extra outpul biased learning
in Froveedings of the Inernavional Foine Confrrence on Neural NEr:
works, vol. 3, Piscataway, N1 IEEE, pp. 61— 166,

