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This is the last of a trilogy of papers on implementation 
of artificial neural networks. The first two papers dealt with 

searcher with computer access can quickly run experiments 
that involve at least millions of multiplications and addi- 

analog electronic and an- 
alog optronic implemen- 
tation of neural networks. 
This final overview paper 
surveys the current art of 
digital electronic imple- 
mentation of neural net- 
works. Indeed, certain 
neural network para- 
digms, such as error back 
propagation training, re- 
quire the accuracy avail- 
able only from digital 
implementation. Atlas and 
Suzuki give a clear and 
complete compendium of this important mode of neural 
network implementation. 
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Abstract 

A tremendous flurry of research activity has dez~eloped around artifical 
neural systems. These systems have also been tested in many applications, 
often with positizie results. Most of this work has taken place as digital 
simulations on general-purpose serial or parallel digital computers. Spe- 
cialized neural network emulatiorr systems kazle also been developed for  
more efficient learning and use. Dedicated digital VLSI integrated circuits 
offer the highest near-term future potential for this technology. 

Introduction 

Two recent publications have inspired much of the re- 
search community in engineering, computer science, cog- 
nitive sciences and physics and biophysics to take on a new 
direction in information processing and modeling. These 
two papers, the first about the Hopfield model [l] and the 
second about back-propagation [2]  suggest approaches to 
pattern recognition that were trained by examples and based 
on relatively large networks of neuron-like processors. Even 
though this notion of collective computation had been heavily 
discussed in the past (Minsky and Papert [3] have a good 
review) this most recent incarnation coincided with readily 
available and inexpensive computing power. Thus, any re- 
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tions. This research is now progressing to the point where 
personal computers, workstations, mainframe computers, 
and, in some cases, even supercomputers are inadequate. 
As has been discussed by past papers in this magazine, 
analog electronic [4] and optical [5 ]  techniques offer huge 
potential for these artificial neural systems. This paper will 
concentrate on the more near-term digital solutions and 
will show some projected limits of different digital tech- 
nologies. 

Some reasons that artificial neural system simulations are 
computationally intensive are: 

1. Massive interconnection: Most of the architectures used 
involve tens or hundreds of neuron-like units where 
all units can be connected to each other. Each con- 
nection usually requires a multiplication and each unit 
can require a sum of hundreds (or more) inputs. 

2.  Learning: Many of the problems studied with artificial 
neural systems involve large data sets. The learning 
algorithms, which can adjust the weights for the mul- 
tiplies in the interconnections, have very slow con- 
vergence. Thus, many iterations are required where 
each iteration involves a considerable size set of data. 

3. Flexibility: Algorithms and architectures for artificial 
neural systems are continuously evolving, and both 
researchers and users require the ability to change the 
simulations. 

4. Trial and error: Many of the artificial neural system 
algorithms do not guarantee convergence at a global 
minimum. This characteristic can sometimes be re- 
duced by repeating training runs with different initial 
random weights. The weights from the training run 
with the lowest final error rate are then used in the 
chosen network. 

This paper will summarize several techniques for digital 
implementation of neural networks. We will concentrate 
on trainable architectures and report other researchers’ re- 
cent results. The work we report is intended to be repre- 
sentative and not exhaustive and we apologize to any 
researchers whose work is not reported in our summary. 

General-Purpose Parallel Computers for 
Neural Network Simulations 

General-purpose parallel computers (as distinct from 
vector-oriented supercomputers) are composed of a large 
number of processors cooperating on the same task. Each 
processor has independent memory and data paths and 
instructions for all processors can be independent for MIMD 
(Multiple Instruction Multiple Data). The connections be- 
tween processors can either be through a single high speed 
data path or via short point-to-point links between proces- 
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sors. Many parallel computers are now commercially avail- 
able and are currently used for many simulation applications. 

The interconnection needs for ANNs pose a special chal- 
lenge for parallel processors. Another difficulty is the in- 
consistency of the need for flexibility and the difficulty of 
efficiently programming parallel processors. We will de- 
scribe two studies that adapted parallel computers to ANN 
simulations. The first study, by Forrest et al. [6], made 
separate use of a Distributed Array Processor (DAP) [7] and 
a MIMD array of transputers. [8] The second study, by 
Pomerleau et al. 191, made use of the Warp machine, which 
is a systolic array of processors. [lo] 

Forrest et al. applied a DAP, which is a 2-D grid of 4096 
processors, to a Hopfield net [l] and to a distributed image 
restoration algorithm. [ll] For the Hopfield net, it was found 
that the DAP could perform 25 million conditioned adds 
per second. The image restoration algorithm was able to 
perform 100 iteration updates per second for a 64 x 64 
image on the DAP. There is no comparison made to su- 
percomputer or serial computer implementations, but the 
authors conclude ”It is our view that the software effort 
expended in the first place to implement these simulations 
on the hardware described is well justified by the increase 
gained in performance; in fact, in some cases it is clear that 
the use of these parallel machines was essential for the 
simulations to be done at all in a feasible amount of time.” 

The Warp machine is quite different from the previously 
discussed parallel computers. The architecture used by 
Pomerleau et al.’s study [9] was based on a systolic array 
of 10 cells. Each cell consists of an adder, multiplier, and 
ALU. Communication is possible at high bandwidth with 
a cell’s left and right neighbors. Programs for the Warp 
machine are written in a Pascal-like language called W2 and 
an optimizing compiler gives high efficiency in execution 
time. 

The ANN algorithm that was simulated by the Warp ma- 
chine was back-propagation. [2] The researchers initially 
partitioned the neurons into different processor cells. They 
later found that this partitioning scheme became trouble- 
some for large ANNs. In particular, the size of the cell 
memories of the Warp machine limited the number of in- 
terconnect weights and hence the size of the network. 
Pomerleau et al. then devised a data partitioning scheme 
that divided the training data between the cells. Their tech- 
nique allowed weights to be stored in the 39 Mbyte cluster 
memory and weight changes to be propagated at high speed 
between processor cells. 

The Warp machine ANN was able to compute approxi- 
mately 17 million connection updates per second for the 
training of a large back-propagation network. The authors 
of the Warp machine study also compared their systems 
performance to Convex C-l and 16K Connection machine 
ANN simulators and found speed advantages of a factor 
of 9.4 and 6.5, respectively. 

Special Purpose Processors for Neural 
Network Simulations (Neurocomputers) 

The name ”neurocomputer” has been applied to special 
boards or other attached systems for high speed ANN sim- 
ulations. Several companies, such as Hecht-Nielsen Neu- 
rocomputers, Science Applications International Corporation, 
and TRW, have products which are based upon their own 

designs (some are proprietary) of boards and systems. Many 
of these boards utilize combinations of general-purpose mi- 
croprocessors and/or digital signal processing integrated 
circuits. Other more research level ideas also show promise 
for special-purpose ANN systems. In particular, Bell Labs’ 
Graph Search Machine and INMOS’s transputer integrated 
circuit have been proposed and designed into ANN sys- 
tems. 

A transputer system was used by Feild and Navlakha to 
implement a Hopfield network. [12] This system consisted 
of two INMOS boards connected to an IBM PCET which 
acted as a host. These two boards contained a total of five 
transputer chips and the system could easily be expanded 
for more parallelism. The authors did not report on the 
speed of their simulation, but they did provide descriptions 
of the software for their parallel system. 

A back-propagation model was implemented on a larger 
network of transputers by Beynon. [13] This study made 
use of 40 transputers, each with 2 MBytes of dedicated 
memory, and compared the training speed with a single 
Sun-3 workstation. In all cases the transputer array was 
faster, and it is most notable that the transputer had the 
best relative performance (about 13 times faster than the 
workstation) when the number of neural network weights 
was the largest (51,200 interconnection weights). The au- 
thor attributed this effect to the high relative communica- 
tion overhead for the smaller networks. It was also found 
that graph theory provided useful techniques for minimiz- 
ing the longest software communications path length be- 
tween transputers [14], thereby reducing communication 
overhead. Beynon concluded that while transputers are not 
the best parallel systems for the global communications found 
in fully interconnected ANNs, the arrays provide a good 
test bed for simulation. 

Another specialized integrated circuit is the Graph Search 
Machine (GSM) developed at Bell Labs. [15] This VLSI cir- 
cuit is a reduced-instruction set architecture that is specially 
optimized for pattern matching. The chip also has a 32 
word instruction cache, thus allowing for fastest execution 
of short, modular programs. Na and Glinski made use of 
a single GSM processor for Hopfields ANN and found 
considerable advantages over a mainframe computer sys- 
tem. [16] For training, recognition, and control, seven short 
programs were needed. The authors predicted that after 
training, the GSM processor could recognize one image of 
234 pixels every 0.45 seconds. This was approximately 25 
times faster than their mainframe (the type was not spec- 
ified) simulation. GSM processors can also be connected 
together in arrays allowing for faster simulations of larger 
networks. 

Many ANN operations consist of sums of products and 
are quite similar to some filtering operations in digital sig- 
nal processing. This similarity suggests that much of the 
DSP (digital signal processor) technology could be applied 
to accelerate ANN operations. Researchers from Texas In- 
struments have applied their TMS32020 DSP to the recall 
of a 256 component vector. [17] An inner product operation 
was 21/z times faster on the TMS32020 than on a Digital 
Equipment Corp. VAX 8600. One advantage of DSP sys- 
tems is that many of the chips can be built into a system. 
The Texas Instruments researchers also designed a map- 
ping scheme for multiple DSPs. For matrix-vector calcula- 
tions of size N x N ,  (N/256)’ TMS32020 DSPs can be used 
to achieve large speed improvements relative to more con- 
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ventional serial machines. For example, a 1000 x 1000 ma- 
trix-vector multiply would require 16 DSPs, effecting a speed 
gain of 40 times the speed of a VAX 8600. The TMS32020 
is a fixed-point processor, hence some of the ANN systems 
could be difficult to develop on this architecture. However, 
very fast floating-point DSPs, such as Texas Instrument’s 
TMS320C30 and AT&T’s DSP32C, are now becoming avail- 
able. 

Several manufacturers have designed and developed 
board-level or larger systems for ANN simulations. Three 
of the companies that have been most visible are TRW, 
Science Applications International Corporation, and Hecht- 
Neilsen Neurocomputers. All of these companies sell boards 
and software systems for VME- or PC-based host com- 
puters. 

The TRW products include a Mark I11 and a Mark IV 
neurocomputer. 1181 The Mark 111 system consists of up to 
15 slave processors operating on a single VME bus. Each 
processor module consists of a Motorola 68020 micropro- 
cessor with a 68881 floating point co-processor. Enough 
memory is provided in each module to store a significant 
portion of the interconnect weights, thus minimizing com- 
munication on the single W E  bus. The Mark 111 can process 
up to 450,000 interconnections per second. TRWs Mark IV 
system uses dedicated hardware for an even higher speed 
of 5,000,000 interconnections per second. Both of these sys- 
tems make use of a virtual PE concept where, at any one 
time, the computer physically contains only a subset of the 
ANN model. Other neurons are “swapped in” as process- 
ing progresses, analogous to the use of physical memory 
in virtual memory computers. TRW’s virtual PE concept 
allows the simulation of very large ANNs. For example, 
the Mark IV can support an ANN with 256,000 neurons. 

The ANN system developed by Science Applications In- 
ternational corporation (SAIC) is called the Delta Floating 
Point Processor. This system consists of a set of boards (and 
software) that interface to an IBM PC. SAIC’s design ap- 
proach was described by Works. 1191 The designers decided 
that they required floating-point operations, but they ruled 
out commercially available array processors since the mem- 
ory and speed were deemed inadequate for their projected 
applications. The system that was designed made use of 
very fast (35 nsec) static column mode memories, an ECL 
floating-point chip set (from Bipolar Integrated Technolo- 
gies in Oregon), and a reduced instruction set computer 
(RISC) architecture. Since the SAIC designers were inter- 
ested in simulating many ANN paradigms, the RISC ar- 
chitecture was found to provide a good compromise between 
efficiency and flexibility. The speeds claimed for the Delta 
Processor are 2,000,000 connections per second during 
learning and 10,000,000 connections per second when 
weights are not updated. It is notable that the Delta Pro- 
cessor achieved this speed with no parallel processing- a 
single fast special purpose processor was used. 

The last commercially available neurocomputer we de- 
scribe is the neurocomputing co-processor from Hecht- 
Nielsen Neurocomputers. There is a circuit card that is plug- 
in compatible with a PC-AT (the ANZA Plus) and another 
card (the ANZA PlusNME) which is configured for a VME 
bus. Both of these systems have similar hardware and spec- 
ifications. The architecture of these boards is based on a 4- 
stage pipelined Harvard architecture where data and in- 
struction paths are kept separate for efficiency. The pro- 
cessor used is the Weitek XL floating-point chip set. For 
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both the VME and the PC-AT version, 1,800,000 intercon- 
nections per second are claimed during learning iterations. 
For non-learning mode (where the weights are not up- 
dated) 6,000,000 sustained and 10,000,000 peak intercon- 
nections per second can be calculated. Hecht-Nielsen 
Neurocomputers also distributes ANN development soft- 
ware for use in conjunction with these boards. 

__----- Ring 
__/----- 

lo+.., __ _,__ ---- - -_--_* 

Dedicated Digital ANN VLSI Circuits 

There has been much work in the design of VLSI ICs that 
are specially designed for ANNs. Many of these systems 
are analog or hybrid analogdigital and have been covered 
elsewhere. 1201 We will thus stress systems that are solely 
digital. Our descriptions will start with some recent pub- 
lications of other researchers and will finish with some re- 
sults of our own research. 

Rasure et al. 1211 at the Department of Electrical and 
Computer Engineering at the University of New Mexico 
designed a VLSI-based 3-layer feed forward ANN. This 
network is intended to classify handwritten numerals and 
consisted of 50 neurons and 6688 interconnections. The 
training for this network is done off-line, i.e., the intercon- 
nection weights are not determined by the VLSI system but 
are instead kept fixed. The VLSI layout (using a 2-micron 
CMOS process) was found to occupy a 7900 by 9200 micron 
die. The chip simulation results predict that a new input 
could be classified every 0.4 milliseconds. 

Another system that is based on custom digital VLSI de- 
signs was described by Garth at Texas Instruments in Bed- 
ford, UK. 1221 This system is intended to accelerate training 
of neural networks. The author takes the approach that 
there are several key aspects of a trainable simulator: 1) a 
very large address space, 2) a small number of needed in- 
structions, 3) the pipelining of repetitive operations, and 4) 
adequacy of relatively slow memory. He proposes a 3-D 
mesh of ”NETSIM’ cards, each of which contains com- 
munications, control, memory, and a specialized custom 
co-processor. This co-processor takes on the bulk of the 
computational load and consists of a math processor, ad- 
dress controller, and a memory controller. The calculations 
are based on 16-bit interconnection weights with a 24-bit 
accumulator. The author projects that a system consisting 
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of 125 NETSIM cards would operate at 90,000,000 intercon- 
nections per second during learning. 

Suzuki and Atlas have recently completed a study in which 
they determined a mapping of an ANN to an array of cus- 
tom processors. [23,24] This mapping was optimized for 
the training phase of the back propagation algorithm. In 
order to find a minimum number of transmissions among 
processor elements (PES), several mapping schemes from 
NN units to PES were considered. We compared bus-cou- 
pling, ring, and mesh topologies, theoretically analyzing 
the required data transmission count and calculation count 
for one iteration of training for an ANN with one hidden 
layer. Our equation for the total computation count (sum 
of the needed data transmission cycles and the calculation 
cycles) was given as a function of the number of neural 
units in each layer and the total number of PES. For the 
data transmission count an optimal number of PES exists 
in the case of the mesh, whereas this count increases mon- 
otonically in the case of the bus-coupling and the ring. The 
calculation count decreases as the number of PES increases 
for all three topologies. 

A comparison of computation counts for one full NN 
training update is shown in Fig. 1. This count gives an 
indication of the total number of machine cycles for a single 
ANN learning iteration. For an ANN with 1024 input, 256 
hidden, and 128 output units, a computation count of about 
1020 is obtained by the mesh with 4096 PES. This compu- 
tation count is about 16 percent of that seen for the mini- 
mum case of the ring which consists of 512 PES, and about 
three percent of the best bus-coupling result which is ob- 
tained with 64 PES. A similar result can be obtained for an 
ANN with two hidden layers. An important point is that 
the lowest computation count occurs with many more PES 
for the case of the mesh. This means that a much finer 
grain regular processor system can be realized by using the 
mesh topology. 

f 

Fig. 2. The structure for one processing element. The blocks represent 
special operations (as described in the text) of the artificial neural riet 
update equations. 

An example of a proposed processing element structure 
is shown in Fig. 2. This processing element contains two 
calculation units. One is the product-sum unit (PSU) which 
calculates and accumulates part of a neuron's inputs. An- 
other is the arithmetic unit (AU) where almost all the other 
calculations are performed. A partial matrix of weights W 
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and a partial vector of the threshold 0 for each layer are 
stored in the PSU. A nonlinear table (NL) is placed to per- 
form sigmoidal or arbitrary nonlinearities. In the AU there 
exist memories for the back propagated derivative of non- 
linear function (DF), desired outputs (DO), and a coeffi- 
cient for weight adaption (7). Memories for input data and 
output values of neural units in each layer (X) and a mem- 
ory for the error value 6 are attached to the internal bus so 
they can be accessed easily by both the PSU and the AU. 
For smooth data transmission the multiplexer (MUX) is 
placed between external links and internal bus. 

TABLE I. 
A comparison of speed for several digital artificial neural 

network architectures. All speeds are in  interconnects per second 
during training of a back propagation A N N .  

ANN Architecture 

Warp machine [9] 
TRW Mark I11 [18] 
TRW Mark IV [18] 

HNC ANZA Plus 

Pipelined Mesh [23] 

*These figures are projected from analysis or simulation. 

Learned Connections Per Second 

1.7 x lo7 
4.5 x lo5 
5.0 x lo6 
2.0 x lo6 
1.8 x loh 

6.9 x 1011* 

SAIC Delta [19] 

NETSIM [22] 9.0 x 107* 

Conclusions 

ANN design and development is heavily dependent on 
appropriate computational tools. Many of the researchers 
who are investigating ANNs for real-world applications are 
faced with needs that go beyond conventional computing 
systems. In order to compare the available digital ANN 
systems we have put together Table 1. This table, which is 
by no means complete, lists the expected speed of the sys- 
tem during learning for a back propagation algorithm. Since 
the total learning time is problem-dependent, these figures 
are only for comparison. Also note that important issues 
such as flexibility, word size, and cost are not included and 
that the fastest architectures could be difficult to adapt to 
new algorithmic developments in ANNs. 

We conclude that specialized digital systems are advan- 
tageous for ANN simulations. It is also apparent that the 
utmost in speed will require custom and dedicated digital 
integrated circuits. This paper has reviewed some recent 
contributions to this rapidly expanding area and we would 
expect that many more companies, large and small, are 
already developing systems that will fit advantageously into 
Table 1. 
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